• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cubature Points Based Triangular Spectral Elements:an Accuracy Study

    2018-07-12 05:28:34RichardPasquettiandFrancescaRapetti
    Journal of Mathematical Study 2018年1期

    Richard Pasquettiand Francesca Rapetti

    Lab.J.A.Dieudonn ,Universit Cte d’Azur,CNRS,Inria,F-06108 Nice,France.

    1 Introduction

    Extending the capabilities of the quadrangle based spectral element method to the triangle based one,say from the QSEM to the TSEM,has received a considerable attention in the last twenty years.The relevant choice of interpolation points for the triangle has thus motivated a lot of works,see e.g.the review paper[15]and references herein.Several sets of points have indeed been proposed,some of them showing the advantage of simplicity in their generation,thus allowing an easy extension to the tetrahedron,e.g.the so-called warp&blend points[21],whereas some other ones are more satisfactory from the theoretical point of view,e.g.the celebrated Fekete points of the triangle,but much more difficult to compute[20].

    With respect to the QSEM, based on the use of the tensorial product of Gauss -Lobat to-Legendre(GLL)nodes,such interpolation points are however not quadrature points,so that the so called spectral accuracy gets lost if not using for the quadratures a separate set of points,as e.g.done for the Fekete-Gauss approach[14].Using two separate sets of points shows however some drawbacks,because the mass matrix is then no longer diagonal.Thus,when solving an evolution problem with an explicit time scheme,one has at each time step to solve a mass matrix algebraic system.Also,a diagonal mass matrix can be useful to set up high order differentiation operators[12].This is why it is of interest to design aTSEM that makes use of a single set of points showing both nice quadrature and interpolation properties.This was the goal of the cubature points basedTSEM,as developed in the last few years[2,5,9,13].

    Another difficulty with SEMs,and more generally with high order FEMs,is to maintain the accuracy when the computational domain is no longer polygonal.Several strategies have been proposed to handle curved elements,from trans finite mappings[6]to PDEs based transformations,e.g.the harmonic extension.

    The present work follows two anterior studies:

    ?In[16],using the Fekete-GaussTSEM we compared different strategies for curved triangular spectral elements,i.e.when isoparametric mappings are required to correctly approximate with curved spectral elements the presence of a curved boundary.

    ?In[17],for computational domains of polygonal shape we compared the cubatureTSEM,as proposed in[9],and the Fekete-Gauss one.In terms of accuracy for elliptic problems,it turned out that these twoTSEMs compare well.With non Dirichlet or non homogeneous Neumann conditions,i.e.as soon as boundary integrals are involved,some care is however needed if using the cubatureTSEM.

    Here the goal is to extend the results obtained in[16]to the case where the cubatureTSEM is used.As in[16,17]we only focus on elliptic problems,but keep in mind for future works the inherent difficulties associated to constrained operators,see e.g.[1].

    2 Cubature points based TSEM

    For the sake of completeness,let us recall that[17]:

    ?If two different sets of points are used for interpolation and quadrature,then the space PN()of polynomials of maximal(total)degreeN,defined on the reference triangle={(r,s):r∈(?1,1),s∈(?1,?r)},is usually used as approximation space.The cardinality of this space equalsn=(N+1)(N+2)/2,that can be associated toninterpolation points if using Lagrange polynomials as basis functions.If 3 of these nodes coincide with the vertices of the element,then 3Nof thesenpoints should belong to the edges ofand the remaining(N?1)(N?2)/2 are the inner nodes.Usually,the edge nodes proposed in the literature coincide with the GLL points.Since one does not know an explicit formulation of the Lagrange basis functions,say?i(r,s),1≤i≤n,to compute their values or those of their derivatives at given point one generally makes use the orthogonal Kornwinder-Dubiner(KD)basis[4],for which explicit formula exist.Gauss points for the triangle and the corresponding quadrature formula may be found in the literature,up to degreeM≈20 if a symmetric distribution of the points is desired. In practice,one may chooseM=2N,so that both the stiffness and mass matrix are exactly computed,since their entries are polynomials of degree 2Nand 2N?2,respectively.For details on the implementation of the Fekete-Gauss approach,seee.g.[14].

    ?If using a single set of points,as before 3Nof the interpolations points must belong to the triangle boundary with 3 of them at the vertices.As demonstrated in[7,22],such a strong constraint forbids the possibility of finding a set of cubature points providing a sufficiently accurate cubature formula,if looking for basis functions that span the space PN.To overcome this difficulty,as first developed in[2],the idea is then to enrich the space PNby polynomial bubble functions of degreeN′>N.This indeed allows to include new cubature points inside the triangle while keeping the element boundary nodes number equal to 3N.In the reference triangle,this may be achieved by introducing the polynomial space PN∪b×PN′?3,wherebis the(unique)bubble function of P3(),namelyb(r,s)=(r+1)(s+1)(r+s).The cardinality of this space then equalsn′=3N+(N′?1)(N′?2)/2.Now,to compute the Lagrange polynomials at a given points one should use an extended KD basis,composed of the usual KD basis of PNcompleted by those KD polynomials of PN′?3which once multiplied by the bubble functionbare of degree strictly greater thanN.Of course,N′should be chosen as small as possible to avoid a useless increase of the inner nodes number:In[2]and posterior works,N′is chosen such that it exists a cubature rule exact for polynomials of degreeN+N′?2.The determination ofN′,together with the cubature points and weights gives rise to a difficult optimization problem,see[9]for details.It turns out thatN′?Nincreases monotonically withN:N′=N+1,for 1

    Our in house Fekete-Gauss and cubature codes make use of the condensation technique,i.e.one first computes the unknowns associated to the edges of the elements and then reconstructs the numerical solution inside locally.Thus,the algebraic systems that result from the twoTSEM approximations are exactly of same size,and so the computational times compare well.They are simply solved by using a standard conjugate gradient method,with Jacobi preconditioner in a matrix free implementation[8].

