• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spectral Element Methods for Stochastic Differential Equations with Additive Noise

    2018-07-12 05:28:58ChaoZhangDongyaGuandDongyaTao
    Journal of Mathematical Study 2018年1期

    Chao Zhang,Dongya Gu and Dongya Tao

    School of Mathematics and Statistics,Jiangsu Normal University,Xuzhou 221116,P.R.China.

    1 Introduction

    Many problems in science and engineering can be characterized by differential equations.However,deterministic differential equations can not reveal the essence of these problems well due to the existence of accidental phenomena and small probability events. Therefore,many scholars consider stochastic differential equations to describe these problems,see[10,22,23]and etc,and the references therein.

    Since the solution of a stochastic differential equation(SDE)is a stochastic process,it is difficult to reveal visually the information the process contains.Recently,there are many works to study the numerical solution for stochastic ordinary differential equations(SDEs).Euler-Maruyama method,Milstein method and Runge-Kutta method were proposed to solve SDEs numerically,see[3,4,13,16,17,19,20,31]and the references therein.

    On the other hand,many authors investigated the numerical methods for stochastic partial differential equations(SPDEs).Allen et al.[1],Mcdonald[21],Gy?ngy[14,15]used finite difference method to study the numerical solutions of linear SPDEs driven by additive white noise.Also,Walsh[28],Du and Zhang[11]studied finite element method for linear SPDEs driven by special noises.Moreover,Caoet al.[6,7,8],Theting[26,27],Yan[29]and etc,have also made some contributions.

    As we know, spectral methods take orthogonal polynomials (such as Legendre, Chebyshev,Jacobi,Laguerre and Hermite polynomials)as the basis functions to approximate the solutions of problems in mathematical physics,and tend to have higher accuracy,see[5,12,25].Recently,some scholars are trying to study SPDEs by spectral methods.Shardlow[24]took the eigenvectors ofsubject to Dirichlet boundary condition as the basis functions and used spectral method to approximate the noise.Cao and Yin[9]studied spectral Galerkin method for stochastic wave equations driven by space-time white noise.In addition,Yin and Gan[30]proposed the Chebyshev spectral collocation method to solve a certain type of stochastic delay differential equations.

    In the present work,we will try to solve stochastic equations by using spectral element methods.We begin with taking the SDEs driven by white noise into consideration.As we know,the regularity of the solutions of the original stochastic differential equations plays an important role in priori error estimates of the numerical solutions.Unfortunately,the regularity estimates are usually very weak because of the existence of white noise.In order to overcome this difficulty,we will approximate the white noise process by piecewise constant random process as in[1],and apply the Legendre spectral element method for the corresponding stochastic differential equation.We prove the numerical solution converges to the original solution.Moreover,the accuracy of the proposed scheme is indicated by the provided computational results.The other part is that we use spectral element methods to solve stochastic differential equations driven by colored noise numerically.Analogous to the way to deal with white noise,it is nature to use an finite dimensional noise to discretize the colored noise(see[11]),which could improve the regularity of the solutions of the original stochastic differential equations.Therefore,the relevant stochastic differential equation is capable of being approximated by the Legendre spectral element scheme.Furthermore,the numerical results show the high accuracy of spectral element methods.

    This paper is organized as follows.In the next section,we study numerical solutions of stochastic differential equations driven by white noiseusing spectral element methods,and the error estimates as well as the numerical results are presented.In Section 3,we use spectral element methods to solve stochastic differential equations driven by colored noise numerically.The final section is for conclusion remarks.

    2 Numerical solutions of SDEs driven by white noise

    We consider the following stochastic problem driven by white noise

    where(x)denotes white noise,g(x)is a deterministic function andbis a constant.

    The integral form of(2.1)has the form

    wherek(x,y)=x∧y?xyis Green’s function associated with the elliptic equation

    Multiplying the equation(2.1)byφ(x)and integrating by parts onI,we derive that a weak formulation of(2.1)is

    whereφ∈C2(0,1)∩C0[0,1].

    Remark 2.1.Buckdahn and Pardoux[2]proved existence and uniqueness of solutions to(2.2)and(2.3).Meanwhile,(2.2)and(2.3)are equivalent.

    2.1 Approximation of white noise

    Partition the intervalIinto 0=x0

    where

    η1,η2,···,ηKare a sequence of random variables that are independent and identically distributed(i.i.d.)and subject to the standard normal distributionN(0,1),

    Substitutingd(y)fordW(y)in(2.2),we can get

    According to Theorem 2.2 in[1],we have the following regularity result.

    Lemma 2.1.Letbe the solution of(2.5)with g∈L2(0,1)and b≥0.Then∈H2(0,1)∩(0,1)withwhere constant C depends only on g.

    From Theorem 2.1 in[1],we have the estimation between u and.

    Lemma 2.2.Letbe the solution of(2.5),and u be the solution of(2.2).There holds

    where λ2=(x,y)dxdy<1.

