• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Convergence Analysis of an Unconditionally Energy Stable Linear Crank-Nicolson Scheme for the Cahn-Hilliard Equation

    2018-07-12 05:29:04LinWangandHaijunYu
    Journal of Mathematical Study 2018年1期

    Lin Wang and Haijun Yu

    School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    NCMIS&LSEC,Institute of Computational Mathematics and Scientific/Engineering Computing,Academy of Mathematics and Systems Science,Beijing 100190,China.

    1 Introduction

    In this paper,we consider numerical approximation for the Cahn-Hilliard equation

    with Neumann boundary condition

    Here ?∈Rd,d=2,3 is a bounded domain with a locally Lipschitz boundary,n is the outward normal,T is a given time,φ(x,t)is the phase- field variable.Function f(φ)=F′(φ),with F(φ)is a given energy potential with two local minima,e.g.the double well potential

    The two minima of F produces two phases,with the typical thickness of the interface between two phases given by ε. γ is a time relaxation parameter,its value is related to the time unit used in a physical process.

    Eq.(1.1)is a fourth-order partial differential equation,which is not easy to solve using a finite element method.However,if we introduce a new variable μ,called chemical potential,forEq.(1.1)can be rewritten as a system of two second order equations

    The corresponding Neumann boundary condition reads

    The Cahn-Hilliard equation was originally introduced by Cahn-Hilliard[6]to describe the phase separation and coarsening phenomena in non-uniform systems such as alloys,glasses and polymer mixtures.If the term ?μ in equation(1.3)is replaced with?μ,one get the Allen-Cahn equation,which was introduced by Allen and Cahn [2] to describe themotion of anti-phase boundaries in crystalline solids. The Cahn-Hilliard equation and the Allen-Cahn equation are two widely used phase- field model.In a phase- field model,the information of interface is encoded in a smooth phase function φ.In most parts of the domain ?,the value of φ is close to local minima of F.The interface is a thin layer of thickness ε connecting regions of different local minima.It is easy to deal with dynamical process involving morphology changes of interfaces using phase- field models.For this reason,phase field models have been the subject of many theoretical and numerical investigations(cf.,for instance,[7–9,12,14,15,17,19,22,23,30,35]).

    However,numerically solving the phase- field equations is not an easy task,since the small parameter ε in the Cahn-Hilliard equation makes the equation very stiff and requires a high spatial and temporal grid resolution.To design an energy stable scheme,one should respect the physical dissipation law of the Cahn-Hilliard system.In fact,the Cahn-Hilliard equation is H?1gradient flow of the Ginzburg-Laudau energy functional

    More precisely,by taking the inner product of(1.3)with μ,and integration in time,we immediately find the following energy law for(1.3)

    Since the nonlinear energy F is neither a convex nor a concave function,treating it fully explicit or implicit in a time discretization will not lead to an efficient scheme.In fact,if the nonlinear force f is treated fully explicitly,the resulting scheme will require a very tiny step-size to be stable(cf.for instance[35]).On the other hand,treating it fully implicitly will lead to a nonlinear system,for which the solution existence and uniqueness requires a restriction on step-size as well(cf.e.g.[19]).One popular approach to solve this dilemma is the convex splitting method[16,17],in which the convex part of F is treated implicitly and the concave part treated explicitly.The scheme is of first order accurate and unconditional stable.In each time step,one need solve a nonlinear system.The solution existence and uniqueness is guaranteed since the nonlinear system corresponds to a convex optimization problem.The convex splitting method was used widely,and several second order extensions were derived in different situations[5,9,11,26],etc.Another type unconditional stable scheme is the secant-line method proposed by[12].It is also used and extended in several other works,e.g.[4,5,9,18,22,25,29,45].Like the fully implicit method,the usual second order convex splitting method and the secant type method for Cahn-Hilliard equation need a small time step-size to guarantee the semi-discretized nonlinear system has a unique solution(cf.for instance[3,12]).To remove the restriction on time step-size,a diffusive three-step Crank-Nicolson scheme was introduced by[26]and[13]coupled with a second order convex splitting.After time discretization,one get a nonlinear but unique solvable problem at each time step.

    Recently,a new approach termed as invariant energy quadratization(IEQ)was introduced to handle the nonlinear energy.When applying to Cahn-Hilliard equation,it first appeared in[23,24]as a Lagrange multiplier method.It then generalized by Yang et al.and successfully extended to handle several very complicated nonlinear phase- field models[27,40–43].In the IEQ approach,a new variable which equals to the square root of F is introduced,so the energy is written into a quadratic form in terms of the new variable.By using semi-implicit treatments to the nonlinear equation using new variables,one get a linear and energy stable scheme.It is straightforward to prove the unconditional stability for both first order and second order IEQ schemes.Comparing to the convex splitting approach,IEQ leads to well-structured linear system which is easier to solve.The modified energy in IEQ is an order-consistent approximation to the original system energy.At each time step,it needs to solve a linear system with time-varying coefficients.

    Another trend of improving numerical schemes for phase- field models focuses on algorithm efficiency.Chen and Shen,and their coworkers[10,44]studied stabilized some semi-implicit Fourier-spectral methods to the Cahn-Hilliard equation.The space variables are discretized by using a Fourier-spectral method whose convergence rate is exponential in contrast to the second order convergence of a usual finite-difference method,the time variable is discretized by using semi-implicit schemes which allow much larger time step sizes than explicit schemes. Xu and Tang in [39] introduced a different stabilized term to build stable large time-stepping semi-implicit methods for an epitaxial growth model.He et al[28]proposed similar large time-stepping methods for the Cahn-Hilliard equation,in which a stabilized term A(φn+1?φn)(resp.A(φn+1?2φn+φn?1))is added to the nonlinear bulk force for the first order(resp.second order)scheme.Shen and Yang systematically studied stabilization schemes to the Allen-Cahn equation and the Cahn-Hilliard equation in mixed formulation[35].They got first-order unconditionally energy stable schemes and second-order semi-implicit schemes with reasonable stability conditions.This idea was followed up in[21]for the stabilized Crank-Nicolson schemes for phase field models.In[37]another second-order time-accurate schemes for diffuse interface models,which are of Crank-Nicolson type with a new convex-concave splitting of the energy and tumor-growth system.In above mentioned schemes,when the nonlinear force is treated explicitly,one can get energy stability with reasonable stabilization constant by introducing a proper stabilized term and a suitably truncated nonlinear(φ)instead of f(φ)such that a uniform Lipschitz condition is satisfied.It is worth to mention that with no truncation made to double-well potential F(φ),Li et al[31,32]proved that the energy stable can be obtained as well,but a much larger stability constant need be used.