    A difficulty however arises when the boundary conditions are not of Dirichlet or homogeneous Neumann type,i.e.when the weak formulation involves boundary integrals.In case of the Fekete-GaussTSEM,such boundary integrals can be easily computed since the edge Fekete nodes coincide with the GLL points.On the contrary,the edge cubature points are not of Gauss type.In[17],

    ?it is pointed out that for the Robin condition?nu+αu=g,beingga given function and α a coefficient possibly zero,using a quadrature rule based on the boundary cubature points is not satisfactory,

    ?it is suggested to approximate these integrals by using on each element edge of the boundary a Gauss quadrature rule,e.g.the one based on the GLL points.

    Since the restrictions of the Lagrange polynomials ?iat the element edges of the boundary are polynomials of degree N,one can span this polynomial space with the Legendre polynomials,say Li(r)with r∈[?1,1],for the reference edge,and 0≤i≤N.Then,one can set up the Vandermonde matrices of size(N+1)×(N+1)based on the cubature and GLL points,say VCuband VGLL.One has e.g.(VCub)ij=Lj(ri),with ri∈[?1,1]for the edge cubature points.Then,the matrixallows to compute at the GLL points quantities known at the cubature points.Especially,each column of this matrix provides the values of the edge Lagrange polynomials at the GLL points.

    Another difficulty arises with curved spectral elements.Indeed,for straight triangular elements,the edge Jacobian determinant is constant on each edge and proportional to its length.On the contrary,when considering curved triangular elements,some care is needed for a relevant computation of the edge Jacobian determinants at the GLL points from those at the cubature points.Thus,once the entries of the Jacobian matrix have been computed at the edge cubature points,one can

    ?compute the edge Jacobian determinant and then use the polynomial interpolation to get the Jacobian at the GLL points,

    ?use the polynomial interpolation to get the Jacobian matrix entries at the GLL points and then compute the Jacobian determinant.

    Because the edge Jacobian determinant is generally a polynomial of degree greater than N,the results of these two approaches slightly differ.There is indeed no interpolation error for the Jacobian matrix entries but there is such an error for the Jacobian matrix determinant.This is why in our cubature points based solver,it is the second approach which is implemented,even if a little more expensive than the first one.

    3 Isoparametric mappings

    For the cubature TSEM,hereafter we make use of the isoparametric mappings that we discussed in[16]:

    ?The bending procedure that we introduced in[8];

    ?The trans finite interpolation discussed for the triangles in[18];

    ?The harmonic extension;

    ?The linear elasticity approach,see e.g.[19].

    Moreover,local mappings are used,i.e.we simply distort the elements at the boundary.

    As in[16],we assume to have at hand a parametric description of the boundary of ?,i.e.,Γ is defined by a vector function,sayxΓ(t)=(xΓ(t),yΓ(t)),wheret∈[tmin,tmax].LetA1A2A3be a triangular element at the boundary,withA1the inner node andA2andA3on the boundary.Then,for all the four approaches it is assumed that the boundary nodes,i.e.the interpolation points of Γ,are at the intersection of the lines joining the inner vertexA1and the interpolation points of the straight line(A2A3),i.e.the edge of the element,say,provided by the piecewise linear P1mapping.This requires one to solve,in general using a simple numerical procedure,N?1(number of nodes of an edge without the end points)generally non-linear equations.Then,it remains to defineinner interpolation points,with=n′?3N=(N′?1)(N′?2)/2,for the cubatureTSEM.

    For the paper to be self contained,let us briefly describe the previously mentioned isoparametric mappings[16]:

    ?The bending procedure:Assume thatis the interpolation point obtained with the affine P1mapping.LetandGbe the points at the intersections of(A1)with the line(A2A3)and the boundary Γ,respectively.Then,the bending procedure[8]consists of stating thatFis homothetic toby the homothety of centerA1and of ratioA1G/A1,so that:

    wheredstands for displacement.One notices that for this bending procedure,only the pointGof Γ influences the location of the interpolation pointF.In order to define the inner interpolation points,one has numerically to solveequations.

    ?The trans finite interpolation: For the triangle, the method makes use of the barycentric coordinates,say(λ1,λ2,λ3).Recall thatλi=0 stands for the edge opposite to the vertexi,λi=Constantto aline parallel to this edge and that vertexibelongstoλi=1.General trans finite interpolation formula are given in[18](different approaches are however possible,seee.g.[3]).For the triangle,if the displacementdvanishes at the two edges(A1A2)and(A1A3),again assuming thatA2A3is the curved edge,one has:

    This means that two points of the boundary Γ influence the location of an inner interpolation pointF.They are those at the intersections of Γ with the lines parallel to(A1A2)and(A1A3)and passing by the point.One notices that the method requires solvingequations.