    Remark 2.2.Lemma 2.2 implies that if the mesh is sufficiently fine,then(x)is a good approximation to u(x),and(x)is smoother than u(x).

    2.2 Spectral element methods for stochastic differential problem(2.1)

    Denote(I)={u|u,u′∈L2(I),u(0)=u(1)=0},we substitute(x)for W(x),then the weak form(2.3)of the problem(2.1)can be written as

    Let

    where PNbe the space of the algebraic polynomials with degree at most N.Then the corresponding Galerkin scheme of(2.7)is to findsuch that

    Define the Sobolev space:

    By using Theorem 3.39 in[25],we obtain the following result on I directly.

    Lemma 2.3.Ifthen for 1≤m≤N+1 andμ=0,1,

    where C is a positive constant independent of,h,m and N.

    Remark 2.3.In particular,for m=2,letand uNbe the solutions of(2.7)and(2.8),we have

    Therefore,by the triangle inequality,Lemma 2.2,(2.9)and Lemma 2.1,successively,we have the following error estimates.

    Theorem 2.1.Let u and uNbe the solutions of(2.1)and(2.8),respectively.Then we have

    where C is a positive constant independent of h and N.

    2.3 Numerical results

    Let

    Here,Lm(ξ)is the Legendre polynomial on(?1,1)with degree m,which satisfy that Lm(±1)=(±1)m,and fulfill the following relations.

    In actual computation,we introduce the boundary-inner decomposition basis

    We expand them into global variable by

    where mi(ξ)=xi?1φ0(ξ)+xiφN(ξ),i=1,···,K,m=1,···,N?1.For ensuring the continuity of the solution of the problem,we must propose the basis functions at interfaces.Therefore,we introduce

    where i=1,···,K?1.At the left and right endpoints,we define

    So the global basis set are

    Then,we expand the numerical solution of the problem(2.1)as follows:

    Substituting the above expression into Galerkin scheme(2.8)and taking φ=ψl(x),l=0,···,KN,which yields that

    Let us denote

    Then the linear algebraic system(2.19)becomes the following compact form

    To compute the errorEku?uNkL2,we set the state of random numbers to be 400,perform 10000 runs with different samples of noise for each computation,then for each sample calculateku?uNkL2,and finally,obtain the average value of ku?uNkL2.

    For the problem(2.1)withb=,we take the test functionu(x)=x(1?x)sin3x.In Table 1,the values of the errorEku?uNkL2with variousNandKare listed.We can see that the errors decay asNandKincrease.Comparison with the numerical results in[1],Allen,Novosel and Zhang tookh=0.0294 and the smoother test functionu(x)=x(1?x),the accuracy of errors can only be reached toO(10?4).While in Table 1,though the test functionu(x)=x(1?x)sin3xis oscillatory,the accuracy can be reached toO(10?6)withN=8.This indicates that our new approach seems to be more accurate.

    Table 1:The values of EkuN?ukL2.

    3 Numerical solutions of SDEs driven by colored noise

    Due to the existence of white noise,the solution to(2.1)has low regularity,thus it doesn’t achieve higher precision,which can be seen from Table 1.In this section,we will study numerical methods for stochastic differential equations driven by colored noise.

    3.1 Properties of colored noise

    LetW={W(t),t≥0}be a standard Wiener process and for fixedh>0,we define colored noise by(see[18])

    This is a wide-sense stationary Gaussian process with zero means and with covariances

    it thus has spectral density

    In general,we may use the following abstract formulation to simulate colored noise(see[11]):

    where the i.i.d.random sequence ηk~N(0,1),the deterministic functions{?k(x)}form an orthogonal basis of L2(I)or its subspace,and the coefficients{σk}are to be chosen to ascertain the convergence of the series in the mean square sense with respect to some suitable norms.

    Letapproachas n→∞in some appropriate sense,then an approximation of

    where

    As was shown by Du and Zhang[11],the faster the coefficients σkdecay,the smoother the noise trajectory˙Wn(x)looks.On the other hand,if the coefficients decay sufficiently slowly,then the trajectory can clearly resemble that of a white noise away from the boundary.In the end of this section,we will give the numerical results to demonstrate that different forms of coefficientsinduce different rates of convergence.

    From Lemma 3.1 in[11],a bound is stated on˙Wnin the following lemma.

    Lemma 3.1.For

    provided that the right-hand side is convergent.

    3.2 Spectral element methods for SDEs driven by colored noise

    We consider the following stochastic problem driven by colored noise

    where(x)denotes colored noise,g(x)is a deterministic function and b is a constant.

    The integral form of the problem(3.4)is

    and the weak form is

    We replace dW(y)with dWn(y)in(3.5),and obtain

    According to Theorem 3.1 in[11],the following lemma holds.

    Lemma 3.2.Forif u andare the solutions of(3.5)and(3.7),respectively,then,for some constant C>0,

    where λ2=b2k2(x,y)dxdy<1,(σ1,σ2,···,σk,···)t,

    Substituting Wn(x)for W(x)in(3.6),the weak form(3.6)can be written as

    and the corresponding Galerkin scheme of(3.4)is to findsuch that

    Following the same line of Theorem 2.1,together with the triangle inequality,Lemma 3.2 and Lemma 2.3,we then have the following error estimates.