    Recently,we proposed two second-order unconditionally stable linear schemes based on Crank-Nicolson method(SL-CN)and second-order backward differentiation formula(SL-BDF2)for the Cahn-Hilliard equation[38].In both schemes,explicit extrapolation is used for the nonlinear force with two extra stabilization terms which consist to the order of the schemes added to guarantee energy dissipation.The proposed methods have several merits:1)They are second order accurate;2)They lead to linear systems with constant coefficients after time discretization,thus robust and efficient solution procedures are guaranteed;3)The stability analysis bases on Galerkin formulation,so both finite element methods and spectral methods can be used for spatial discretization to conserve volume fraction and satisfy discretized energy dissipation law.An optimal error estimate in l∞(0,T;H?1)∩l2(0,T;H1)norm is obtained for the SL-BDF2 scheme in last paper.This paper aims to give an optimal error estimate of the SL-CN scheme.

    The remain part of the paper is organized as follows.In Section 2,we present the stabilized linear semi-implicit Crank-Nicolson scheme for the Cahn-Hilliard equation and its unconditionally energy stability property.In Section 3,we carry out the error estimate to derive a convergence result that does not depend on 1/ε exponentially.A few numerical tests for a 2-dimensional square domain are included in Section 4 to verify our theoretical results.We end the paper with some concluding remarks in Section 5.

    2 The stabilized linear semi-implicit Crank-Nicolson scheme

    We first introduce some notations which will be used throughout the paper. We use·km,pto denote the standard norm of the Sobolev space Wm,p(?).In particular,we usek·kLp to denote the norm of W0,p(?)=Lp(?);k·kmto denote the norm of Wm,2(?)=Hm(?);and k·kto denote the norm of W0,2(?)=L2(?).Let(·,·)represent the L2inner product.In addition,define for p≥0

    wherestands for the dual product between Hp(?)and H?p(?).We denote(?).For v∈(?),let???1v:=v1∈H1(?)∩(?),where v1is the solution to

    and kvk?1:=

    For any given function φ(t)of t,we use φnto denote an approximation of φ(nτ),where τ is the step-size.We will frequently use the shorthand notations:Following identities and inequality will be used frequently.

    Suppose φ0= φ0(·)and φ1≈ φ(·,τ)are given,our stabilized liner Crank-Nicolson scheme(abbr.SL-CN)calculates φn+1,n=1,2,...,N=T/τ?1 iteratively,using

    where A and B are two non-negative constants to stabilize the scheme.

    To prove energy stability of the numerical schemes,we assume that the derivative of f in equation(1.3)is uniformly bounded,i.e.

    where L is a non-negative constant.Note that,although most of the nonlinear potential,e.g.the double-well poential doesn’t satisfy(2.5),the above assumption is reasonable since:1)physically φ should take values in[?1,1];2)it was proved by Caffarelli and Muler[8]that an L∞bound exists for Cahn-Hilliard equation with a potential having linear growth for|φ|>1,3)it is proved by[1]and[20]that when a properinitial condition is given,the Cahn-Hilliard equation converges to Hele-Shaw problem when ε→ 0.If the corresponding Hele-Shaw problem has a global(in time)classical solution,then the solution to the Cahn-Hilliard equation has a L∞bound.

    Theorem 2.1.Under the condition

    the following energy dissipation law

    holds for the scheme(2.3)-(2.4),where

    Proof.Pairing(2.3)with(2.4)withand combining the results,we get

    Pairing(2.3)with 2then using Cauchy-Schwartz inequality,we get

    To handle the term involving f,we expand F(φn+1)and F(φn)atn+12as

    whereis a number between φn+1andis a number between φnandTaking the difference of above two equations,we have

    Multiplying the above equation withthen taking integration leads to

    For the term involving B,by using identity(2.1)with hn+1=δtφn+1,one get

    Summing up(2.9)-(2.12),we obtain

    which is the energy estimate(2.7).

    Remark 2.1.Note that,if B=0,we can taketo make the SL-CN scheme(2.3)-(2.4)unconditionally stable as well.However,when A=0,we can’t prove an unconditional stability for B~O(ε?1)or B~O(ε?2).

    Remark 2.2.The constant A defined in equation(2.6)seems to be quite large when ε is small,but it is not necessarily true.Since usually γ is a small constant related to ε.For example,it was pointed out in[34]that,the Cahn-Hilliard equation coupled with the Navier-Stokes equations have a sharp-interface limit when O(ε3)≤ γ ≤O(ε),while γ ~ O(ε2)gives the fastest convergence.On the other hand,the numerical results in Section 4 shows that in practice A can take much smaller values than those defined in(2.6)when nonzero B values are used.

    Remark 2.3.The discrete Energy ECdefined in equation(2.8)is a first order approximation to the original energy E,sinceOn the other side,summing up the equation(2.7)for n=1,...,N,we get

    By taking N → ∞,we get δtφn+1→0,which means the system will eventually converge to a steady state.By equation(2.3)and(2.4),this steady state is a critical point of the original energy functional E.

    3 Convergence analysis

    In this section,we shall establish error estimate of the SL-CN scheme.We will shown that,if the interface is well developed in the initial condition,the error bounds depend ononly in some lower polynomial order for small ε.Let φ(tn)be the exact solution at time t=tnto equation of(1.3)and φnbe the solution to the time discrete numerical scheme(2.3)-(2.4),we define error function en:=φn?φ(tn).Obviously e0=0.

    Before presenting the detailed error analysis,we first make some assumptions.For simplicity,we take γ =1 in this section,and assume 0< ε<1.We use notation.in the way that f.g means that f≤Cg with positive constant C independent of τ and ε.

    Assumption 3.1.We make following assumptions on f:

    (1)F∈C4(R),F(±1)=0,and F>0 elsewhere.There exist two non-negative constants

    B0,B1,such that

    (2)f=F′.f′and f′′are uniformly bounded,or,f satisfies(2.5)and

    where L2is a non-negative constant.

    Assumption 3.2.We assume that there exist positive constants m0and non-negative constants σ1,σ2,σ3such that

    We also assume that an appropriate scheme is used to calculate the numerical solution at first step,such that

    Then

    and exist a constant σ0>0,

    Lemma 3.1.Suppose that f satisfies Assumption 3.1,φ0∈H2(?).Then,the following estimates holds for the numerical solution of(2.3)-(2.4)

    Proof.(i)Equation(3.10)is obtained by integrating equation(2.3).

    (ii)Equation(3.11)is a direct result of the energy estimate(2.7)and(3.8).

    Some regularities of exact solution φ(t)are necessary for the error estimates.

    Assumption 3.3.Suppose the exact solution of(1.3)have the following regularities:

    (1) ??1φ(t)∈W2,2(0,∞;H?1),or

    (2) φ(t)∈W2,2(0,∞;H?1TH3),or

    (3) φ(t)∈W1,2(0,∞;H3),or

    Here ρj,j=1,2,3,4,5,6,7,8 are non-negative constants which depend on σ1,σ2,σ3.