    ?Harmonic extension:The goal is here to define the inner interpolation points by solving,for each curved elementT,the weak form of the Laplace Dirichlet problem:withggiven on(A2A3)andg=0 on the two other sides.To resolve this vector Laplace problem,that in fact yields two uncoupled scalar problems,one has to set up the differentiation matrices,sayandD?ythat allows one to compute derivatives in.To this end,one makes use of the differentiation matricesDrandDsand applies the chain rule.Since the mapping fromtois affine,the Jacobian matrix and Jacobian determinant are constant.For the same reason,one may solve directly for the interpolation point coordinates.Finally,one should invert a matrix of sizein order to compute the coordinates of the inner interpolation points.

    The approach is thus rather simple and in practice not costly.In[11],where global mappings are considered,it is however outlined that the harmonic extension may fail to define a mapping.

    ?Linear elasticity:Here the curved domain is viewed as the deformation of triangles,that is governed by the equation of linear elasticity.Introducing the Lame coefficientsλandμ,the displacement field is governed by the Navier-Cauchy equation:

    There is now a coupling between the components of the displacement field.Using the ingredients previously described for the harmonic extension,the weak form of this elasticity problem yields a matrix system of size 2n′p.The solution of this system provides the displacements of the inner interpolation points.Again,one can also compute directly their coordinates.Because the forcing term is zero,the mapping is here parametrized by the ratioμ/(λ+μ)=1?2η,whereη∈(?1,0.5)is the so called Poisson ratio.

    4 Accuracy study

    First, one of the test-cases introduced in [16] has been revisited. Using the cubatureTSEM we solve the Poisson equation,??u=f,with exact solutionuex=cos(10x)cos(10y),so thatf=200uex,and Dirichlet boundary conditions,in the computational domain and mesh(the so-called medium mesh of[16])presented in Fig.1(left).For the elasticity isoparametric mapping,the Poisson ratio is taken equal to 0.2.

    For the different isoparametric mappings,the max norm of the error,obtained from the errors at the cubature points,is shown in Figure 2(left).The curve labeled “polygon”is the one obtained for the domain defined by the P1mesh,i.e.no isoparametric mapping is involved in this case.Such results compare well with those obtained with the Fekete-GaussTSEM,recalled in Figure 2(right).Again,one observes that the best results are obtained with the harmonic extension or with the linear elasticity approach,i.e.with the isoparametric mappings based on PDEs rather than trans finite interpolations.As in[17],one observes that a loss of accuracy occurs forN=9.It is due to a slight lack of accuracy of the cubature rule[10].

    Figure 1:Computational domains and corresponding P1meshes.

    Figure 2:Max norm of the error vs the polynomial degree N for the Poisson-Dirichlet problem using the cubature TSEM(at left)and the Fekete-Gauss TSEM(at right).

    Rather than the Dirichlet condition,we now use the Robin condition?nu+u=g,withgderived from the exact solutionuex=cos(10x)cos(10y).Results obtained with the Fekete-Gauss solver and with cubature points based solver are compared in Figure 3,using the PDEs based isoparametric mappings(harmonic extension and linear elasticity).Clearly,the results obtained with the Fekete-Gauss and the cubatureTSEM compare well.Thus,evenif curved elements are involved,if the boundary data are correctly handled[16]then the cubature approach proposed in[9]is quite satisfactory(at least forN≤8).

    To extend the present study we consider the computational domain and P1-mesh shown in Figure 1(right).The boundary of this star domain is parametrized by the polar angleθ:

    Figure 3:Max norm of the error vs the polynomial degree N for the Poisson-Robin problem using the cubature TSEM and the Fekete-GaussTSEM.

    The P1-mesh is generated from 50 boundary nodes,defined byθ∝2π/50,and the number of elements equals 174.

    Isoparametric mappings based on the harmonic extension and linear elasticity approaches are used.Till now,the linear elasticity isoparametric mapping was characterized by a Poisson ratioη=0.2.Then,it is of interest to carry out a sensitivity study to this parameter.For isotropic materials one hasη∈(?1,0.5),most materials are such thatη∈ (0,0.5),and for typical engineering materialsη∈ (0.2,0.5).Hereafter we make computations with the following Poisson ratioη={0.1,0.2,0.4}.

    For one particular element of the mesh and a polynomial approximation degreeN=6,Figure 4 shows the distribution of the cubature nodesobtained from the P1-mapping and from the isoparametric P6-mapping,when using the harmonic extension or the linear elasticity mappings associated to the different Poisson ratio.

    We make use of the cubatureTSEM and the exact solutionuex=cos(10x)cos(10y)to set up the source and boundary terms,fandg,of the following elliptic PDE??u+u=f.Accuracy tests are made using Dirichlet conditions,i.e.u=gat the boundary nodes,and also the Robin condition?nu+u=g.The results obtained for these Dirichlet and Robin problems are shown in Figure 5,at left and at right,respectively.

    One observes that:

    ?Forthe linear elasticity isoparametric mapping,the sensitivity to the Poissonratioηis low.With the Robin condition,all curves coincide.With the Dirichlet condition,one can discern a slight improvement for the largest valueη=0.4,the convergence curve being then the closest to the harmonic extension one.Note that this is surprising,since ifη→0.5 thenμ→0.