    Theorem 3.1.Let u and uNare the solutions of(3.4)and(3.10),respectively.Then we have

    where C is a positive constant independent of u,h,m and N.Furthermore,according to Lemma 3.1,for 2≤m≤N+1,we have

    3.3 Numerical results

    In actual computation,we expand the numerical solution of the problem(3.4)as follows:

    whereare defined in(2.14)-(2.17).Substituting the above expansion in to Galerkin scheme(3.10)and takingφ=ψl(x),l=0,···,KN,we can obtain the following system of linear algebraic equations

    Let us denote

    Then we can rewrite the linear algebraic system(3.13)as

    where the matrixS,Mis defined as in(2.20).

    For numerical experiment,we letb=,and the test functionud(x)=x(1?x)sin3x.Then the exact solution to(3.4)is given byu(x)=ud(x)+us(x),where

    The state of random numbers is also set to be 400.Tables 2-3 list the values of the errorEku?uNkL2withσk=respectively.The results indicate that the errors decay rapidly asNandKincrease.At the same time,they demonstrate that if the coefficientsσkdecay sufficiently fast,the numerical solution would be smoother.

    Also,in[11],Du and Zhang tookand the smoother test functionud(x)=x(1?x),the accuracy of error estimates could only be reached toO(10?6)whenσk=While for spectral element methods,from Table 2,the accuracy of error estimates can be reached toO(10?13)withN=240,even if we take the oscillatory function asud(x)=x(1?x)sin3x.Forσk=took the samehand test function,Du and Zhang[11]get the accuracy of estimates reached toO(10?10).As we can see from Table 3,the accuracy can be reached toO(10?14)only withN=140.This demonstrates the accuracy of the proposed method.

    Table 2:The values of EkuN?ukL2with σk=

    Table 2:The values of EkuN?ukL2with σk=

    K=1 K=2 K=3 N=20 3.97e?05 2.10e?05 1.41e?05 N=60 1.33e?05 6.71e?06 4.35e?06 N=100 7.91e?06 3.73e?06 2.37e?06 N=140 5.61e?06 2.56e?06 2.62e?09 N=180 4.26e?06 1.62e?06 1.48e?10 N=220 3.39e?06 9.54e?10 2.21e?11 N=240 2.83e?06 2.02e?10 2.32e?13

    Table 3:The values of EkuN?ukL2with σk=

    Table 3:The values of EkuN?ukL2with σk=

    K=1 K=2 K=3 N=20 4.95e?08 6.13e?09 1.82e?09 N=60 1.87e?09 2.27e?10 6.71e?11 N=100 4.08e?10 4.87e?11 1.44e?11 N=140 1.50e?10 1.77e?11 1.12e?14

    4 Conclusion

    In this paper,the Legendre spectral element schemes were proposed for stochastic differential equations driven by white noise and colored noise,respectively.For stochastic differential equations driven by white noise,we improved the regularity of the solution by employing piecewise constant random process to approximate white noise process.Thus,the Legendre spectral element scheme was able to apply to approximate the corresponding stochastic differential equation.The error analysis was provided and the accuracy of the proposed scheme was showed by the numerical experiments.As for stochastic differential equations driven by colored noise,we approximated colored noise process by a finite dimensional noise and employed the Legendre spectral element scheme to the corresponding stochastic differential equation.The error estimation was presented and the numerical results demonstrated the high accuracy of the proposed schemes.

    Although the spectral element methods was only considered for second order elliptic stochastic differential equations in the present work,it is suitable to other types of stochastic differential equations.

    Acknowledgments

    This work is supported in part by NSF of China No.11571151 and No.11771299,and Priority Academic Program Development of Jiangsu Higher Education Institutions.

    [1]E.J.Allen,S.J.Novosel and Z.M.Zhang,Finite element and difference approximation of some linear stochastic partial differential equations,Stochastics Stochastics Rep.,64(1-2)(1998),117-142.

    [2]R.Buckdahn and E.Pardoux,Monotonicity methods for white noise driven quasi-linear SPDEs,Diffusion Processes and related Problems in Analysis.,Vol.?,1990.

    [3]K.Burrage and P.M.Burrage,High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations,Appl.Numer.Math.,22(1996),81-101.

    [4]K.Burrage,P.M.Burrage and T.Tian,Numerical methods for strong solutions of stochastic differential equations:An overview,Proc.R.Soc.A:Math.Phys.Eng.Sci.,460(2004),373-402.

    [5]C.Canuto,M.Y.Hussaini,A.Quarteroni and T.A.Zang,Spectral methods:evolution to complex geometries and applications to fluid dynamics,Springer-Verlag,Berlin,2007.

    [6]Y.Cao,Finite element and discontinuous Galerkin method for stochastic helmholtz equation in two-and-three dimensions,J.Comput.Math.,26(5)(2008),702-715.