    We first carry out a coarse error estimate using a standard approach for time semi discretized schemes.

    Proposition 3.1.(Coarse error estimate)Suppose that A,B are any non-negative number.Then for all N≥1,we have estimate

    and

    The index σ0+3 in(3.13)can be replaced with σ0if we take τ < ε1.5.

    Proof.The following equations for the error function hold:

    Pairing(3.14)with???1adding(3.15)paired withwe get

    where

    For the right hand of(3.16),by using Cauchy-Schwartz inequality,we obtain the following estimate:

    For J5of the right side of(3.16),by using δtten+1=δten+1?δten,we have

    where

    For the R1,...,R5terms,we have following estimates:

    Substituting J1,···,J6into(3.16),we have

    where

    Taking η =ε/2,multiplying(3.33)by 2τ,we obtain(3.12)by using inequality ka+bk2≤2kak2+2kbk2and estimates(3.28)-(3.32).Then by summing(3.33)for n=1···N,we obtain

    where

    by discrete Gronwall inequality and assumption(3.9),we get(3.13).

    Proposition3.1 is the usual error estimate,in which the error growth depends on T/ε3exponentially.To obtain a finer estimate on the error,we need to use a spectral estimate of the linearized Cahn-Hilliard operator by Chen[7]for the case when the interface is well developed in the initial condition.

    Lemma 3.2.Let φ(t)be the exact solution of the Cahn-Hilliard equation(1.3)with interfaces are well developed in the initial condition(i.e.conditions(1.9)-(1.15)in[7]are satisfied).Then there exist 0<ε0?1 and positive constant C0such that the principle eigenvalue of the linearized Cahn-Hilliard operatorsatisfies for all t∈[0,T]

    for ε∈(0,ε0).

    The following lemma shows the boundedness of the solution to the Cahn-Hilliard equation,provided that its sharp-interface limit Hele-Shaw problem has a global(in time)classical solution.This is a condition of the finer error estimate.

    Lemma 3.3.Suppose that f satisfies Assumption 3.1,and the corresponding Hele-Shaw problem has a global(in time)classical solution.Then there exists a family of smooth initial functions{φε0}0<ε≤1and constants ε0∈(0,1]and C>0 such that for all ε∈(0,ε0)the solution φ(t)of the Cahn-Hilliard equation(1.3)with the above initial data φε0satisfies

    Proof.See[20]and[1]for the detailed proof.

    Now we present the refined error estimate.

    Theorem 3.1.Suppose all of the Assumption 3.1,3.2,3.3 hold and B>L/2ε.Let time step τ satisfy the following constraint

    then the solution of(2.3)-(2.4)satisfies the following error estimate

    where σ=max{ρ1+4,ρ2+6,ρ4+2,ρ5?8,ρ6+8,ρ7?2,σ0}.

    Proof.(i)To get a better convergence result,we re-estimate J5,J6in(3.16)as

    For J8,by Taylor expansion,there exists ?n+1betweensuch that

    where C2=Here we assume that the conditions of Lemma 3.3 are satisfied.

    Substituting J1,···,J8into(3.16),then we have

    We need to bound the last three terms on the right hand side of above inequality.

    (ii)To control theterm,we pair(3.14)withthen add(3.15)paired with?δten+1,to get

    Analogously,applying the method for J1,···,J4toyields

    Forof(3.45),we have

    where ξn+1is a fixed number betweenNow,we estimate the first term on the right hand side of(3.50).

    Combination of(3.50)and(3.51)yields

    Substitutinginto(3.45),we have

    Combining(3.44)and(3.53),then using triangle inequality(3.28)-(3.32)and following estimates

    we obtain

    where

    (iii)We now estimate the last two terms of the right hand side of(3.59).The spectrum estimate(3.36)leads to

    Applying(3.61)with a scaling factor(1?η1)close to but smaller than 1,we get

    On the other hand,

    Now,we estimate the L3term.By interpolating L3between L2and H1then using Poinc are inequality for the error function,we get

    where K is a constant independent of ε and τ.We continue the estimate by using

    to get

    where Gn+1=

    Now plugging equation(3.62),(3.63)and(3.64)into(3.59),we get

    Take η1=ε3,η2=ε,η=ε4/11,?η=ε?6,such that

    Take

    such that

    Summing up(3.65),(3.66)and(3.68),we get

    Now,if Gn+1is uniformly bounded by constant ε4/4,we can multiply by 2τ on both sides of inequality(3.69),and sum up for n=1 to N to get the following estimate

    where

    Choose τ ≤ 1/(2C0+2L2),then we can get a finer error estimate by discrete Gronwall inequality and the assumption of first step error(3.9)

    We prove this by induction.Assuming that the above estimate holds for all first N time steps.Sincethen the coarse estimate(3.12)leads to

    To obtain GN+1≤ε4/4,using(3.73),we easily get

    Solving(3.74),we get

    The proof is complete.

    Remark 3.1.Note that the spectral estimate(3.36)is essential to the proof.Moreover,since the Crank-Nicolson discretization has no numerical diffusion,it is harder to bound the error growth than the BDF2 scheme.Here,we needto get the convergence,while in SL-BDF2 scheme,there is no such a requirement[38].

    Remark 3.2.We used L∞bound assumption of the exact solution to handle the high order termoccured in(3.43).There is another way to control this term.By Cachy-Schwartz inequality,one only need to controlandThe L4term can be controlled by using Sobolev interpolation inequality as we did for theterm.The L2term of the error function can be controlled by aterm and

    4 Numerical results

    In this section,we numerically verify our schemes are energy stable and second order accurate in time.

    We use the commonly used double-well potential F(φ)=(φ2?1)2.It is a common practice to modify F(φ)to have a quadratic growth rate for|φ|>1(since physically|φ|≤1),such that a global Lipschitz condition is satisfied[35],[9].To get a C4smooth double-well potential with quadratic growth,we introduce(φ)∈C∞(R)as a smooth mollification of

    with a mollification parameter much smaller than 1,to replace F(φ).Note that the truncation points?2 and 2 used here are for convenience only.Other values outside of region[?1,1]can be used as well.For simplicity,we still denote the modified functionby F.

    To test the numerical scheme,we solve(1.3)in tensor product 2-dimensional domain? =[?1,1]×[?1,1].We use a Legendre Galerkin method similar as in[36,42]for spatial discretization.Let Lk(x)denote the Legendre polynomial of degree k.We define

    where ?0(x)=L0(x);?1(x)=L1(x);?k(x)=Lk(x)?Lk+2(x),k=2,...,M?1,be the Galerkin approximation space for both φn+1and μn+1.Then the full discretized form for the SLCN scheme reads:

    Findsuch that

    This is a linear system with constant coefficients forwhich can be efficiently solved.We use a spectral transform with doubled quadrature points to eliminate the aliasing error and efficiently evaluate the integrationin equation(4.3).