    Figure 4:Distribution of the cubature nodes before and after the isoparametric mapping:Harmonic extension(top left),elasticity with η =0.1(top right), η =0.2(bottom left)and η =0.4(bottom right).

    Figure 5:Max norm of the error vs the polynomial degree N,using the cubature TSEM for an elliptic problem in the star domain,with Dirichlet(at left)and Robin(at right)conditions.

    ?The decrease of the error for the Robin problem is exponential,whereas this is less obvious in the Dirichlet case.In fact,the convergence curves show two parts,be-low and beyond a critical value of the polynomial degree.Roughly speaking,for the smallest values of N the convergence rate is governed by the approximation of the solution in the bulk of the domain,whereas for the largest ones it is enforced by its approximation at the boundary.This is why,see Figure 5,for small N the convergence curves coincide with those obtained when using as computational domain the polygon obtained from the 50 boundary nodes,but differ for N larger than threshold values,say,for the present P1discretization of the star-shaped domain,N=5 and N=3 with Dirichlet and Robin conditions,respectively.

    Acknowledgments

    The P1FEM mesheshave been generated with the free software “Triangle”.We are grateful to Dr Youshan Liu,Chinese Academy of Sciences,Beijing,for transmitting us the cubature points and weights used in[9].

    [1]E.Ahusborde,R.Gruber,M.Azaiez and M.L.Sawley,Physics-conforming constraints oriented numerical method,Phys.Rev.E,75(2007),056704.

    [2]G.Cohen,P.Joly,J.E.Roberts and N.Tordjman,Higher order triangular finite elements with mass lumping for the wave equation,SIAM J.Numer.Anal.,38(2001),2047-2078.

    [3]L.Demkowicz,J.Kurtz,D.Pardo,M.Paszynski,W.Rachowicz and A.Zdunek,Computing with hp-adaptative finite elements,vol.1,Chapman&Hall/CRC,2007.

    [4]M.Dubiner,Spectral methods on triangles and other domains,J.Sci.Comput.,6(1991),345-390.

    [5]F.X.Giraldo and M.A.Taylor,A diagonal mass matrix triangular spectral element method based on cubature points,J.of Engineering Mathematics,56(2006),307-322.

    [6]W.J.GordonandC.A.Hall,Construction of curvilinear co-ordinate systems and applications to mesh generation,Int.J.Num.Methods in Eng.,7(1973),461-477.

    [7]B.T.Helenbrook,On the existence of explicithp- finite element methods using Gauss-Lobatto integration on the triangle,SIAM J.Numer.Anal.,47(2009),1304-1318.

    [8]L.Lazar,R.Pasquetti and F.Rapetti,Fekete-Gauss spectral elements for incompressible Navier-Stokes flows:The two-dimensional case,Comm.in Comput.Phys.,13(2013),1309-1329.

    [9]Y.Liu,J.Teng,T.Xu and J.Badal,Higher-order triangular spectral element method with optimized cubature points for seismic wave field modeling,J.of Comput.Phys.,336(2017),458-480.

    [10]Y.Liu,private communication(2017).

    [11]A.E.L?vgren,Y.Maday and E.M.Ronquist,Global C1maps on general domains,Mathematical Models and Methods in Applied Sciences,19(5)(2009),803-832.

    [12]S.Minjeaud and R.Pasquetti,High order C0-continuous Galerkin schemes for high order PDEs,conservation of quadratic invariants and application to the Korteweg-de Vries model,J.of Sci.Comput.,74(2018)491-518.

    [13]W.A.Mulder,New triangular mass-lumped finite elements of degree six for wave propagation,Progress in Electromagnetic Research,141(2013),671-692.

    [14]R.Pasquetti and F.Rapetti,Spectralelement methods on unstructured meshes:comparisons and recent advances,J.Sci.Comp.,27(1-3)(2006),377-387.

    [15]R.Pasquetti and F.Rapetti,Spectral element methods on simplicial meshes,Lecture Notes in computational Science and Engineering:Spectral and High Order Methods for Partial Differential Equations-ICOSAHOM 2012,95,Springer(2014),37-55.

    [16]R.Pasquetti,Comparison of some isoparametric mappings for curved triangular spectral elements,J.of Comput.Phys.,316(2016),573-577.

    [17]R.Pasquetti and F.Rapetti,Cubature versus Fekete-Gauss nodes for spectral element methods on simplicial meshes,J.of Comput.Phys.,347(2017),463-466.

    [18]A.Perronnet,Triangle,tetrahedron,pentahedron transfinite interpolations,Application to the generation of C0or G1-continuous algebraic meshes,Proc.Int.Conf.Numerical Grid Generation in Computational Field Simulations,Greenwich,England(1998),467-476.

    [19]P.O.Persson and J.Peraire,Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics,Proc.of the 47th AIAA Aerospace Sciences Meeting and Exhibit,January 2009,AIAA-2009-949.

    [20]M.A.Taylor,B.Wingate and R.E.Vincent,An algorithm for computing Fekete points in the triangle,SIAM J.Numer.Anal.,38(2000),1707-1720.

    [21]T.Warburton,An explicit construction for interpolation nodes on the simplex,J.Eng.Math.,56(3)(2006),247-262.

    [22]Y.Xu,On Gauss-Lobatto integration on the triangle,SIAM J.Numer.Anal.,49(2011),541-548.

