• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Assessment of a Class of High Order Stokes Spectrum Solver

    2018-07-12 05:28:28EtienneAhusbordeMejdiAzaezandRalfGruber
    Journal of Mathematical Study 2018年1期

    Etienne Ahusborde,Mejdi Aza?ezand Ralf Gruber

    &Pays Adour,F d ration IPRA,UMR5142,64000,Pau,France.

    2Bordeaux INP,I2M(UMR CNRS 5295),33607 Pessac,France.

    3Chemin du Daillard 11,1071 Chexbres/VD,Switzerland.

    1 Introduction

    The 2D Stokes eigenvalue problem on a square domain is considered in this paper as model example with a conservation law of the type ?·u=0.With this test example it is possible to discuss the various numerical problems that appear when flux conservation has to be satisfied in the incompressible Navier-Stokes.If these constraint condition cannot be satisfied precisely,so-called spectral pollution[9]appears and the numerical approach does not stably converge to the physical solution.The reason is that due to regularity constraints imposed by standard numerical approximation methods,the energy cannot reach the minimum required by the physics.In fact,current numerical methods satisfy the boundary conditions strongly,the operator equations and the constraints only weakly.

    In Section 2,we propose a non-exhaustive list of methods to deal with the 2D Stokes eigenvalue problem.Specifically,if the constraint?·u=0 is satisfied by au=?×ψansatz,the number of degrees of freedom remains the same as in the unconstrained Laplacian problem.As a consequence,besides the Stokes modes,one finds a whole spectrum of additional unphysical modes,corresponding to those of the heat equation.Thus,the initial physical problem has fundamentally been changed.This approach has been applied to compute the full Stokes spectrum[1]by the first time.Due to the choice of a unit square domain,the authors were able to separate the Stokes modes from those belonging to the heat equation.An other strategy consists in applying a penalty method to solve the Stokes problem.In this case,the number of degrees of freedom still remains the same as those in the unconstrained Laplacian problem.

    In Section 3,we focus on the two formulations considering only the velocity as variable:the penalty method and the divergence-free Galerkin approach.In the framework of spectral element approximation schemes,a stable spectral element is proposed for each method.For the penalty method,a COOL approach[2,3]is made and the unphysical modes can be pushed towardsλ=0.For the divergence-free Galerkin approach,two strategies christened “explicit” and “implicit” are detailed.The explicit strategy consists in using the properties of the kernel of the grad(div)operator to construct a divergence free basis.Such a basis has the right number of degrees of freedom,thus delivering the exact number of Stokes eigenfunctions with high precision.The implicit strategy is a direct algebraic elimination process of the ?·u=0 constraint.This leads to a sparse matrix elimination process,described in detail in[2].It delivers the right number of highly precise Stokes modes.

    Finally,in Section 4,some numerical experiments are performed to prove the efficiency of the proposed methods and a comparison between the different approaches is given.

    2 The Stokes eigenvalue problem:continuous version

    Let ? ?IRd,d=2,3,be a Lipschitz domain,the generic point of ? is denotedx.The symbolL2(?)stands for the usual Lebesgue space andH1(?),the Sobolev space that involves all the functions that are,together with their gradient,inL2(?).C(?)denotes the space of continuous functions defined in ?.

    The continuous Stokes eigenvalue problem reads:Find a vector u and λ2∈IR+suchthatwhereIR+denotes the set of positive real numbers,including zero.For the sake of simplicity we assume here that ? is the reference domain(?1,+1)2.

    Problem(2.1)is often solved using different strategies that we briefly recall here after.

    Velocity-Pressure formulation

    Its weak formulation writes:Find u∈and λ2∈IR+such that

    Stream function approachWe introduce a stream functionψ∈H2(?)d[1].Problem(2.1)can be reformulated as:

    However,in this paper we prefer to focus on methods involving onlyuas unknown.The first one is calledPenalty method.

    Penalty method This method consists in taking into account the divergence free constraint by adding a term of penalty to control the level of divergence when solving the eigenvalue problem.

    The penalty formulation,called also regularization method(see[8]),reads:Find u∈((?))2and λ2∈IR+such that

    Its variational formulation writes:Find u∈((?))2and λ2∈IR+such that

    In practice,the infinite dimensional problem(2.6)is replaced by a finite dimensional one using a stable spectral element taking into account the constraint by an adequate choice ofα(see[3]).

    Divergence-free Galerkin approachThe second method is called”divergence-free Galerkin approach”and starts from the fact that the system(2.6)can reduce to:Find u∈Xand

    λ2∈IR+such that

    where X is in the space defined by

    Again the infinite dimensional problem(2.7)is replaced by a finite dimensional one using a stable spectral element that will be developed later in this paper.