    [7]Y.Cao,Z.Chen and M.Gunzburger,Error analysis of finite element approximations of the stochastic Stokes equations,Adv.Comput.Math.,33(2)(2010),215-230.

    [8]Y.Cao,H.T.Yang and L.Yan,Finite element methods for semiline arelliptic stochastic partial differential equations,Numer.Math.,106(2007),181-198.

    [9]Y.Cao and L.Yin,Spectral Galerkin method for stochastic wave equations driven by spacetime white noise,Commun.Pure Appl.Anal.,6(3)(2007),607-617.

    [10]E.Cinlae,Introduction to stochastic processes,Englewood cliffs,New Jersey:Prentice-hall,Inc.,1975.

    [11]Q.Du and T.Zhang,Numerical approximation of some linear stochastic partial differential equations driven by special additive noise,SIAM.J.Numer.Anal.,40(2002),1421-1445.

    [12]B.Y.Guo,Spectral methods and their applications,World Scientific Publishing Co.Inc.,River Edge,NJ,1998.

    [13]Q.Guo,W.Liu,X.Mao and R.Yue,The truncated milstein method for stochastic differential equations,arXiv:1704.04135v2.,2017.

    [14]I.Gy?ngy,Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise,I,Potential Anal.,9(1998),1-25.

    [15]I.Gy?ngy,Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise,II,Potential Anal.,11(1999),1-37.

    [16]D.J.Higham,X.Mao and A.M.Stuart,Strong convergence of Euler-like methods for nonlinear stochastic differential equations,SIAM J.Numer.Anal.,40(2002),1041-1063.

    [17]D.J.Higham,X.Mao and A.M.Stuart,Exponential mean square stability of numerical solutions to stochastic differential equations,London Mathematical Society J.Comput.Math.,6(2003),297-313.

    [18]P.E.Kloedn and E.Platen,Numerical solution of stochastic differential equations,Springer-Verlag Berlin Heidelberg.,1999.

    [19]X.Mao,The truncated Euler-Maruyama method for stochastic differential equations,J.Comput.Appl.Math.,290(2015),370-384.

    [20]N.Mariko and N.Syoiti,A new high-order weak approximation scheme for stochastic differential equations and the Runge-Kutta method,Finance Stoch.,13(2009),415-443.

    [21]S.Mcdonald,Finite difference approximation for linear stochastic partial differential equations with method of lines,Munich Personal RePEc Archive,2006.

    [22]B.?ksendal,Stochastic differential equations.Springer-Verlag Berlin Heidelberg,2005.

    [23]L.R.Rabiner,A tutorial on hidden Markov models and selected applications in speech secognition,Proceedings of IEEE.,77(2)(1989),257-286.

    [24]T.Shardlow,Numerical methods for stochastic parabolic PDEs.Numer.Funct.Anal.Optim.,20(1999),121-145.

    [25]J.Shen,T.Tang and L.L.Wang,Spectral methods:algorithms,analysis and applications,volume 41 of Series in Computational Mathematics.Springer-Verlag,Berlin,Heidelberg.,2011.

    [26]T.G.Theting,Solving Wick-stochastic boundary value problems using a finite element method.Stochastics Stochastics Rep.,70(3-4)(2000),241-270.

    [27]T.G.Theting,Solving parabolic Wick-stochastic boundary value problems using a finite element method,Stochastics Stochastics Rep.,75(1-2)(2003),49-77.

    [28]J.B.Walsh,Finite element methods for parabolic stochastic PDES,Poten.Anal.,23(2005),1-43.

    [29]Y.Yan,Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise,BIT.Numer.Math.,4(2004),829-847.

    [30]Z.W.Yin and S.Q.Gan,Chebyshev spectral collocation method for stochastic delay differential equations,Adv.Difference Equ.,1(2015),1-12.

    [31]R.Zeghdane,L.Abbaoui and A.Tocino.,Higher-order semi-implicit Taylor schemes for It? stochastic differential equations,J.Comput.Appl.Math.,236(2011),1009-1023.