    We take ε=0.05 and M=63 and use two different initial values to test the stability and accuracy of the proposed schemes:

    (1){φ0(xi,yj)}∈ R2M×2Mwith xi,yjare tensor product Legendre-Gauss quadrature points and φ0(xi,yj)is a uniformly distributed random number between ?1 and 1(shown in the left picture of Figure 1);

    (2)The solution of the Cahn-Hilliard equation at t=64ε3which takes φ0as its initial value(Denoted by φ1shown in the middle picture of Figure 1).

    Figure 1:The two random initial values φ0, φ1and the state of φ1evolves 0.2 time unit according to the Cahn-Hilliard equation(1.3)with γ=1.

    Table 1:The minimum values of A(resp B)(only values{0,2i,i=0,...,7}×γ are tested for A,only values{0,2i,i=0,...,7}are tested for B)to make scheme SL-CN stable when γ,B(resp A)and τ taking different values.

    4.1 Stability results

    Table 1 shows the required minimum values ofA(resp.B)with differentγ,B(resp.A)andτvalues for stably solving(not blow up in 4096 time steps)the Cahn-Hilliard equation(1.3)with initial valueφ0.The results for the initial valueφ1are similar.From this table,we observe that the SL-CN scheme is stable withA=0,B=0 whenτis small enough.If we takeA=0,thenB=16 will make the scheme unconditionally stable,the values ofγhas only a very small effect on the values ofB.But when we fixB,the caseγ=1 requires a much largerAvalue to make the scheme stable thanγ=0.0025 case,this is consistent to our analysis.

    Figure 2 presents the discrete energy dissipation of the SL-CN scheme using several time step-sizes.We see clearly the energy decaying property is maintained.Moreover,astincreases,the differences betweenEandECNget smaller and smaller.

    Figure 2:The discrete energy dissipation of the SL-CN scheme solving the Cahn-Hilliard equation with initial value φ1,and relaxation parameter γ =0.0025.Stability constant A=1,B=20 are used.

    4.2 Accuracy results

    We take initial valueφ1to test the accuracy of the two schemes.The Cahn-Hilliard equation withγ=0.0025 are solved fromt=0 toT=12.8.To calculate the numerical error,we use the numerical result generated usingτ=10?3as a reference of exact solution.The results are given in Table 2.We see that the scheme is second order accuracy inH?1,L2andH1norm.

    Table 2:The convergence of the SL-CN scheme with B=40,A=0.1 for the Cahn-Hilliard equation with initial value φ1,parameter γ =0.0025.The errors are calculated at T=12.8.

    5 Conclusions

    We study the stability and convergence of a stabilized linear Crank-Nicolson scheme for the Cahn-Hilliard phase field equation.The scheme includes two second-order stabilization terms,which guarantee the unconditional energy dissipation theoretically.Use a standard error analysis procedure for parabolic equation,we get an error estimate with a prefactor depending on 1/ε exponentially.We then refine the result by using a spectrum estimate of the linearized Cahn-Hilliard operator and mathematical induction to get an optimal(second-order)convergence estimate in l∞(0,T;H?1)∩l2(0,T;H1)norm with a prefactor depends only on some lower degree polynomial of 1/ε.Numerical results are presented to verify the stability and accuracy of the scheme.

    Acknowledgments

    This work is partially supported by NSF of China No.11771439,No.11371358 and Major Program of under Grant NSF of China No.91530322.The authors thank Prof.Jie Shen and Prof.Xiaobing Feng for helpful discussions.

    [1]Nicholas D.Alikakos,Peter W.Bates and X.Chen,Convergence of the Cahn-Hilliard equation to the Hele-Shaw model,Archive for Rational Mechanics and Analysis,128(2)(1994),165-205.

    [2]S.M.Allen and J.W.Cahn,A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,Acta Metall.Mater.,27(1979),1085-1095.

    [3]J.Barrett,J.Blowey and H.Garcke,Finite element approximation of the Cahn-Hilliard equation with degenerate mobility,SIAM J.Numer.Anal.,37(1)(1999),286-318.

    [4]B.Benesova,C.Melcher and E.Süli,An implicit midpoint spectral approximation of nonlocal Cahn–Hilliard equations,SIAM J.Numer.Anal.,52(3)(2014),1466-1496.

    [5]A.Baskaran,P.Zhou,Z.Hu,C.Wang,S.Wise and J.Lowengrub,Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation,J.Comput.Phys.,250(2013),270-292.

    [6]John W.Cahn and John E.Hilliard,Free energy of a nonuniform system,I.interfacial free energy.J.Chem.Phys.,28(2)(1958),258-267.

    [7]X.Chen,Spectrum for the Allen-Cahn,Cahn-Hillard,and phase- field equations for generic interfaces,Commun.Part.Diff.Eq.,19(7)(1994),1371-1395.

    [8]Luis A.Caffarelli and Nora E.Muler,An L∞bound for solutions of the Cahn-Hilliard equation,Arch.Rational Mech.Anal.,133(2)(1995),129-144.

    [9]N.Condette,Christ of Melcher and Endre Süli,Spectral approximation of pattern-forming nonlinear evolution equations with double-well potentials of quadratic growth,Math.Comp.,80(273)(2011),205-223.

    [10]L.Q.Chen and J.Shen,Applications of semi-implicit Fourier-spectral method to phase field equations.,Comput.Phys.Commun.,108(2-3)(1998),147–1588.

    [11]W.Chen,C.Wang,X.Wang and S.M.Wise,A linear iteration algorithm for a second order energy stable scheme for a thin film model without slope selection,J Sci.Comput.,59(3)(2014),574-601.

    [12]Q.Du and R.A.Nicolaides,Numerical analysis of a continuum model of phase transition,SIAM J Numer.Anal.,28(5)(1991),1310-1322,.

    [13]A.E.Diegel,C.Wang and S.M.Wise,Stability and convergence of a second order mixed finite element method for the Cahn-Hilliard equation,IMA J Numer.Anal.,36(4)(2016),1867-1897.

    [14]C.Elliott and H.Garcke,On the Cahn-Hilliard Equation with Degenerate Mobility,SIAM J Math.Anal.,27(2)(1996),404–423.

    [15]Charles M.Elliott and Stig Larsson,Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation,Math.Comp.,58(198)(1992),603-630,S33-S36.