    3 The Stokes eigenvalue problem:discrete version

    We firstly introduce some notations and reminders.Let ΣGLL={(ξi,ρi);0≤i≤p}and ΣGL={(ζi,ωi);1≤i≤p}respectively denote the sets of Gauss-Lobatto-Legendre and Gauss-Legendre quadrature nodes and weights associated to polynomials of degreep.These quantities are such that on Λ :=]?1,+1[

    whereIPp(Λ)denotes the space of polynomials with degree≤p.We recall that the nodesξi(0≤i≤p)are solution to(1?x2)(x)=0 whereLpdenotes the Legendre polynomial of degreep,whereasζi(1≤i≤p)are solution toLp(x)=0(see[4]).

    The canonical polynomial interpolation basishi(x)∈IPp(Λ)built on ΣGLLis given by the relationships:

    with the elementary cardinality property

    where δijis Kronecker’s delta symbol.

    We also introduce a new family of polynomials functions gi(x)associated to the canonical basis(3.3)through the relationships:

    where the constants βiare such that all gi(x)∈IPp?1(]?1,+1[)[2,3].The functions gi(x)have the following properties:

    1.Their moments up to order(p?1)are equal to those of their corresponding element in the Gauss-Lobatto-Legendre canonical basis,i.e.:For 0≤i≤p,

    The difference(gi(x)?hi(x))being proportional to Lp(x)is orthogonal to all polynomials of degree less or equal to(p?1).

    2.Interpolation of their corresponding element in the canonical basis at the Gauss-Legendre nodes,i.e.:For 0≤i≤p,

    3.The constants βican be obtained through a series expansion of(3.3)and one gets:

    In[3]one can read more informations concerning these polynomial functions.

    3.1 Penalty method:SEM approximation

    The discrete version of problem(2.6)writes:Find up∈Ypand λ2∈IR+such that

    where:

    Here(·,···)pis discrete scalar product based on Gauss Lobatto quadrature formula.Ypis the space of polynomial functions of degree lower or equal topvanishing on??.It is assumed to ensure a stable approximation for grad(div)operator to avoid the phenomenon of spurious pollution[3].Sinceupis equal to zero on the boundary,the solutionup∈Ypis approximated byaccording to the functional dependence and the regularity required(r=xory).

    The superscript(1)is used to represent quantities derived in directionxwhile superscript(2)is used to represent quantities derived in directiony.The coefficients in the previous three expansions are the same thanks to(3.7).

    Replacingupby the previous development in(3.9),the penalty discrete form writes

    3.2 Divergence-free Galerkin approach

    The keystone of the divergence-free Galerkin approach is the construction of a discrete versionXpof the divergence free space X defined in equation(2.8).

    According to[2,5],we need the divergence to be a polynomial of degree less or equal top?1.Consequently,we want to build a space:

    Expandingupaccording to(3.12b)and(3.12c)its divergence is a polynomials of degreep?1.Consequently,if the divergence is orthogonal to all polynomial ofIPp?1(?),it is necessarily equal to 0.This point gives a new characterization for Xp:

    We want to build a basis of Xp.The first step consists in determining the size of this space.

    wherep2is the number of necessary and sufficient equations to ensure ?·up≡0.?·up∈IPp?1(?)thereforep2≤p2.

    There are 2 dependent equations in 2D(see[6]for details)since:

    PolynomialsL0(x)L0(y)andare spurious modes and reduce the number of independent equations fromp2top2?2.Consequently,we requirep2=p2?2 test functionsqto ensure R??·upqdx=0.

    After the computation of the size of Xp(denotedp1=(p?2)2in the sequel),we propose two strategies to compute a divergence-free basis.

    3.2.1 Divergence-free Galerkin explicit approach

    We consider the following eigenvalue problem:

    The kernel of the grad(div)operator includes all the modesassociated toλ2=0 and?=0.It constitutes a basis for the subspace Xp.Its size is(p?2)2and thenup∈Xpcan be decomposed according to the following form:

    Replacingupby the previous development in(2.7),the discrete variational formulation writes:Find up∈Xpand λ2∈IR+?such that

    This can be written:

    The stiff matrix Seand mass matrix Meare symmetric and positive definite and are defined by:

    for(1≤i,k≤(p?2)2).

    3.2.2 Divergence-free Galerkin implicit approach

    As highlighted before,the main difficulty of the problem(2.1)consists in satisfying the incompressibility constraint?·u=0.Classical approaches usually satisfy operator equations strongly with as many equations as degrees of freedom for the velocity while incompressibility constraint is only satisfied weakly with fewer equations than degrees of freedom for the divergence.Contrary to the classical approaches,our objective is to favor the incompressibility constraint in comparison with the other equations.Our strategy,firstly introduced in[2],consists in sharing the degrees of freedom ofuin a relevant way to satisfy:

    ?The incompressibility constraint in strong sense.

    ?The other equations in weak sense.

    Let upbe in Xp.The divergence of upis orthogonal to p2?2 polynomials of degree p?1.It is equivalent to saying that the divergence of up∈Xpnullifies in p2?2 Gauss points.The algebraic divergence equation writes Dup=0(see Figure(1)).