    熟妇人妻不卡中文字幕| 久久免费观看电影| 日本91视频免费播放| 国产精品久久久久久av不卡| 少妇人妻 视频| 国产精品久久久久久久电影| 日韩精品免费视频一区二区三区 | 色5月婷婷丁香| 久久精品国产亚洲网站| 夜夜骑夜夜射夜夜干| 免费人妻精品一区二区三区视频| 国产深夜福利视频在线观看| 一本大道久久a久久精品| 国产在线一区二区三区精| 国产免费又黄又爽又色| 少妇的逼好多水| 最新的欧美精品一区二区| 自线自在国产av| 免费观看的影片在线观看| 丰满迷人的少妇在线观看| 一区二区av电影网| 欧美日韩成人在线一区二区| 色94色欧美一区二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 在线免费观看不下载黄p国产| 久久久国产一区二区| 99热国产这里只有精品6| 欧美日韩一区二区视频在线观看视频在线| 国产不卡av网站在线观看| 18禁观看日本| 最后的刺客免费高清国语| 久久久精品94久久精品| 婷婷色综合大香蕉| 成年美女黄网站色视频大全免费 | 久久精品久久久久久噜噜老黄| 狠狠婷婷综合久久久久久88av| 欧美一级a爱片免费观看看| 亚洲精品中文字幕在线视频| 女性被躁到高潮视频| 亚洲色图综合在线观看| 国产一区亚洲一区在线观看| 免费人妻精品一区二区三区视频| 天堂中文最新版在线下载| 久久av网站| 成年女人在线观看亚洲视频| 香蕉精品网在线| 91在线精品国自产拍蜜月| 制服诱惑二区| 欧美最新免费一区二区三区| 久久狼人影院| 国产亚洲一区二区精品| av电影中文网址| av一本久久久久| 日韩不卡一区二区三区视频在线| 亚洲欧美精品自产自拍| 秋霞伦理黄片| 亚洲人成网站在线播| 大香蕉97超碰在线| 色哟哟·www| 男女边摸边吃奶| 亚洲av二区三区四区| 久久久久久久亚洲中文字幕| 久久人人爽人人片av| 好男人视频免费观看在线| 各种免费的搞黄视频| 日韩一本色道免费dvd| www.av在线官网国产| 久久久国产欧美日韩av| 人妻系列 视频| 2021少妇久久久久久久久久久| 日韩制服骚丝袜av| 亚洲色图 男人天堂 中文字幕 | 最近手机中文字幕大全| 少妇的逼好多水| 美女主播在线视频| 99国产综合亚洲精品| 成年女人在线观看亚洲视频| 日本91视频免费播放| 亚洲av综合色区一区| 成年人午夜在线观看视频| 青春草亚洲视频在线观看| 亚洲精品色激情综合| 在线观看免费日韩欧美大片 | 美女国产高潮福利片在线看| 91久久精品国产一区二区三区| 精品午夜福利在线看| 日韩不卡一区二区三区视频在线| 大香蕉久久成人网| 插逼视频在线观看| 欧美人与善性xxx| 青春草视频在线免费观看| 高清在线视频一区二区三区| 国产深夜福利视频在线观看| 婷婷成人精品国产| 国产视频内射| 国产精品一区www在线观看| 日韩欧美精品免费久久| 国精品久久久久久国模美| 国产片内射在线| 国产精品一区二区在线不卡| 色婷婷av一区二区三区视频| 日本色播在线视频| 国产精品无大码| 亚洲精品日韩在线中文字幕| 亚洲成人av在线免费| 久久鲁丝午夜福利片| 免费不卡的大黄色大毛片视频在线观看| 在线天堂最新版资源| 夜夜看夜夜爽夜夜摸| 看十八女毛片水多多多| 久久久久国产网址| 国产午夜精品一二区理论片| 亚洲第一av免费看| 久久久a久久爽久久v久久| 国产深夜福利视频在线观看| 国产爽快片一区二区三区| 韩国高清视频一区二区三区| 国产精品一二三区在线看| 国内精品宾馆在线| 精品卡一卡二卡四卡免费| 高清不卡的av网站| 青青草视频在线视频观看| 黑人猛操日本美女一级片| 亚洲精品乱久久久久久| 亚洲美女视频黄频| 亚洲色图 男人天堂 中文字幕 | 亚洲精华国产精华液的使用体验| 成年女人在线观看亚洲视频| 欧美一级a爱片免费观看看| 精品人妻一区二区三区麻豆| videos熟女内射| 自线自在国产av| 久久久久久久久久久丰满| 国产精品蜜桃在线观看| 丰满饥渴人妻一区二区三| av女优亚洲男人天堂| 人妻人人澡人人爽人人| 午夜福利视频精品| 18禁在线播放成人免费| 国国产精品蜜臀av免费| 最近最新中文字幕免费大全7| 亚洲国产av新网站| 日韩中字成人| 国产精品偷伦视频观看了| 久久99精品国语久久久| 日韩av在线免费看完整版不卡| 欧美xxⅹ黑人| 永久免费av网站大全| 午夜福利在线观看免费完整高清在| 一级毛片黄色毛片免费观看视频| 