    [16]C.M.Elliott and A.M.Stuart,The global dynamics of discrete semilinear parabolic equations,SIAM J.Numer.Anal.,30(1993),1622-1663.

    [17]D.J.Eyre,Unconditionally gradient stable time marching the Cahn-Hilliard equation,in Computational and Mathematical Models of Microstructural Evolution(San Francisco,CA,1998),Mater.Res.Soc.Sympos.Proc.,529(1998),39-46.

    [18]X.Feng,Fully discrete finite element approximations of the Navier-Stokes–Cahn-Hilliard diffuse interface model for two-phase fluid flows,SIAM J.Numer.Anal.,44(3)(2006),1049-1072.

    [19]X.Feng and A.Prohl,Error analysis of a mixed finite element method for the Cahn-Hilliard equation,Numer.Math.,99(1)(2004),47-84.

    [20]X.Feng and A.Prohl,Numerical analysis of the Cahn-Hilliard equation and approximation of the Hele-Shaw problem,Interfaces Free Bound,7(1)(2005),1-2.

    [21]X.Feng,T.Tang and J.Yang,Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models.E.Asian J.Appl.Math.,3(1)(2013),59-80.

    [22]D.Furihata,A stable and conservative finite difference scheme for the Cahn-Hlliard equation,Numer.Math.,87(4)(2001),675-699.

    [23]F.Guilln-Gonzalez and G.Tierra,On linear schemes for a Cahn-Hilliard diffuse interface model,J.Comput.Phys.,234(2013),140-171.

    [24]F.Guilln-Gonzalez and Giordano Tierra,Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models,Comput.Math.Appl.,68(8)(2014),821-846.

    [25]H.Gomez and T.J.R.Hughes,Provably unconditionally stable,second-order time-accurate,mixed variational methods for phase- field models,J.Comput.Phys.,230(13)(2011),5310-5327.

    [26]J.Guo,C,Wang,S,M.Wise and X.Yue,An H2convergence of a second-order convex splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation,Commun.Math.Sci,14(2)(2016),489-515.

    [27]D.Han,A.Brylev,X.Yang and Z.Tan,Numerical analysis of second order,fully discrete energy stable schemes for phase field models of two phase incompressible flows,J.Sci.Comput.,70(2017),965-989.

    [28]Y.He,Y.Liu and T.Tang,On large time-stepping methods for the Cahn-Hilliard equation,Appl.Numer.Math.,57(5-7)(2007),616-628.

    [29]J.Kim,K.Kangand J.Lowengrub,Conservative multigrid methods for Cahn-Hilliard fluids,J.Comput.Phys.,193(2)(2004),511-543.

    [30]D.Kessler,R.H.Nochetto and A.Schmidt, A posteriori error control for the Allen-Cahn problem:circumventing Gronwall’s inequality,ESAIM:Math.Model.Numer.Anal.,38(01)(2004),129-142.

    [31]D.Li and Z.Qiao,On second order semi-implicit Fourier spectral methods for 2d Cahn-Hilliard equations,J Sci.Comput.,70(1)(2017),301-341.

    [32]D.Li,Z.Qiao and T.Tang,Characterizing the stabilization size for semi-implicit Fourierspectral method to phase field equations,SIAM J Numer.Anal.,54(3)(2016),1653-1681.

    [33]C.Liu and J.Shen,A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method,Physica D,179(3-4)(2003),211-228.

    [34]F.Magaletti,F.Picano,M.Chinappi,L.Marino and C.M.Casciola,The sharp-interface limit of the Cahn–Hilliard/Navier–Stokesmodel for binary fluids,J Fluid.Mech.,714(2013),95-1263.

    [35]J.She nand X.Yang,Numerical approximations of Allen-Cahn and Cahn-Hilliard equations,Discrete Cont.Dyn.A,28(2010),1669-1691.

    [36]J.Shen,X.Yang and H.Yu,Efficient energy stable numerical schemes for a phase field moving contact line model,J.Comput.Phys.,284(2015),617-6305.

    [37]X.Wu,G.J.van Zwieten and K.G.van der Zee,Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models,Int.J.Numer.Meth.Biomed.Engng.,30(2)(2014),180-203.

    [38]L.Wang and H.Yu,Two efficient second order stabilized semi-implicit schemes for the Cahn-Hilliard phase- field equation,arXiv:1708.09763,submitted to J.Sci.Comput.,August 2017.

    [39]C.Xu and T.Tang,Stability analysis of large time-stepping methods for epitaxial growth models,SIAM J.Num.Anal.,44(2006),1759-1779.

    [40]X.Yang,Linear, first and second-order,unconditionally energy stable numerical schemes for the phase field model of homopolymer blends,J.Comput.Phys.,327(2016),294-316.

    [41]X.Yang and L.Ju,Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model,Comput.Method.Appl.Mech.Eng.,315(2017),691-712.

    [42]X.Yang and H.Yu,Efficient second order energy stable schemes for a phase- field moving contact line model,arXiv:1703.01311,submitted to SIAM J.Sci.Comput.,2017.

    [43]X.Yang,J.Zhao,Q.Wang and J.Shen,Numerical approximations for a three components Cahn-Hilliard phase- field model based on the invariant energy quadratization method,Math.Models Methods Appl.Sci.,27(2017),199.

    [44]J.Zhu,L.-Q.Chen,J.Shen and V.Tikare,Coarsening kinetics from a variable-mobility Cahn-Hilliard equation:Application of a semi-implicit Fourier spectral method,Phys.Rev.E,60(4)(1999),3564-3572.

    [45]Z.Zhang,Y.Ma and Z.Qiao,An adaptive time-stepping strategy for solving the phase field crystal model,J.Comput.Phys.,249(2013),204-215.