    Figure 1:Algebraic system.

    Figure 2:Decomposition of D.

    D is a rectangular matrix with p2=p2?2 rows and 2(p?1)2columns.

    Then,one splits D into D1⊕D2and upinto u1p⊕u2p(see Figure(2)).

    Since,the p2?2 lines of D are independent,there is at least one choice of matrix D2invertible.Equation Dup=0 becomes:

    For instance,u1contains the p1first values of upand consequently u2pcontains the p2remaining values.Figure 3 displays the sizes of the matrices D2and D1.

    Since D2is invertible,the system leads to a relation between u1pand u2p:

    Eq.(3.15)is crucial since it means that if we have any part u1pof up,we can build the complementary u2psuch that divergence of upequals 0.This argument allows us to build a basis of Xp.

    Figure 3:Algebraic system=0.

    We considervp∈((?))2.Our strategy consists in combining implicitly:

    ? A reduction fromvptov1p,

    ? An extension fromv1ptowp=(v1p,v2p)such that?·wp=0 ensured by the multiplication ofv1pby the matrix

    The matrixMis a two blocks matrix.The first block is a matrix of orderp1equal to identity.The second block containsp2rows andp1columns.It ensures the passage fromv1ptov2p.

    ? For eachvp∈((?))2,one associates a vectorwpof Xp.

    By consequent,our strategy for the construction of a basis of Xpconsists in:

    ? Choosingp1=(p?2)2vectors()k=1,...,p1of the basis of((?))2(for instance,the(p?2)2first vectors),

    ? For each one of thesep1vectors,we consider itsp1-size reduced part denoted,

    ? We carry out the divergence-free extension

    Thefamily is a basis of Xpand everyup∈Xpcan be decomposed according to the following form:

    Replacingupby the previous development,the discrete variational formulation writes:Find up∈Xpand λ2∈IR+?such that

    Table 1:Maximum and minimum of the L2(?)-norm of the divergence of all the Stokes eigen modes as a function of p.

    This can be written:

    with for(1≤i,k≤p1),

    andrefer respectively to the Laplace operator and mass matrices expressed on the basiswp.

    Finally,this system is equivalent to:

    whereAandBrefer respectively to the classical Laplacian and mass matrices.

    4 Numerical results

    This section discusses some numerical results.We will apply each of the three approaches to compute the Stokes eigenvalues and associated eigenfunctions.

    Penalty approachFigure 4 displays the convergence for the lowest eigenvalue of problem(2.5)for several values ofα.

    One can see that the choice ofαleads to slightly different convergence behaviors.For double precision arithmetic,α=107appears to give the best convergence results.With an increasing polynomial degree to represent the eigenfunction,the eigenvalue converges exponentially as expected forp≤9.Increasingpfurther does not improve the accuracy of the eigenvalue,with the precision limited to 10?6.Table 1 shows the limit in precision for the incompressibility condition forα=107as a function ofp.

    The eigenvalue problem(3.9)gives 2(p?1)2eigenvalues and associated eigenvectors corresponding to the degrees of freedom inYp.Among these eigenvalues,there are the Stokes eigenvalues and the non-zero eigenvalues of the grad(div)operator multiplied byα.The number of Stokes eigenvalues NScorresponds to the size of the kernel of the discretized grad(div)operator,i.e.to the number of zero eigenvalues.As said in Section(3.2.1),it can be proved that this number is equal to(p?2)2.Consequently,the resolution of the problem(3.9)leads toNS=(p?2)2Stokes eigenmodes.Thep2?2 remaining eigenmodes are those of the class of non-zero eigenvalues of the grad(div)operator multiplied byα.

    Figure 4:Convergence plots obtained using the penalty method for the first Stokes mode(λ2=13.086172791)as a function of the polynomial order p for several values of α.

    Figure 5 illustrates the convergence of the difference?between the four lowest Stokes eigenvalues as a function ofpcomputed by our method with those produced in[1]forα=107on a semi-logarithmic scale.The error is exponentially decreasing as expected forp≤11 and then stagnates.

    Divergence-free Galerkin explicit approachFigure 6 illustrates the convergence of the difference?between the four lowest Stokes eigenvalues as a function ofpcomputed by the divergence-free Galerkin explicit approach with those produced in[1]on a semilogarithmic scale.The error is exponentially decreasing as expected.

    Divergence-free Galerkin implicit approachTo validate our divergence-free Galerkin implicit approach,we have computed the Stokes eigenvalues and compared with those obtained in[1].Figure 7 shows the convergence for the four lowest eigenvalues as a function ofpon a semi-logarithmic scale.The calculation of the eigenvalues converges exponentially as expected.