    久久精品夜夜夜夜夜久久蜜豆| 久久久精品大字幕| 欧美中文日本在线观看视频| 亚洲av电影不卡..在线观看| 99热这里只有精品一区| 极品教师在线视频| 精品人妻一区二区三区麻豆 | 男女下面进入的视频免费午夜| 国产精品免费一区二区三区在线| 国产不卡一卡二| 身体一侧抽搐| 亚洲欧美日韩无卡精品| 国产精品久久久久久精品电影| 精品一区二区免费观看| 国产精品精品国产色婷婷| 狠狠狠狠99中文字幕| 亚洲av熟女| 丰满人妻一区二区三区视频av| 久久久久亚洲av毛片大全| 精品福利观看| 又爽又黄a免费视频| 欧美xxxx性猛交bbbb| 欧美在线一区亚洲| 国产黄色小视频在线观看| 色噜噜av男人的天堂激情| 中文字幕av成人在线电影| 日日夜夜操网爽| 久久九九热精品免费| 国产一区二区激情短视频| 18禁在线播放成人免费| 超碰av人人做人人爽久久| 亚洲精品久久国产高清桃花| 国产淫片久久久久久久久 | 天天躁日日操中文字幕| 国产真实乱freesex| 在线看三级毛片| 日韩 亚洲 欧美在线| 欧美中文日本在线观看视频| 国产成人欧美在线观看| 麻豆av噜噜一区二区三区| 欧美中文日本在线观看视频| 搞女人的毛片| 亚洲真实伦在线观看| 九色成人免费人妻av| 桃红色精品国产亚洲av| 丰满人妻熟妇乱又伦精品不卡| 两性午夜刺激爽爽歪歪视频在线观看| 97人妻精品一区二区三区麻豆| 国产精品爽爽va在线观看网站| 国产真实乱freesex| 夜夜躁狠狠躁天天躁| 小说图片视频综合网站| 黄片小视频在线播放| 色精品久久人妻99蜜桃| 级片在线观看| 国产综合懂色| 精品一区二区三区视频在线观看免费| 五月玫瑰六月丁香| 简卡轻食公司| 18+在线观看网站| 午夜福利高清视频| 亚洲熟妇中文字幕五十中出| 精品一区二区三区视频在线| 啦啦啦韩国在线观看视频| 午夜福利在线观看免费完整高清在 | 变态另类成人亚洲欧美熟女| 搡女人真爽免费视频火全软件 | 美女免费视频网站| 啪啪无遮挡十八禁网站| 精品久久久久久久久久久久久| 亚洲国产精品合色在线| 日日夜夜操网爽| 亚洲av二区三区四区| 精华霜和精华液先用哪个| 亚洲最大成人av| 亚洲国产色片| 真人做人爱边吃奶动态| 老熟妇仑乱视频hdxx| 深夜精品福利| 亚洲精品久久国产高清桃花| 亚洲在线观看片| 999久久久精品免费观看国产| 国产欧美日韩一区二区三| 毛片一级片免费看久久久久 | 亚洲人成网站高清观看| 国产爱豆传媒在线观看| 丰满乱子伦码专区| 中文字幕精品亚洲无线码一区| 免费一级毛片在线播放高清视频| 午夜免费成人在线视频| 国产精品日韩av在线免费观看| 真人一进一出gif抽搐免费| 久久久精品大字幕| 12—13女人毛片做爰片一| 美女高潮喷水抽搐中文字幕| 国产精品嫩草影院av在线观看 | 欧美日本视频| 国产午夜精品久久久久久一区二区三区 | 国产免费男女视频| 少妇被粗大猛烈的视频| 性色avwww在线观看| av黄色大香蕉| 国内精品美女久久久久久| 波多野结衣高清作品| 真人一进一出gif抽搐免费| av专区在线播放| 久久久久久九九精品二区国产| 女生性感内裤真人,穿戴方法视频| 精品人妻熟女av久视频| 91九色精品人成在线观看| 少妇人妻一区二区三区视频| 久久天躁狠狠躁夜夜2o2o| 丰满人妻熟妇乱又伦精品不卡| 免费av观看视频| 2021天堂中文幕一二区在线观| 免费看美女性在线毛片视频| 亚洲天堂国产精品一区在线| av天堂中文字幕网| 男女做爰动态图高潮gif福利片| 一区二区三区四区激情视频 | 国产av麻豆久久久久久久| 老司机深夜福利视频在线观看| 欧美日韩综合久久久久久 | 波野结衣二区三区在线| 精品人妻偷拍中文字幕| 精品一区二区免费观看| 两个人视频免费观看高清| 男插女下体视频免费在线播放| 中文字幕精品亚洲无线码一区| 国内久久婷婷六月综合欲色啪| 国产aⅴ精品一区二区三区波| 久久久久久久久中文| av天堂中文字幕网| 国产高清激情床上av| 麻豆国产97在线/欧美| 岛国在线免费视频观看| 欧美色欧美亚洲另类二区| 99久久成人亚洲精品观看| 国产精品1区2区在线观看.