    国产精品1区2区在线观看.| 在线看三级毛片| 久久久国产精品麻豆| 久久欧美精品欧美久久欧美| 亚洲国产日韩欧美精品在线观看 | 色综合站精品国产| 久久久久亚洲av毛片大全| 天天一区二区日本电影三级| 美女扒开内裤让男人捅视频| 18禁美女被吸乳视频| 草草在线视频免费看| 久久国产精品影院| 久久热在线av| 热99re8久久精品国产| 日日干狠狠操夜夜爽| 日韩欧美一区视频在线观看| 妹子高潮喷水视频| 好看av亚洲va欧美ⅴa在| 国产久久久一区二区三区| 美女午夜性视频免费| 久久国产精品影院| 亚洲 欧美一区二区三区| 亚洲av日韩精品久久久久久密| 亚洲av成人不卡在线观看播放网| 熟妇人妻久久中文字幕3abv| 法律面前人人平等表现在哪些方面| 男女视频在线观看网站免费 | 日韩精品免费视频一区二区三区| 精品国产超薄肉色丝袜足j| 波多野结衣巨乳人妻| 美女扒开内裤让男人捅视频| 国产熟女午夜一区二区三区| 丝袜美腿诱惑在线| 久久亚洲精品不卡| 亚洲精品国产区一区二| 欧美最黄视频在线播放免费| 亚洲成国产人片在线观看| 18美女黄网站色大片免费观看| 19禁男女啪啪无遮挡网站| 波多野结衣av一区二区av| 亚洲五月色婷婷综合| 免费观看精品视频网站| 国产极品粉嫩免费观看在线| av在线天堂中文字幕| av在线播放免费不卡| 少妇粗大呻吟视频| 国产熟女xx| 国产又黄又爽又无遮挡在线| 国产欧美日韩一区二区精品| 俄罗斯特黄特色一大片| 免费av毛片视频| 日韩欧美国产一区二区入口| 欧美日韩瑟瑟在线播放| 91老司机精品| 欧美成人免费av一区二区三区| 高清毛片免费观看视频网站| 国产精品日韩av在线免费观看| 国产高清激情床上av| www.自偷自拍.com| 欧美国产精品va在线观看不卡| 中文字幕久久专区| www.精华液| 精品无人区乱码1区二区| 免费看十八禁软件| 丁香欧美五月| 在线观看免费视频日本深夜| 99国产精品99久久久久| 色播亚洲综合网| 久久婷婷人人爽人人干人人爱| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美在线黄色| 一区二区三区激情视频| 国产伦一二天堂av在线观看| 久久热在线av| 狂野欧美激情性xxxx| 最近在线观看免费完整版| 最近最新中文字幕大全免费视频| 十八禁网站免费在线| 亚洲国产看品久久| www.自偷自拍.com| 亚洲中文字幕日韩| 亚洲最大成人中文| 日日夜夜操网爽| 欧美中文综合在线视频| xxxwww97欧美| 99在线视频只有这里精品首页| 最近最新免费中文字幕在线| 久久人妻福利社区极品人妻图片| 哪里可以看免费的av片| 婷婷六月久久综合丁香| 此物有八面人人有两片| 老熟妇乱子伦视频在线观看| 久久精品国产综合久久久| 制服人妻中文乱码| 在线av久久热| av福利片在线| 久久性视频一级片| 人成视频在线观看免费观看| 久久中文字幕人妻熟女| 国产欧美日韩精品亚洲av| 久热这里只有精品99| 最好的美女福利视频网| 色哟哟哟哟哟哟| 精品少妇一区二区三区视频日本电影| 好看av亚洲va欧美ⅴa在| 午夜日韩欧美国产| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看成人毛片| 国产熟女午夜一区二区三区| 这个男人来自地球电影免费观看| 国产黄色小视频在线观看| 国产三级黄色录像| 国产成年人精品一区二区| 久久精品夜夜夜夜夜久久蜜豆 | 成人一区二区视频在线观看| 天堂影院成人在线观看| 成熟少妇高潮喷水视频| 桃色一区二区三区在线观看| 99久久国产精品久久久| tocl精华| 十八禁人妻一区二区| 一级片免费观看大全| а√天堂www在线а√下载| 亚洲av日韩精品久久久久久密| 天堂动漫精品| 亚洲,欧美精品.| 国产精品久久久人人做人人爽| avwww免费| 亚洲第一av免费看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品一区av在线观看| 波多野结衣高清无吗| 色哟哟哟哟哟哟| 欧美日韩黄片免| 精品国产亚洲在线| 国产精品亚洲一级av第二区| 一二三四在线观看免费中文在| 美女国产高潮福利片在线看| 亚洲精品在线美女| 亚洲第一av免费看| 在线观看一区二区三区| 人人妻人人澡欧美一区二区| 一a级毛片在线观看| 男女午夜视频在线观看| 日韩欧美国产一区二区入口| 国产精品综合久久久久久久免费| 精品国产亚洲在线| 亚洲国产高清在线一区二区三 | 变态另类丝袜制服| 淫秽高清视频在线观看| 国内毛片毛片毛片毛片毛片| 日本免费a在线| 国产又色又爽无遮挡免费看| 日韩欧美一区视频在线观看| 国产精品1区2区在线观看.| 美女国产高潮福利片在线看| 亚洲午夜精品一区,二区,三区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲va日本ⅴa欧美va伊人久久| 亚洲va日本ⅴa欧美va伊人久久| 不卡av一区二区三区| 欧美性长视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 99riav亚洲国产免费| 18禁裸乳无遮挡免费网站照片 | 成人亚洲精品av一区二区| 午夜福利成人在线免费观看| 成熟少妇高潮喷水视频| 精品久久久久久成人av| 国产成人啪精品午夜网站| 亚洲avbb在线观看| 色av中文字幕| 欧美中文综合在线视频| 在线播放国产精品三级| 久久人妻av系列| 亚洲在线自拍视频| 亚洲 欧美一区二区三区| 国产精品野战在线观看| 亚洲av片天天在线观看| 韩国av一区二区三区四区| 久久精品亚洲精品国产色婷小说| 超碰成人久久| 欧美日韩精品网址| 国产精品亚洲一级av第二区| 成人特级黄色片久久久久久久| 亚洲中文字幕一区二区三区有码在线看 | 国产不卡一卡二| 一区二区日韩欧美中文字幕| 久久精品国产清高在天天线| 亚洲国产欧洲综合997久久, | 91大片在线观看| 亚洲 欧美一区二区三区| 色综合婷婷激情| 搞女人的毛片| 亚洲精品一卡2卡三卡4卡5卡| av免费在线观看网站| 