    It has been shown theoretically that the eigenmodes have a global structure with an infinite series of Moffat corner vortices[7]of increasingly smaller amplitude.The right part of the Figure 8 represents theupxcomponent of the thirteenth eigenmode.The amplitude is 0.852.In the center of the figure,we can see the first Moffat vortex in the left upper corner of the geometry with an amplitude of 1×10?3.At last,in the left side of the figure,the second Moffat vortex has an amplitude of 2×10?6.These results are in accordance with the theoretical ones.

    Figure 5:Convergence plots obtained using the penalty method for the four lowest divergence-free modes as a function of p.Again,α=107.

    Figure 6:Convergence plots obtained using the divergence-free Galerkin explicit approach method for the four lowest divergence-free modes as a function of p.

    Figure 7:Relative error ? for the for the four lowest Stokes eigenvalues as a function of p on a semi-logarithmic scale with the divergence-free Galerkin implicit approach.

    Figure 8:upxcomponent of 13thStokes eigenvector:Moffatt vortices in the corners.

    Comparison between the different approachesThe three strategies described in this paper give the expected number of Stokes eigenvalues with a high precision.Nonetheless,Figure 5 compared with Figure 6 and Figure 7 indicates that the penalty approach is less accurate that the two other ones.Moreover,the divergence of the eigenvectors computed by the penalty approach is not identically null and its level can depend on the tricky choice of the values ofα.On the contrary,the divergence-free Galerkin approaches computed eigenvectors that are perfectly divergence-free.As drawback of the explicit version,we can mention that an initial computation of the kernel of the discretized grad(div)operator has to be performed leading to the resolution of two eigenvalue prob-lems.Consequently,due to the reasons mentioned above,in our opinion,among the three strategies studied in this paper,the best one is the divergence-free Galerkin implicit approach.

    [1]E.Leriche and G.Labrosse,Stokes eigenmodes in a square domain and the stream function velocity correlation,Journal of Computational Physics,200(2004),489-511.

    [2]E.Ahusborde,R.Gruber,M.Aza?ez and M.L.Sawley,Physics-conforming constraints oriented numerical method,Physical Review E,75(2007),056704.

    [3]E.Ahusborde,M.Aza?ez and R.Gruber,Constraint oriented spectral element method,Lecture Notes in Computational Science and Engineering,76(2011),93-100.

    [4]M.O.Deville,P.F.Fischer,and E.H.Mund,High-order methods for incompressible fluid flow,Cambridge University Press,Cambridge,2002.

    [5]E.Ahusborde,High order method for the-grad(div)operator and applications,PhD thesis,University of Bordeaux,2007.

    [6]C.Bernardi and Y.Maday,Spectral methods in handbook of numerical analysis,P.G.Ciarlet and J.L.Lions,North-Holland,1997.

    [7]H.K.Moffatt,Viscous and resistive eddies near a sharp corner,Journal of Fluid Mechanics,18(1964),1-18.

    [8]V.Girault and P.Raviart,Finite element methods for Navier-Stokes equations,Series in Computational Mathematics,Springer-Verlag,Berlin,1986.

    [9]R.Gruber and J.Rappaz,Finite element methods in linear ideal MHD,Springer Series in Computational Physics,Springer-Verlag,Berlin,1985.