| 宅男免费午夜| 很黄的视频免费| 国产免费男女视频| 亚洲18禁久久av| 18禁黄网站禁片午夜丰满| 国产伦在线观看视频一区| 一级a爱片免费观看的视频| 啪啪无遮挡十八禁网站| 99热精品在线国产| 亚洲成人中文字幕在线播放| 国产欧美日韩一区二区精品| 赤兔流量卡办理| 神马国产精品三级电影在线观看| 听说在线观看完整版免费高清| 国产真实乱freesex| bbb黄色大片| 国产视频内射| 日本在线视频免费播放| 日日夜夜操网爽| 看黄色毛片网站| 久久精品91蜜桃| 亚洲国产精品999在线| or卡值多少钱| 在线免费观看不下载黄p国产 | h日本视频在线播放| 我的女老师完整版在线观看| 久久久久性生活片| 国产老妇女一区| 少妇的逼好多水| 久久99热6这里只有精品| av女优亚洲男人天堂| 免费av观看视频| 热99在线观看视频| 男人的好看免费观看在线视频| 成人欧美大片| 午夜a级毛片| 日韩亚洲欧美综合| netflix在线观看网站| 日韩欧美国产一区二区入口| av在线天堂中文字幕| 亚洲人成网站在线播| 黄色配什么色好看| 国产一区二区亚洲精品在线观看| 在线免费观看不下载黄p国产 | a级一级毛片免费在线观看| 在线a可以看的网站| 国产日本99.免费观看| 欧美激情在线99| 俄罗斯特黄特色一大片| a级毛片免费高清观看在线播放| 琪琪午夜伦伦电影理论片6080| 婷婷六月久久综合丁香| 国产高清有码在线观看视频| 1024手机看黄色片| 久久久久国产精品人妻aⅴ院| 黄片小视频在线播放| 毛片女人毛片| 搞女人的毛片| 亚洲激情在线av| 可以在线观看的亚洲视频| 99精品在免费线老司机午夜| 国产精品久久久久久精品电影| 亚洲精华国产精华精| 99热精品在线国产| 国产蜜桃级精品一区二区三区| 国产成人影院久久av| 中文字幕av在线有码专区| 国产三级中文精品| 性插视频无遮挡在线免费观看| 精品久久久久久久久久久久久| 男人舔奶头视频| 噜噜噜噜噜久久久久久91| 亚洲不卡免费看| 波野结衣二区三区在线| 国产伦人伦偷精品视频| 亚洲在线观看片| 久久热精品热| 18禁裸乳无遮挡免费网站照片| 亚洲天堂国产精品一区在线| 色噜噜av男人的天堂激情| 国产一区二区在线av高清观看| 国产v大片淫在线免费观看| 少妇高潮的动态图| 有码 亚洲区| 老司机福利观看| 亚洲色图av天堂| 有码 亚洲区| x7x7x7水蜜桃| 精品一区二区三区人妻视频| 深夜精品福利| 别揉我奶头 嗯啊视频| 久久精品人妻少妇| 国产高清有码在线观看视频| 在线播放无遮挡| 午夜免费成人在线视频| 成人性生交大片免费视频hd| 99久久99久久久精品蜜桃| 久久国产乱子免费精品| 少妇人妻精品综合一区二区 | 中文字幕高清在线视频| 深夜a级毛片| 欧美成狂野欧美在线观看| 精品午夜福利视频在线观看一区| 此物有八面人人有两片| 女人十人毛片免费观看3o分钟| 国产又黄又爽又无遮挡在线| 免费看光身美女| 亚洲精品粉嫩美女一区| 国产v大片淫在线免费观看| 在线观看免费视频日本深夜| 嫩草影院精品99| 欧美极品一区二区三区四区| av天堂在线播放| 我要搜黄色片| 成人欧美大片| 欧美bdsm另类| 久久草成人影院| 伊人久久精品亚洲午夜| 美女高潮喷水抽搐中文字幕| 高清在线国产一区| 国产高清视频在线播放一区| 热99re8久久精品国产| 日日夜夜操网爽| 亚洲精品日韩av片在线观看| 热99re8久久精品国产| 中文字幕久久专区| 色在线成人网| 十八禁人妻一区二区| 欧美高清成人免费视频www| 国产精品,欧美在线| 亚洲人与动物交配视频| 夜夜看夜夜爽夜夜摸| 麻豆国产97在线/欧美| 亚洲天堂国产精品一区在线| 九九久久精品国产亚洲av麻豆| 两人在一起打扑克的视频| 99久久九九国产精品国产免费| 嫩草影院精品99| 夜夜躁狠狠躁天天躁| 久久这里只有精品中国| 简卡轻食公司| 99久久久亚洲精品蜜臀av| 最近最新免费中文字幕在线| 久久精品国产亚洲av涩爱 | 日本撒尿小便嘘嘘汇集6| 亚洲国产高清在线一区二区三| 夜夜爽天天搞| 欧美高清成人免费视频www| 欧美黄色片欧美黄色片| 国产淫片久久久久久久久 | 国产一区二区激情短视频| 亚洲天堂国产精品一区在线| 无遮挡黄片免费观看| 成年人黄色毛片网站| 亚洲av二区三区四区| 亚洲内射少妇av| 最近最新中文字幕大全电影3| 人妻夜夜爽99麻豆av| 午夜福利在线观看吧| 国产熟女xx| 国产精品久久久久久精品电影| 久久久久性生活片| 午夜福利高清视频| 欧美成人a在线观看| 好看av亚洲va欧美ⅴa在| 99在线人妻在线中文字幕| 免费看日本二区| 又粗又爽又猛毛片免费看| 极品教师在线免费播放| a级一级毛片免费在线观看| 日本精品一区二区三区蜜桃| 国产大屁股一区二区在线视频| av国产免费在线观看| 