亚洲电影在线观看av| 少妇的丰满在线观看| 国产成人av教育| 亚洲欧美激情综合另类| 成人国语在线视频| 国产精品久久电影中文字幕| 久久久久精品国产欧美久久久| 午夜免费鲁丝| 亚洲国产欧美网| 日韩国内少妇激情av| 亚洲午夜精品一区,二区,三区| 久久香蕉精品热| 18禁观看日本| 国产三级在线视频| 久久狼人影院| 亚洲av美国av| a级毛片a级免费在线| 日日干狠狠操夜夜爽| 丝袜人妻中文字幕| 午夜精品久久久久久毛片777| 三级毛片av免费| 精品午夜福利视频在线观看一区| 亚洲第一电影网av| 成人一区二区视频在线观看| 91九色精品人成在线观看| 老司机在亚洲福利影院| 亚洲精品中文字幕在线视频| 欧美又色又爽又黄视频| avwww免费| 老汉色av国产亚洲站长工具| 久久中文字幕人妻熟女| 1024视频免费在线观看| 别揉我奶头~嗯~啊~动态视频| 夜夜夜夜夜久久久久| 日本三级黄在线观看| 脱女人内裤的视频| av电影中文网址| 麻豆成人av在线观看| 99久久久亚洲精品蜜臀av| 亚洲成人精品中文字幕电影| 色综合亚洲欧美另类图片| 长腿黑丝高跟| 男女之事视频高清在线观看| 夜夜爽天天搞| 国产精品美女特级片免费视频播放器 | 啦啦啦韩国在线观看视频| 老司机深夜福利视频在线观看| 熟女电影av网| av中文乱码字幕在线| 色综合亚洲欧美另类图片| av有码第一页| 国产黄色小视频在线观看| 一区二区三区精品91| 欧美色欧美亚洲另类二区| 色尼玛亚洲综合影院| 99国产精品99久久久久| 老熟妇乱子伦视频在线观看| 波多野结衣巨乳人妻| 99国产精品一区二区三区| 日本成人三级电影网站| 日韩精品中文字幕看吧| 国产亚洲精品一区二区www| 好看av亚洲va欧美ⅴa在| 看黄色毛片网站| 国产精品一区二区精品视频观看| 一区二区三区高清视频在线| 欧美av亚洲av综合av国产av| 91麻豆精品激情在线观看国产| 欧美性猛交黑人性爽| 1024视频免费在线观看| 非洲黑人性xxxx精品又粗又长| 婷婷丁香在线五月| 啦啦啦观看免费观看视频高清| 免费在线观看视频国产中文字幕亚洲| 成人特级黄色片久久久久久久| 2021天堂中文幕一二区在线观 | 精品久久蜜臀av无| 免费在线观看日本一区| 岛国在线观看网站| 久久久久久九九精品二区国产 | 国产亚洲精品第一综合不卡| 日韩欧美一区二区三区在线观看| 亚洲av电影在线进入| av超薄肉色丝袜交足视频| 国产国语露脸激情在线看| 伦理电影免费视频| 国产亚洲精品一区二区www| 999久久久精品免费观看国产| 丁香欧美五月| 哪里可以看免费的av片| 69av精品久久久久久| 热99re8久久精品国产| 日韩欧美国产在线观看| 中文字幕精品免费在线观看视频| 亚洲 欧美 日韩 在线 免费| 亚洲国产精品999在线| 十八禁网站免费在线| 亚洲国产精品成人综合色| 午夜激情福利司机影院| 欧洲精品卡2卡3卡4卡5卡区| netflix在线观看网站| 亚洲中文字幕一区二区三区有码在线看 | a级毛片a级免费在线| 91国产中文字幕| 精品午夜福利视频在线观看一区| 成人手机av| 成人国语在线视频| 亚洲精品av麻豆狂野| 婷婷精品国产亚洲av| 日韩成人在线观看一区二区三区| 啦啦啦 在线观看视频| 一边摸一边抽搐一进一小说| 国产日本99.免费观看| xxx96com| 精品福利观看| 亚洲国产精品sss在线观看| 国产亚洲欧美在线一区二区| 一边摸一边抽搐一进一小说| 狂野欧美激情性xxxx| 国产激情偷乱视频一区二区| 午夜两性在线视频| 男人舔女人下体高潮全视频| 国产精品av久久久久免费| 在线观看日韩欧美| 亚洲国产中文字幕在线视频| 中文资源天堂在线| 老熟妇仑乱视频hdxx| 国产精品免费一区二区三区在线| 成人午夜高清在线视频 | 999久久久精品免费观看国产| av欧美777| 亚洲七黄色美女视频| 男女那种视频在线观看| 久久精品人妻少妇| 久久精品国产亚洲av高清一级| 国产成人啪精品午夜网站| 麻豆久久精品国产亚洲av| 一进一出好大好爽视频| 久久久久久久精品吃奶| 久久久国产成人精品二区| 在线国产一区二区在线| 国内少妇人妻偷人精品xxx网站 | 亚洲国产精品久久男人天堂| 欧美 亚洲 国产 日韩一| 欧美一区二区精品小视频在线| 欧美黄色片欧美黄色片| a级毛片在线看网站| 特大巨黑吊av在线直播 | 啦啦啦 在线观看视频| 亚洲一区高清亚洲精品| 黑人巨大精品欧美一区二区mp4| 日韩欧美一区二区三区在线观看| 满18在线观看网站| 女人被狂操c到高潮| 国产亚洲精品av在线| 97碰自拍视频| 亚洲中文av在线| 操出白浆在线播放| 亚洲 欧美一区二区三区| 久久久久久免费高清国产稀缺| 久久天堂一区二区三区四区| 中亚洲国语对白在线视频| 国产激情久久老熟女| 国产精品乱码一区二三区的特点| 欧美日本亚洲视频在线播放| 露出奶头的视频| 日本一区二区免费在线视频| 国产精品野战在线观看| 久久久久久人人人人人| 亚洲成人精品中文字幕电影| 欧美午夜高清在线| 在线观看午夜福利视频| 欧洲精品卡2卡3卡4卡5卡区| 高潮久久久久久久久久久不卡| 国产伦在线观看视频一区| 国产亚洲精品久久久久久毛片| 久久久久亚洲av毛片大全| a级毛片a级免费在线| 久久这里只有精品19| 色综合婷婷激情| 婷婷精品国产亚洲av在线| 亚洲狠狠婷婷综合久久图片| 热99re8久久精品国产| 看黄色毛片网站| av天堂在线播放| 免费观看人在逋| 亚洲成国产人片在线观看| 久久精品亚洲精品国产色婷小说| 亚洲成人精品中文字幕电影| 制服丝袜大香蕉在线| 国产单亲对白刺激| 天天一区二区日本电影三级| 午夜福利欧美成人| 亚洲国产精品成人综合色| 法律面前人人平等表现在哪些方面| 精品福利观看| 免费av毛片视频| 成人手机av| 精品国内亚洲2022精品成人| 老熟妇仑乱视频hdxx| 90打野战视频偷拍视频| e午夜精品久久久久久久| 欧美乱色亚洲激情| 巨乳人妻的诱惑在线观看| 日韩av在线大香蕉| 久久久久精品国产欧美久久久| 黑人巨大精品欧美一区二区mp4| 亚洲成人国产一区在线观看| 午夜精品在线福利| 亚洲精品av麻豆狂野| 97碰自拍视频| 免费观看人在逋| 欧美另类亚洲清纯唯美| 变态另类成人亚洲欧美熟女| 日韩欧美三级三区| 可以在线观看的亚洲视频| 亚洲午夜理论影院| 亚洲欧美日韩无卡精品| 夜夜爽天天搞| 精品第一国产精品| 国产高清视频在线播放一区| 美女高潮到喷水免费观看| 欧美黄色淫秽网站| 亚洲最大成人中文| 他把我摸到了高潮在线观看| 青草久久国产| 真人做人爱边吃奶动态| 欧美日本亚洲视频在线播放| 成人午夜高清在线视频 | 国产精品久久久av美女十八| 啪啪无遮挡十八禁网站| 欧美久久黑人一区二区| 欧美一区二区精品小视频在线| 国产精品爽爽va在线观看网站 | 人妻久久中文字幕网| 久久热在线av| 老熟妇仑乱视频hdxx| 黄色视频,在线免费观看| 亚洲第一欧美日韩一区二区三区| 婷婷亚洲欧美| 亚洲,欧美精品.