    国产成+人综合+亚洲专区| 亚洲成人免费电影在线观看| 97人妻天天添夜夜摸| 变态另类成人亚洲欧美熟女 | 欧美精品一区二区免费开放| 制服诱惑二区| 黄片大片在线免费观看| 一级作爱视频免费观看| 欧美色视频一区免费| a在线观看视频网站| 一级片免费观看大全| 国产色视频综合| 如日韩欧美国产精品一区二区三区| 一进一出抽搐动态| 久久草成人影院| 高清在线国产一区| 精品少妇久久久久久888优播| 看黄色毛片网站| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲一卡2卡3卡4卡5卡精品中文| av天堂久久9| 成年版毛片免费区| 欧美午夜高清在线| 成年人黄色毛片网站| 久久午夜综合久久蜜桃| 不卡一级毛片| 男女床上黄色一级片免费看| 一级作爱视频免费观看| 9191精品国产免费久久| 91成人精品电影| 精品久久久久久久毛片微露脸| 久99久视频精品免费| 夜夜躁狠狠躁天天躁| 777久久人妻少妇嫩草av网站| 天天躁狠狠躁夜夜躁狠狠躁| 男女下面插进去视频免费观看| 久久久久视频综合| 老司机深夜福利视频在线观看| 婷婷精品国产亚洲av在线 | 国产精品乱码一区二三区的特点 | 悠悠久久av| 国产精品二区激情视频| 欧美乱妇无乱码| 久久热在线av| 丝袜在线中文字幕| 国产精品.久久久| 一级作爱视频免费观看| 色综合婷婷激情| 大型黄色视频在线免费观看| 久久中文字幕一级| av网站在线播放免费| 亚洲自偷自拍图片 自拍| 精品亚洲成国产av| 少妇裸体淫交视频免费看高清 | 欧洲精品卡2卡3卡4卡5卡区| 欧美不卡视频在线免费观看 | 亚洲精品国产精品久久久不卡| 久久人妻熟女aⅴ| 大香蕉久久成人网| 人妻丰满熟妇av一区二区三区 | 欧美精品人与动牲交sv欧美| 色尼玛亚洲综合影院| 在线观看舔阴道视频| 高清欧美精品videossex| 国产精品乱码一区二三区的特点 | 精品国内亚洲2022精品成人 | 这个男人来自地球电影免费观看| 久久人妻av系列| 精品国产亚洲在线| 亚洲精品国产精品久久久不卡| 精品熟女少妇八av免费久了| 一区二区三区国产精品乱码| tube8黄色片| 男女免费视频国产| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久久久精品古装| www.999成人在线观看| 波多野结衣一区麻豆| 看免费av毛片| 极品少妇高潮喷水抽搐| 99国产精品一区二区蜜桃av | 国产午夜精品久久久久久| 99热国产这里只有精品6| 国产成人免费无遮挡视频| 中文字幕制服av| 捣出白浆h1v1| 久久久久久久久久久久大奶| 桃红色精品国产亚洲av| 三级毛片av免费| 精品乱码久久久久久99久播| 国产色视频综合| av国产精品久久久久影院| 每晚都被弄得嗷嗷叫到高潮| 叶爱在线成人免费视频播放| www.精华液| 亚洲国产精品合色在线| a级片在线免费高清观看视频| 亚洲五月天丁香| 欧美精品av麻豆av| 久久人人97超碰香蕉20202| 露出奶头的视频| 欧美黄色淫秽网站| 老司机在亚洲福利影院| 中文字幕人妻丝袜一区二区| 成年人黄色毛片网站| 日日摸夜夜添夜夜添小说| av天堂在线播放| 欧美激情高清一区二区三区| 成人18禁在线播放| 纯流量卡能插随身wifi吗| 国产成人精品在线电影| 国产精品免费大片| 久久婷婷成人综合色麻豆| av有码第一页| 一级片'在线观看视频| 一级a爱视频在线免费观看| av视频免费观看在线观看| 国产精品成人在线| 美国免费a级毛片| 国产真人三级小视频在线观看| 久久久久久久久久久久大奶| 啦啦啦视频在线资源免费观看| av天堂在线播放| 在线看a的网站| 黑人猛操日本美女一级片| 一区二区三区激情视频| 久久精品人人爽人人爽视色| 多毛熟女@视频| 日本黄色视频三级网站网址 | 搡老熟女国产l中国老女人| 免费看a级黄色片| 最近最新中文字幕大全免费视频| 淫妇啪啪啪对白视频| 自线自在国产av| 国产亚洲精品久久久久5区| 国产精品免费大片| 天天躁夜夜躁狠狠躁躁| 精品福利永久在线观看| 亚洲 欧美一区二区三区| 99久久人妻综合| 叶爱在线成人免费视频播放| 操出白浆在线播放| 亚洲精品国产色婷婷电影| 久久久久国产精品人妻aⅴ院 | 久久人人爽av亚洲精品天堂| 久久久国产欧美日韩av| 嫁个100分男人电影在线观看| 亚洲 欧美一区二区三区| 午夜影院日韩av| 亚洲国产欧美一区二区综合| 成人精品一区二区免费| 黄色女人牲交| 视频区图区小说| 亚洲自偷自拍图片 