成年人黄色毛片网站| 欧美日韩综合久久久久久 | 免费电影在线观看免费观看| 99久久无色码亚洲精品果冻| 日韩精品中文字幕看吧| 欧美日韩乱码在线| 丁香六月欧美| 久久久久久国产a免费观看| 精品99又大又爽又粗少妇毛片 | 99久久精品热视频| 中出人妻视频一区二区| 91午夜精品亚洲一区二区三区 | 老司机午夜十八禁免费视频| 久久精品人妻少妇| 亚洲精品影视一区二区三区av| 乱码一卡2卡4卡精品| 黄色配什么色好看| 2021天堂中文幕一二区在线观| 观看美女的网站| 首页视频小说图片口味搜索| 亚洲成av人片在线播放无| 亚洲精品日韩av片在线观看| 露出奶头的视频| 性色av乱码一区二区三区2| 欧美乱妇无乱码| 麻豆一二三区av精品| 午夜福利高清视频| 丰满乱子伦码专区| 国产成人aa在线观看| 亚洲,欧美,日韩| 97碰自拍视频| 国产精品免费一区二区三区在线| 可以在线观看的亚洲视频| 国产在线男女| 深夜a级毛片| 欧美日韩乱码在线| 中文在线观看免费www的网站| 欧美日韩综合久久久久久 | 丁香六月欧美| avwww免费| 男女视频在线观看网站免费| 亚洲专区国产一区二区| 国产精品一区二区三区四区久久| 九色国产91popny在线| 国产私拍福利视频在线观看| 亚洲av不卡在线观看| 日韩欧美精品v在线| 欧美色视频一区免费| 身体一侧抽搐| 啪啪无遮挡十八禁网站| 小说图片视频综合网站| 午夜老司机福利剧场| 在线观看舔阴道视频| 乱人视频在线观看| 国产在线男女| 国内毛片毛片毛片毛片毛片| 91九色精品人成在线观看| 精品午夜福利在线看| 国产精品一区二区免费欧美| 亚洲欧美日韩无卡精品| 性色avwww在线观看| 欧美另类亚洲清纯唯美| 久久人人精品亚洲av| 国产69精品久久久久777片| 久久精品91蜜桃| 久久久久国内视频| 欧美绝顶高潮抽搐喷水| 偷拍熟女少妇极品色| 日日摸夜夜添夜夜添av毛片 | 偷拍熟女少妇极品色| 久久久精品大字幕| 琪琪午夜伦伦电影理论片6080| 免费一级毛片在线播放高清视频| 天堂动漫精品| 怎么达到女性高潮| 一a级毛片在线观看| 色综合欧美亚洲国产小说| 成人毛片a级毛片在线播放| 国产欧美日韩一区二区精品| 悠悠久久av| 国产精品久久久久久人妻精品电影| 成年版毛片免费区| a级毛片a级免费在线| 亚洲在线自拍视频| 成人特级av手机在线观看| 最近最新中文字幕大全电影3| 亚洲av免费在线观看| 亚洲欧美日韩高清专用| 国内少妇人妻偷人精品xxx网站| 亚洲人成电影免费在线| 一区二区三区激情视频| 久久久国产成人免费| 色5月婷婷丁香| 嫩草影院新地址| 在线十欧美十亚洲十日本专区| 露出奶头的视频| 91狼人影院| 长腿黑丝高跟| 亚洲国产日韩欧美精品在线观看| 欧美性感艳星| 午夜日韩欧美国产| 国产高清有码在线观看视频| 三级男女做爰猛烈吃奶摸视频| 欧美在线一区亚洲| 91九色精品人成在线观看| 国产黄a三级三级三级人| 99久久精品一区二区三区| 丰满乱子伦码专区| 99久久精品一区二区三区| 嫩草影院精品99| 亚洲国产精品久久男人天堂| 国产精品免费一区二区三区在线| 免费人成在线观看视频色| 我的女老师完整版在线观看| 国产av麻豆久久久久久久| 一个人免费在线观看的高清视频| 成人精品一区二区免费| 亚洲av第一区精品v没综合| 观看免费一级毛片| 国产精品日韩av在线免费观看| 亚洲中文日韩欧美视频| 男女床上黄色一级片免费看| 国产激情偷乱视频一区二区| 久久久精品欧美日韩精品| 丁香六月欧美| 观看美女的网站| 欧美一级a爱片免费观看看| 精品久久国产蜜桃| 搞女人的毛片| 午夜亚洲福利在线播放| 在线观看免费视频日本深夜| 国产欧美日韩一区二区精品| 亚洲一区二区三区色噜噜| 青草久久国产| 看黄色毛片网站| 床上黄色一级片| 国产又黄又爽又无遮挡在线| 日韩欧美精品v在线| 成人亚洲精品av一区二区| 3wmmmm亚洲av在线观看| 真实男女啪啪啪动态图| 精品久久久久久久久av| 亚洲三级黄色毛片| 国产精品精品国产色婷婷| 成人国产综合亚洲| 9191精品国产免费久久| av国产免费在线观看| 美女高潮的动态| 国产三级中文精品| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品999在线| 国产成人影院久久av| 午夜福利在线观看免费完整高清在 | 一边摸一边抽搐一进一小说| 国产黄片美女视频| 国产黄色小视频在线观看| av天堂中文字幕网| 在线观看午夜福利视频| 国语自产精品视频在线第100页| 国产亚洲精品久久久com| 国产亚洲精品久久久久久毛片| 欧美成人性av电影在线观看| 亚洲国产高清在线一区二区三| 亚洲精品久久国产高清桃花| 久久精品人妻少妇| 一级黄片播放器| 亚洲av成人不卡在线观看播放网| 国产单亲对白刺激| 五月伊人婷婷丁香| 国产成人欧美在线观看| 亚洲,欧美精品.