成人亚洲欧美一区二区av| 亚洲经典国产精华液单| 亚洲经典国产精华液单| 精品国产露脸久久av麻豆| 你懂的网址亚洲精品在线观看| 欧美xxⅹ黑人| 国产女主播在线喷水免费视频网站| 亚洲精品乱码久久久久久按摩| 亚洲一区二区三区欧美精品| 大香蕉久久成人网| 欧美日韩成人在线一区二区| 欧美亚洲 丝袜 人妻 在线| 超色免费av| 少妇被粗大猛烈的视频| 日本av免费视频播放| 日本与韩国留学比较| 一区在线观看完整版| 免费观看a级毛片全部| 日韩伦理黄色片| 国产成人91sexporn| 色婷婷av一区二区三区视频| 午夜激情久久久久久久| 成人国产av品久久久| 精品少妇内射三级| 中文字幕av电影在线播放| 一区二区三区免费毛片| 建设人人有责人人尽责人人享有的| 男女国产视频网站| 国产亚洲最大av| 2018国产大陆天天弄谢| 国产日韩一区二区三区精品不卡 | 国产精品久久久久成人av| 久久国内精品自在自线图片| 成年人午夜在线观看视频| 99久久精品国产国产毛片| 中文字幕精品免费在线观看视频 | 精品国产国语对白av| 国产av国产精品国产| 精品卡一卡二卡四卡免费| 免费日韩欧美在线观看| 国产黄色视频一区二区在线观看| 99热6这里只有精品| av女优亚洲男人天堂| 久久99热6这里只有精品| 九九爱精品视频在线观看| 国产日韩欧美在线精品| kizo精华| 国产在线免费精品| .国产精品久久| 免费观看av网站的网址| 亚洲无线观看免费| 欧美激情极品国产一区二区三区 | 国产av一区二区精品久久| 十八禁网站网址无遮挡| 中文字幕人妻丝袜制服| 母亲3免费完整高清在线观看 | 大话2 男鬼变身卡| 日韩av不卡免费在线播放| 久久99精品国语久久久| 精品国产乱码久久久久久小说| 一区二区av电影网| 黑人高潮一二区| 日韩av免费高清视频| av国产精品久久久久影院| 午夜91福利影院| 国产老妇伦熟女老妇高清| 女的被弄到高潮叫床怎么办| 久久精品熟女亚洲av麻豆精品| 国产一区二区三区综合在线观看 | 国产成人精品福利久久| 久久久久久久久久人人人人人人| 国产极品天堂在线| 人人妻人人澡人人看| 九九久久精品国产亚洲av麻豆| 一级片'在线观看视频| 人人澡人人妻人| 久久综合国产亚洲精品| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品色激情综合| 日韩中文字幕视频在线看片| 欧美bdsm另类| 九色成人免费人妻av| av在线播放精品| 五月天丁香电影| 18禁观看日本| 热99久久久久精品小说推荐| 国产免费又黄又爽又色| 亚洲在久久综合| 精品熟女少妇av免费看| 亚洲精品亚洲一区二区| 久久久久精品久久久久真实原创| 久久人人爽人人爽人人片va| av在线播放精品| 亚洲欧美中文字幕日韩二区| 妹子高潮喷水视频| 中文字幕免费在线视频6| 涩涩av久久男人的天堂| 亚洲精品久久成人aⅴ小说 | 亚洲av日韩在线播放| 观看av在线不卡| 我的女老师完整版在线观看| 男女国产视频网站| av在线播放精品| 免费日韩欧美在线观看| 99热全是精品| 亚洲国产精品国产精品| 日本欧美视频一区| 久久精品国产亚洲av涩爱| 免费观看在线日韩| 一级,二级,三级黄色视频| 日本av免费视频播放| 亚洲精品乱久久久久久| 中文字幕最新亚洲高清| 丰满少妇做爰视频| 51国产日韩欧美| 三上悠亚av全集在线观看| 大又大粗又爽又黄少妇毛片口| 欧美变态另类bdsm刘玥| 久久精品人人爽人人爽视色| 久久热精品热| 九九久久精品国产亚洲av麻豆| 亚洲国产精品一区三区| 国产黄片视频在线免费观看| 免费黄色在线免费观看| 国产在线一区二区三区精| 国产成人一区二区在线| 纵有疾风起免费观看全集完整版| 国产精品欧美亚洲77777| 91精品伊人久久大香线蕉| 国产精品久久久久久精品电影小说| 晚上一个人看的免费电影| h视频一区二区三区| 亚洲经典国产精华液单| 久久99蜜桃精品久久| 桃花免费在线播放| 久久综合国产亚洲精品| 99久国产av精品国产电影| 狠狠精品人妻久久久久久综合| 亚洲丝袜综合中文字幕| 久久久久久久久久人人人人人人| 日本与韩国留学比较| 一级片'在线观看视频| 男男h啪啪无遮挡| 欧美丝袜亚洲另类| 午夜免费观看性视频| 亚洲成色77777| 免费观看a级毛片全部| 欧美性感艳星| 亚洲国产精品成人久久小说| 18禁观看日本| 