自拍| 少妇被粗大的猛进出69影院| 日本wwww免费看| 热99国产精品久久久久久7| 精品国产美女av久久久久小说| 男人操女人黄网站| 欧美国产精品va在线观看不卡| 另类亚洲欧美激情| 性少妇av在线| 日本黄色视频三级网站网址 | av不卡在线播放| 欧美黑人精品巨大| 色婷婷av一区二区三区视频| 建设人人有责人人尽责人人享有的| 大香蕉久久网| 国产片内射在线| 国产精品综合久久久久久久免费 | 免费黄频网站在线观看国产| 一区二区三区精品91| 美女福利国产在线| 久久中文看片网| 国产精品秋霞免费鲁丝片| 无限看片的www在线观看| 1024香蕉在线观看| 少妇的丰满在线观看| 国产亚洲av高清不卡| 啦啦啦 在线观看视频| 国产单亲对白刺激| 999久久久国产精品视频| 91av网站免费观看| 正在播放国产对白刺激| 午夜影院日韩av| 最新的欧美精品一区二区| 中文字幕av电影在线播放| 丁香欧美五月| 国产精品成人在线| 精品久久久精品久久久| 十八禁网站免费在线| 国产区一区二久久| 亚洲精品成人av观看孕妇| 成年人免费黄色播放视频| 在线av久久热| 亚洲中文字幕日韩| 国产成人精品在线电影| 久久热在线av| av欧美777| 免费观看a级毛片全部| 国产成+人综合+亚洲专区| 国产不卡av网站在线观看| 三级毛片av免费| 国产乱人伦免费视频| 十八禁网站免费在线| 亚洲第一欧美日韩一区二区三区| 日韩免费av在线播放| 亚洲av熟女| 精品少妇久久久久久888优播| 天天躁狠狠躁夜夜躁狠狠躁| 黄色片一级片一级黄色片| 女性被躁到高潮视频| 亚洲熟妇中文字幕五十中出 | 亚洲一区二区三区不卡视频| 亚洲av成人av| 免费av中文字幕在线| 好男人电影高清在线观看| 国产精品久久久久久人妻精品电影| 免费在线观看日本一区| 久久精品熟女亚洲av麻豆精品| 嫁个100分男人电影在线观看| 天天躁日日躁夜夜躁夜夜| 欧美黄色片欧美黄色片| 熟女少妇亚洲综合色aaa.| 18禁观看日本| 老鸭窝网址在线观看| 日日摸夜夜添夜夜添小说| 日韩欧美一区视频在线观看| 一进一出抽搐动态| 日本黄色视频三级网站网址 | 麻豆乱淫一区二区| 男女免费视频国产| 天天躁日日躁夜夜躁夜夜| 一本一本久久a久久精品综合妖精| 久久久久视频综合| 亚洲伊人色综图| 嫁个100分男人电影在线观看| 精品人妻1区二区| 国产精品.久久久| 在线播放国产精品三级| 搡老岳熟女国产| 99精品久久久久人妻精品| 欧美日韩瑟瑟在线播放| 精品国产乱码久久久久久男人| 91老司机精品| 精品国产美女av久久久久小说| 国产成人免费观看mmmm| 一边摸一边做爽爽视频免费| 国产成人精品久久二区二区91| 啦啦啦在线免费观看视频4| 免费少妇av软件| 久99久视频精品免费| 侵犯人妻中文字幕一二三四区| 国产一区二区三区在线臀色熟女 | 成人特级黄色片久久久久久久| 狠狠婷婷综合久久久久久88av| 午夜免费鲁丝| a级片在线免费高清观看视频| 亚洲一区高清亚洲精品| 国产在线一区二区三区精| 欧美亚洲 丝袜 人妻 在线| 无限看片的www在线观看| 啦啦啦 在线观看视频| 国产人伦9x9x在线观看| 欧美黑人精品巨大| 大片电影免费在线观看免费| 亚洲国产毛片av蜜桃av| 一级作爱视频免费观看| 国产精品久久久久久精品古装| 国产精品久久久久久人妻精品电影| 99久久99久久久精品蜜桃| 美女高潮喷水抽搐中文字幕| 欧美精品av麻豆av| 黄色女人牲交| 法律面前人人平等表现在哪些方面| 人人妻,人人澡人人爽秒播| 大香蕉久久成人网| 国产亚洲精品久久久久久毛片 | 国产精品亚洲一级av第二区| 母亲3免费完整高清在线观看| 国产1区2区3区精品| 91麻豆精品激情在线观看国产 | 777久久人妻少妇嫩草av网站| 90打野战视频偷拍视频| 丁香六月欧美| 亚洲成av片中文字幕在线观看| 国产精品久久电影中文字幕 | 欧美色视频一区免费| 在线观看66精品国产| 欧美激情高清一区二区三区| 欧美乱码精品一区二区三区| videosex国产| 91老司机精品| 一本一本久久a久久精品综合妖精| 法律面前人人平等表现在哪些方面| 国产亚洲精品第一综合不卡| 免费在线观看亚洲国产| 亚洲av成人不卡在线观看播放网| bbb黄色大片| 国产无遮挡羞羞视频在线观看| 亚洲黑人精品在线| 国产精品久久久久成人av| 人人妻人人澡人人爽人人夜夜| 亚洲精品久久午夜乱码| 男女床上黄色一级片免费看| 黑人欧美特级aaaaaa片| 1024香蕉在线观看| svipshipincom国产片| 