| 真实男女啪啪啪动态图| av在线天堂中文字幕| 国产伦在线观看视频一区| 一个人免费在线观看的高清视频| 99久久九九国产精品国产免费| 久久6这里有精品| 国产伦在线观看视频一区| 国产精品自产拍在线观看55亚洲| 国产熟女xx| 成人无遮挡网站| 女同久久另类99精品国产91| 99热6这里只有精品| 99国产极品粉嫩在线观看| 免费在线观看亚洲国产| 国产伦精品一区二区三区视频9| 精品久久久久久成人av| 日韩精品青青久久久久久| 亚洲欧美精品综合久久99| www日本黄色视频网| 日本在线视频免费播放| 亚洲,欧美精品.| 99热这里只有是精品50| 亚洲性夜色夜夜综合| 淫妇啪啪啪对白视频| 成人三级黄色视频| 欧美成狂野欧美在线观看| 精品国产亚洲在线| 国产黄色小视频在线观看| 国产久久久一区二区三区| 欧美一区二区精品小视频在线| 丰满乱子伦码专区| 91麻豆av在线| 最好的美女福利视频网| 欧美成人一区二区免费高清观看| 国产精品人妻久久久久久| 午夜福利免费观看在线| 波多野结衣巨乳人妻| 亚洲av日韩精品久久久久久密| 国产在线男女| 琪琪午夜伦伦电影理论片6080| 99久久成人亚洲精品观看| 人人妻,人人澡人人爽秒播| 一区二区三区免费毛片| 91九色精品人成在线观看| 97超视频在线观看视频| aaaaa片日本免费| 久久香蕉精品热| 91久久精品国产一区二区成人| 亚洲精品久久国产高清桃花| 亚洲,欧美,日韩| 我要看日韩黄色一级片| 国产亚洲精品久久久久久毛片| 给我免费播放毛片高清在线观看| 中文亚洲av片在线观看爽| 国产日本99.免费观看| 午夜影院日韩av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 男女视频在线观看网站免费| 国语自产精品视频在线第100页| 在线观看午夜福利视频| 亚洲一区二区三区色噜噜| 如何舔出高潮| 国产精品av视频在线免费观看| 中文字幕高清在线视频| 日韩欧美免费精品| 全区人妻精品视频| 精品欧美国产一区二区三| 白带黄色成豆腐渣| 无人区码免费观看不卡| 少妇的逼好多水| 赤兔流量卡办理| 最后的刺客免费高清国语| 国产极品精品免费视频能看的| 真人一进一出gif抽搐免费| 亚洲成人中文字幕在线播放| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产真实乱freesex| 男人舔女人下体高潮全视频| 国产免费男女视频| 最近视频中文字幕2019在线8| 亚洲人成网站在线播放欧美日韩| 国产日本99.免费观看| 97人妻精品一区二区三区麻豆| 免费人成在线观看视频色| 90打野战视频偷拍视频| 熟女电影av网| 别揉我奶头~嗯~啊~动态视频| eeuss影院久久| 又爽又黄a免费视频| 在线免费观看的www视频| 欧美日本视频| 露出奶头的视频| 一区二区三区激情视频| 亚洲人成电影免费在线| 丰满的人妻完整版| 免费在线观看日本一区| 国产精品免费一区二区三区在线| 内射极品少妇av片p| 一区二区三区四区激情视频 | 久久久久久国产a免费观看| .国产精品久久| 亚洲欧美清纯卡通| 1000部很黄的大片| 亚洲成a人片在线一区二区| 久久国产乱子伦精品免费另类| 国产探花在线观看一区二区| 国产黄a三级三级三级人| 亚洲无线观看免费| av女优亚洲男人天堂| 国产乱人视频| 真实男女啪啪啪动态图| 国产成人福利小说| 91九色精品人成在线观看| 欧美成狂野欧美在线观看| 人人妻,人人澡人人爽秒播| 天堂网av新在线| a级毛片免费高清观看在线播放| 亚洲成人免费电影在线观看| 亚洲欧美日韩高清专用| 久久精品国产亚洲av香蕉五月| 精品人妻一区二区三区麻豆 | 亚洲男人的天堂狠狠| 亚洲狠狠婷婷综合久久图片| 亚洲电影在线观看av| 欧美黑人巨大hd| 国产免费一级a男人的天堂| 好男人在线观看高清免费视频| 黄色女人牲交| 日韩国内少妇激情av| 18美女黄网站色大片免费观看| 日韩成人在线观看一区二区三区| 最新在线观看一区二区三区|