国产不卡av网站在线观看| 久久99一区二区三区| 国产伦精品一区二区三区视频9| 青青草视频在线视频观看| 久久久久国产精品人妻一区二区| 自线自在国产av| 国产在线视频一区二区| 日本vs欧美在线观看视频| 成人18禁高潮啪啪吃奶动态图 | 国产成人精品一,二区| 美女国产视频在线观看| av电影中文网址| 高清在线视频一区二区三区| 午夜精品国产一区二区电影| 久久99热6这里只有精品| 乱人伦中国视频| 91精品三级在线观看| 日产精品乱码卡一卡2卡三| 日韩av免费高清视频| 亚洲国产最新在线播放| 飞空精品影院首页| 久久婷婷青草| 寂寞人妻少妇视频99o| 日本午夜av视频| 精品久久久久久久久av| 一本久久精品| 丝瓜视频免费看黄片| 97超碰精品成人国产| 欧美xxⅹ黑人| 色婷婷av一区二区三区视频| 午夜免费鲁丝| 性色av一级| 国产精品不卡视频一区二区| 日本黄大片高清| 九九久久精品国产亚洲av麻豆| 精品少妇内射三级| 嘟嘟电影网在线观看| 夜夜爽夜夜爽视频| 黑丝袜美女国产一区| 2022亚洲国产成人精品| 国产精品人妻久久久影院| 精品久久久精品久久久| 成人二区视频| 亚洲精品一二三| 欧美精品一区二区大全| 成人国产av品久久久| 蜜桃久久精品国产亚洲av| 国产成人freesex在线| 成人手机av| 亚洲国产精品一区三区| 热99国产精品久久久久久7| 国产爽快片一区二区三区| 五月开心婷婷网| 最新中文字幕久久久久| 天堂8中文在线网| 麻豆精品久久久久久蜜桃| 日韩视频在线欧美| 99精国产麻豆久久婷婷| 国产一区二区在线观看av| 亚洲综合精品二区| 亚洲第一av免费看| 天堂中文最新版在线下载| 日韩中文字幕视频在线看片| 精品少妇久久久久久888优播| 婷婷成人精品国产| 精品人妻熟女毛片av久久网站| 日产精品乱码卡一卡2卡三| 成人漫画全彩无遮挡| 亚洲av综合色区一区| 亚洲久久久国产精品| 在线观看免费日韩欧美大片 | 少妇精品久久久久久久| 夫妻性生交免费视频一级片| 久久久久久久久大av| 国产av国产精品国产| 熟妇人妻不卡中文字幕| 国产av精品麻豆| 日本vs欧美在线观看视频| 精品久久久精品久久久| 在线观看一区二区三区激情| 日本黄大片高清| 国产精品三级大全| 亚洲精品第二区| 午夜福利,免费看| 最黄视频免费看| 男男h啪啪无遮挡| 老女人水多毛片| 欧美xxⅹ黑人| 精品一区在线观看国产| 麻豆乱淫一区二区| 国产毛片在线视频| 久久99蜜桃精品久久| videossex国产| 一级毛片aaaaaa免费看小| 永久网站在线| 多毛熟女@视频| 在线观看www视频免费| 日韩,欧美,国产一区二区三区| 日韩精品有码人妻一区| 午夜91福利影院| 亚洲av成人精品一区久久| 欧美三级亚洲精品| 国国产精品蜜臀av免费| 韩国高清视频一区二区三区| 日韩,欧美,国产一区二区三区| 亚洲伊人久久精品综合| 99久久精品国产国产毛片| 精品视频人人做人人爽| 亚洲av国产av综合av卡| 亚洲色图综合在线观看| 亚洲图色成人| 中文字幕人妻丝袜制服| 国产亚洲午夜精品一区二区久久| 国产精品一二三区在线看| 欧美激情极品国产一区二区三区 | 国产欧美日韩综合在线一区二区| 美女福利国产在线| 国产日韩欧美亚洲二区| 国产成人精品无人区| 久久人人爽av亚洲精品天堂| 欧美成人精品欧美一级黄| 国产av码专区亚洲av| 日本猛色少妇xxxxx猛交久久| 国产精品一二三区在线看| 亚洲经典国产精华液单| 啦啦啦在线观看免费高清www| 我要看黄色一级片免费的| 97超碰精品成人国产| 九九久久精品国产亚洲av麻豆| 曰老女人黄片| 亚洲精品美女久久av网站| 大码成人一级视频| 欧美日韩av久久| 性高湖久久久久久久久免费观看| 亚洲精品乱久久久久久| 麻豆乱淫一区二区| .