| 国产极品粉嫩免费观看在线| 女人爽到高潮嗷嗷叫在线视频| 巨乳人妻的诱惑在线观看| 18美女黄网站色大片免费观看| 人人澡人人妻人| 此物有八面人人有两片| av视频在线观看入口| 久久人妻av系列| 伊人久久大香线蕉亚洲五| 国产高清有码在线观看视频 | 色播亚洲综合网| 高潮久久久久久久久久久不卡| 日本五十路高清| 麻豆av在线久日| 韩国av一区二区三区四区| 亚洲激情在线av| 日本撒尿小便嘘嘘汇集6| 国产精品98久久久久久宅男小说| 啦啦啦 在线观看视频| 特大巨黑吊av在线直播 | 午夜精品在线福利| 老熟妇乱子伦视频在线观看| 久久中文字幕一级| 国产成人精品久久二区二区免费| 日韩欧美三级三区| 久久久久精品国产欧美久久久| 此物有八面人人有两片| 国产真实乱freesex| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品av麻豆狂野| 美女午夜性视频免费| 后天国语完整版免费观看| 国产免费男女视频| 午夜福利一区二区在线看| 久久午夜亚洲精品久久| 亚洲午夜理论影院| av在线播放免费不卡| 亚洲无线在线观看| 国产成人啪精品午夜网站| 亚洲中文字幕日韩| 美女高潮到喷水免费观看| 成年女人毛片免费观看观看9| 精品福利观看| 深夜精品福利| 午夜老司机福利片| 黄色毛片三级朝国网站| 日本五十路高清| 久久亚洲真实| 国产1区2区3区精品| 欧美av亚洲av综合av国产av| 麻豆av在线久日| 九色国产91popny在线| 色哟哟哟哟哟哟| 久久中文字幕人妻熟女| 亚洲第一欧美日韩一区二区三区| 国产亚洲精品一区二区www| 亚洲片人在线观看| 久99久视频精品免费| 超碰成人久久| 1024香蕉在线观看| 免费在线观看亚洲国产| 久久香蕉精品热| 欧美日韩亚洲综合一区二区三区_| 欧美国产日韩亚洲一区| 身体一侧抽搐| 两个人视频免费观看高清| 可以在线观看毛片的网站| 精品国产一区二区三区四区第35| 国产精品av久久久久免费| 可以在线观看毛片的网站| 国产精品久久久av美女十八| 久久久久国产一级毛片高清牌| 欧美av亚洲av综合av国产av| 久久久久国产一级毛片高清牌| 在线观看一区二区三区| 国产精品永久免费网站| 他把我摸到了高潮在线观看| 九色国产91popny在线| 99精品欧美一区二区三区四区| 免费在线观看日本一区| 国产午夜精品久久久久久| 日日夜夜操网爽| 成人免费观看视频高清| 看片在线看免费视频| 啦啦啦 在线观看视频| 国产激情偷乱视频一区二区| 波多野结衣高清作品| 国产精品野战在线观看| 视频区欧美日本亚洲| 一区二区三区国产精品乱码| 国产一区二区激情短视频| 一级毛片高清免费大全| 视频区欧美日本亚洲| 亚洲中文日韩欧美视频| 天天添夜夜摸| 美国免费a级毛片| 国内毛片毛片毛片毛片毛片| 国产熟女xx| 听说在线观看完整版免费高清| 日韩大尺度精品在线看网址| 18禁国产床啪视频网站| 怎么达到女性高潮| 一个人免费在线观看的高清视频| 久久久久久久久中文| 免费在线观看完整版高清| 国产99久久九九免费精品| 在线永久观看黄色视频| 淫妇啪啪啪对白视频| 啦啦啦 在线观看视频| 黄色a级毛片大全视频| 亚洲熟妇熟女久久| 亚洲国产欧美网| 91av网站免费观看| 久久久久国产精品人妻aⅴ院| 男女之事视频高清在线观看| 韩国av一区二区三区四区| 叶爱在线成人免费视频播放| 欧美乱色亚洲激情| 欧美性猛交╳xxx乱大交人| 99久久99久久久精品蜜桃| 国产精品九九99| 色播在线永久视频| 久久久精品欧美日韩精品| netflix在线观看网站| 听说在线观看完整版免费高清| 国产亚洲精品一区二区www| 嫩草影院精品99| 亚洲av片天天在线观看| 久久久久久久午夜电影| 久久国产亚洲av麻豆专区| 黄色视频不卡| 一区二区三区国产精品乱码| 视频区欧美日本亚洲| 精品久久久久久久人妻蜜臀av| 亚洲精品国产精品久久久不卡| 久久青草综合色| 国产精品香港三级国产av潘金莲| 久久久精品国产亚洲av高清涩受| 波多野结衣高清无吗| 午夜激情福利司机影院| 久久久久亚洲av毛片大全| 精品一区二区三区四区五区乱码| 天天躁夜夜躁狠狠躁躁| 黄色片一级片一级黄色片| 欧美又色又爽又黄视频| 美女 人体艺术 gogo| 神马国产精品三级电影在线观看 | 国产欧美日韩精品亚洲av| 亚洲人成网站高清观看| 日韩三级视频一区二区三区| 国产亚洲精品av在线| 51午夜福利影视在线观看| 女性被躁到高潮视频| 一个人观看的视频www高清免费观看 | 色婷婷久久久亚洲欧美| 亚洲精品中文字幕一二三四区| 欧美激情久久久久久爽电影| 最近最新免费中文字幕在线| 妹子高潮喷水视频| 日本一区二区免费在线视频| 午夜福利18| 日本撒尿小便嘘嘘汇集6| 久久狼人影院| 中文在线观看免费www的网站 | 日韩视频一区二区在线观看| av电影中文网址| 色播亚洲综合网| 日韩中文字幕欧美一区二区| 麻豆成人午夜福利视频| 大型黄色视频在线免费观看| 在线看三级毛片| 亚洲成人精品中文字幕电影| 欧美另类亚洲清纯唯美| 国产一卡二卡三卡精品| 亚洲 欧美一区二区三区| 91成年电影在线观看| 搡老熟女国产l中国老女人| 色播亚洲综合网|