天天影视国产精品| 女人精品久久久久毛片| 午夜影院日韩av| 国产成人一区二区三区免费视频网站| 纯流量卡能插随身wifi吗| 欧美乱妇无乱码| 精品少妇一区二区三区视频日本电影| av网站免费在线观看视频| av电影中文网址| 天堂√8在线中文| 免费在线观看亚洲国产| 亚洲专区字幕在线| 女人被躁到高潮嗷嗷叫费观| 香蕉丝袜av| 美女扒开内裤让男人捅视频| 一级黄色大片毛片| 深夜精品福利| 99久久精品国产亚洲精品| 又紧又爽又黄一区二区| 大香蕉久久网| 欧美另类亚洲清纯唯美| 精品一区二区三区视频在线观看免费 | 亚洲一区二区三区不卡视频| 丰满的人妻完整版| 精品国产一区二区久久| 曰老女人黄片| 精品人妻熟女毛片av久久网站| 国产精品永久免费网站| 国产欧美日韩一区二区三| 免费久久久久久久精品成人欧美视频| 久久精品熟女亚洲av麻豆精品| 久久久久国产一级毛片高清牌| 男女午夜视频在线观看| 最新在线观看一区二区三区| 999久久久精品免费观看国产| 午夜福利免费观看在线| 午夜日韩欧美国产| 久久久久精品人妻al黑| 校园春色视频在线观看| 久久久国产欧美日韩av| 91麻豆av在线| 日韩精品免费视频一区二区三区| 国产精品久久电影中文字幕 | 国产亚洲欧美98| 乱人伦中国视频| 午夜老司机福利片| 三上悠亚av全集在线观看| 久9热在线精品视频| 久久婷婷成人综合色麻豆| 制服诱惑二区| 国产欧美日韩一区二区三区在线| 美女 人体艺术 gogo| 黑人巨大精品欧美一区二区蜜桃| 色婷婷av一区二区三区视频| 久久久国产欧美日韩av| 亚洲综合色网址| 亚洲一区二区三区不卡视频| 亚洲人成77777在线视频| 在线国产一区二区在线| 99精国产麻豆久久婷婷| 搡老熟女国产l中国老女人| 亚洲性夜色夜夜综合| 亚洲中文日韩欧美视频| 国产男女超爽视频在线观看| 午夜福利影视在线免费观看| 亚洲av日韩在线播放| 成年人午夜在线观看视频| 69av精品久久久久久| 9热在线视频观看99| 99国产精品一区二区蜜桃av | 如日韩欧美国产精品一区二区三区| 精品国产超薄肉色丝袜足j| 黄片大片在线免费观看| 飞空精品影院首页| 国产成人一区二区三区免费视频网站| videos熟女内射| 18禁裸乳无遮挡动漫免费视频| 男女午夜视频在线观看| 老司机福利观看| 一a级毛片在线观看| 亚洲精品国产一区二区精华液| av在线播放免费不卡| 成熟少妇高潮喷水视频| 欧美日韩福利视频一区二区| 成人国产一区最新在线观看| 十分钟在线观看高清视频www| 精品久久久久久,| 久久精品国产99精品国产亚洲性色 | a级毛片黄视频| 国产成人精品久久二区二区91| 久久精品亚洲熟妇少妇任你| 大型av网站在线播放| 美女国产高潮福利片在线看| 亚洲一区二区三区欧美精品| 热re99久久精品国产66热6| 波多野结衣一区麻豆| 国产欧美日韩一区二区三区在线| 99热网站在线观看| 精品视频人人做人人爽| 国产日韩一区二区三区精品不卡| 国产午夜精品久久久久久| 一级毛片高清免费大全| 狠狠婷婷综合久久久久久88av| 欧美国产精品va在线观看不卡| 久久久久久久精品吃奶| 麻豆乱淫一区二区| 高清黄色对白视频在线免费看| 欧美不卡视频在线免费观看 | 美女扒开内裤让男人捅视频| 亚洲精品一二三| 久久人人爽av亚洲精品天堂| 国产亚洲欧美在线一区二区| av电影中文网址| 亚洲av日韩在线播放| 国产精品99久久99久久久不卡| 日韩大码丰满熟妇| 国产成人欧美| 久久九九热精品免费| 久久婷婷成人综合色麻豆| 女警被强在线播放| 国产在线观看jvid| 国产精品永久免费网站| 久久久久精品人妻al黑| 韩国av一区二区三区四区| 欧美日韩亚洲综合一区二区三区_| 在线观看免费高清a一片| 亚洲av美国av| 国产1区2区3区精品| 一进一出好大好爽视频| 狂野欧美激情性xxxx| 国产主播在线观看一区二区| 精品无人区乱码1区二区| 亚洲精品一卡2卡三卡4卡5卡| 欧美不卡视频在线免费观看 | 久久国产精品大桥未久av| 久久精品国产综合久久久| 最新在线观看一区二区三区| 亚洲美女黄片视频| 可以免费在线观看a视频的电影网站| 亚洲国产看品久久| 欧美大码av| 日本黄色日本黄色录像| 国产亚洲精品一区二区www | 国产亚洲精品一区二区www | 18禁观看日本| 久久久久视频综合| 18禁国产床啪视频网站| 中文字幕av电影在线播放| 精品国产一区二区三区久久久樱花| 久久精品亚洲熟妇少妇任你| 18禁裸乳无遮挡免费网站照片 | 国产精品久久视频播放| 不卡一级毛片| 