国产精品久久| 九色成人免费人妻av| 欧美亚洲日本最大视频资源| 老司机影院毛片| 多毛熟女@视频| 内地一区二区视频在线| 高清黄色对白视频在线免费看| 99九九线精品视频在线观看视频| 高清毛片免费看| 22中文网久久字幕| 久久 成人 亚洲| 日韩视频在线欧美| 观看av在线不卡| 中文乱码字字幕精品一区二区三区| 日日摸夜夜添夜夜添av毛片| 国产极品粉嫩免费观看在线 | 精品亚洲乱码少妇综合久久| 这个男人来自地球电影免费观看 | av国产久精品久网站免费入址| 日韩视频在线欧美| av在线观看视频网站免费| videossex国产| 午夜视频国产福利| 如日韩欧美国产精品一区二区三区 | 日本wwww免费看| 免费日韩欧美在线观看| 91精品一卡2卡3卡4卡| 一区二区av电影网| av女优亚洲男人天堂| 97在线人人人人妻| 91久久精品电影网| 一区二区三区四区激情视频| 新久久久久国产一级毛片| 边亲边吃奶的免费视频| 一二三四中文在线观看免费高清| 黄色欧美视频在线观看| 亚洲美女黄色视频免费看| 午夜福利视频精品| 精品人妻在线不人妻| 精品久久久久久久久亚洲| 国产成人aa在线观看| 黄色配什么色好看| 一边亲一边摸免费视频| 成人二区视频| 男女免费视频国产| 天堂8中文在线网| 国产日韩欧美在线精品| 日本色播在线视频| 夜夜骑夜夜射夜夜干| 人妻一区二区av| 日韩大片免费观看网站| 国产精品一二三区在线看| 五月开心婷婷网| 精品久久国产蜜桃| 亚洲图色成人| 久久久久久久久久久久大奶| 亚洲精品久久午夜乱码| 涩涩av久久男人的天堂| 在线观看免费日韩欧美大片 | 久久久久国产网址| 国产成人精品婷婷| 女的被弄到高潮叫床怎么办| 亚洲一区二区三区欧美精品| 国模一区二区三区四区视频| 国产伦理片在线播放av一区| www.色视频.com| 少妇人妻精品综合一区二区| 久久女婷五月综合色啪小说| 久久影院123| 亚洲国产毛片av蜜桃av| 久久精品国产自在天天线| 久久精品夜色国产| 国产男女超爽视频在线观看| 视频中文字幕在线观看| 亚洲精品久久成人aⅴ小说 | 国产免费视频播放在线视频| 日韩一区二区视频免费看| 久久久久久久久大av| 婷婷色av中文字幕| 久久免费观看电影| 精品国产国语对白av| 亚洲性久久影院| 久久久久人妻精品一区果冻| 亚洲美女搞黄在线观看| 免费高清在线观看视频在线观看| 国产精品久久久久久精品电影小说| 国产白丝娇喘喷水9色精品| 国国产精品蜜臀av免费| 亚洲图色成人| 69精品国产乱码久久久| 麻豆精品久久久久久蜜桃| 边亲边吃奶的免费视频| 高清欧美精品videossex| 免费av不卡在线播放| 日本av手机在线免费观看| 欧美老熟妇乱子伦牲交| √禁漫天堂资源中文www| 国产日韩欧美在线精品| 99热网站在线观看| 91精品国产九色| 亚洲美女黄色视频免费看| 一边摸一边做爽爽视频免费| 高清黄色对白视频在线免费看| 夜夜骑夜夜射夜夜干| 最近中文字幕2019免费版| 在线观看免费高清a一片| 伊人久久精品亚洲午夜| 综合色丁香网| av卡一久久| 久久婷婷青草| 亚洲国产欧美在线一区| 乱码一卡2卡4卡精品| 精品国产乱码久久久久久小说| 超碰97精品在线观看| 国产黄频视频在线观看| 久久精品国产亚洲网站| 日韩一本色道免费dvd| 亚洲欧美中文字幕日韩二区| 国产成人精品无人区| 国产精品熟女久久久久浪| 亚洲欧美精品自产自拍| 夜夜骑夜夜射夜夜干| 中文字幕人妻丝袜制服| 最近手机中文字幕大全| 在线天堂最新版资源| 国语对白做爰xxxⅹ性视频网站| 亚洲成人一二三区av| 国产精品 国内视频| 简卡轻食公司| 国产精品 国内视频| 人妻少妇偷人精品九色| 纵有疾风起免费观看全集完整版| 亚洲四区av| 久久人妻熟女aⅴ| 亚洲欧美清纯卡通| 久久久久久久久久久免费av| 在线观看免费高清a一片| 黄色配什么色好看| 嫩草影院入口| 一级毛片黄色毛片免费观看视频| 日韩免费高清中文字幕av| 夜夜看夜夜爽夜夜摸| 一本大道久久a久久精品| 全区人妻精品视频| 亚洲综合精品二区| 精品国产露脸久久av麻豆| 99久久综合免费| 波野结衣二区三区在线| 综合色丁香网| 岛国毛片在线播放| 亚洲色图综合在线观看| 国产精品.久久久| 亚洲高清免费不卡视频| 亚洲精品美女久久av网站| 日本爱情动作片www.在线观看| 精品人妻熟女毛片av久久网站| 亚洲色图综合在线观看| 久久鲁丝午夜福利片| 午夜福利视频精品| 国产高清不卡午夜福利| 久久午夜福利片| 熟女电影av网| a级毛片黄视频| 91午夜精品亚洲一区二区三区| 在线免费观看不下载黄p国产| 18在线观看网站| 性色av一级| 观看av在线不卡| av线在线观看网站| 十分钟在线观看高清视频www| 在线观看一区二区三区激情| 自拍欧美九色日韩亚洲蝌蚪91| 男人添女人高潮全过程视频| 男女边吃奶边做爰视频| 在线播放无遮挡| 色视频在线一区二区三区| 99国产精品免费福利视频| 综合色丁香网| 少妇高潮的动态图|