免费在线观看亚洲国产| av欧美777| 国产在线精品亚洲第一网站| 久久精品人人爽人人爽视色| 757午夜福利合集在线观看| 在线观看午夜福利视频| 亚洲精品国产区一区二| 极品人妻少妇av视频| 午夜福利欧美成人| 国产aⅴ精品一区二区三区波| 国产一区二区三区综合在线观看| 日韩免费高清中文字幕av| 满18在线观看网站| 精品国产亚洲在线| 日本撒尿小便嘘嘘汇集6| 国产淫语在线视频| 精品久久久久久久久久免费视频 | cao死你这个sao货| 国产99白浆流出| 国产麻豆69| 久久国产精品男人的天堂亚洲| 国产高清国产精品国产三级| 岛国毛片在线播放| 亚洲国产精品合色在线| 午夜精品在线福利| 亚洲成人免费av在线播放| 法律面前人人平等表现在哪些方面| 一本一本久久a久久精品综合妖精| 色综合婷婷激情| 交换朋友夫妻互换小说| 国产一区二区三区视频了| 色婷婷av一区二区三区视频| 少妇被粗大的猛进出69影院| 真人做人爱边吃奶动态| 人成视频在线观看免费观看| 飞空精品影院首页| 精品午夜福利视频在线观看一区| 亚洲av美国av| 国产成人精品在线电影| 精品福利观看| 69精品国产乱码久久久| 巨乳人妻的诱惑在线观看| 制服人妻中文乱码| 老司机影院毛片| 九色亚洲精品在线播放| 欧美日韩福利视频一区二区| 搡老岳熟女国产| 两个人看的免费小视频| 国产精品自产拍在线观看55亚洲 | 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人系列免费观看| 国产精品一区二区免费欧美| 久久人妻福利社区极品人妻图片| 午夜两性在线视频| 久久这里只有精品19| av在线播放免费不卡| xxxhd国产人妻xxx| 亚洲欧美一区二区三区黑人| 精品国产亚洲在线| 亚洲成国产人片在线观看| 欧美午夜高清在线| 亚洲国产欧美网| a级毛片在线看网站| 男人舔女人的私密视频| 欧美国产精品一级二级三级| 女人久久www免费人成看片| av不卡在线播放| 午夜精品在线福利| 精品亚洲成国产av| 久久午夜综合久久蜜桃| 久久中文字幕人妻熟女| 日本黄色视频三级网站网址 | 国产免费av片在线观看野外av| 美女福利国产在线| 久久天躁狠狠躁夜夜2o2o| 男人舔女人的私密视频| 国产精品永久免费网站| 亚洲人成77777在线视频| 又紧又爽又黄一区二区| 操美女的视频在线观看| 欧美黄色片欧美黄色片| av不卡在线播放| 国产欧美日韩一区二区精品| 午夜福利欧美成人| 看免费av毛片| 精品免费久久久久久久清纯 | 国产成人欧美在线观看 | 久久热在线av| 黄频高清免费视频| 婷婷成人精品国产| 欧美日韩亚洲国产一区二区在线观看 | 亚洲五月天丁香| 久久人人97超碰香蕉20202| 午夜久久久在线观看| 日本精品一区二区三区蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 日本wwww免费看| 亚洲视频免费观看视频| 午夜福利影视在线免费观看| 午夜精品在线福利| 国产又色又爽无遮挡免费看| 在线观看免费高清a一片| 久久天躁狠狠躁夜夜2o2o| 亚洲伊人色综图| 久久久国产一区二区| 国产欧美亚洲国产| 亚洲午夜精品一区,二区,三区| 亚洲一卡2卡3卡4卡5卡精品中文| avwww免费| 午夜日韩欧美国产| 国产成人影院久久av| 午夜福利视频在线观看免费| 久久久久久久久免费视频了| 亚洲七黄色美女视频| 三上悠亚av全集在线观看| 免费av中文字幕在线| 成在线人永久免费视频| 午夜两性在线视频| 国产单亲对白刺激| 久久久水蜜桃国产精品网| 777久久人妻少妇嫩草av网站| 久久这里只有精品19| 欧美老熟妇乱子伦牲交| 欧美 亚洲 国产 日韩一| 波多野结衣一区麻豆| 欧美黑人精品巨大| 在线观看舔阴道视频| 如日韩欧美国产精品一区二区三区| 日韩 欧美 亚洲 中文字幕| 美女福利国产在线| 亚洲人成电影观看| 搡老岳熟女国产| 真人做人爱边吃奶动态| 18禁裸乳无遮挡免费网站照片 | 免费在线观看亚洲国产| 亚洲男人天堂网一区| 亚洲一区中文字幕在线| 热99re8久久精品国产| 免费在线观看完整版高清| 欧美激情久久久久久爽电影 | 男人操女人黄网站| 人妻 亚洲 视频| 欧美乱码精品一区二区三区| 制服诱惑二区| 人妻 亚洲 视频| 亚洲专区字幕在线| 欧美日韩一级在线毛片| 少妇被粗大的猛进出69影院| 亚洲专区字幕在线| 日本一区二区免费在线视频| 亚洲第一青青草原| 激情在线观看视频在线高清 | 国产欧美日韩一区二区三| 国产精品久久久久成人av|