• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Subdivision of Uniform ωB-Spline Curves and Two Proofs of Its Ck?2-Continuity

    2018-07-11 08:01:24JingTangMeiFangandGuozhaoWang
    關鍵詞:賦值權重公式

    Jing Tang, Mei-e Fang, * and Guozhao Wang

    1 Introduction

    Polynomial B-splines and NURBS are important modeling tools in CAD/CAM. But polynomial B-splines are not able to exactly represent often-used conics (except for parabola), trigonometric functions and hyperbolic functions etc. NURBS can represent conics, but its ration form results in complicated computations about differential and integral. Then all kinds of B-like splines are proposed [Fang and Wang (2008); Zhang(1996); Vasov and Sattayatham (1999); Mainar and Pe?na (2002)]. In paper [Wang, Chen and Zhou (2004)], we further unified these B-like splines into ωB-splines, which are constructed over. ω can be non-negative real number and pure imaginary number. If taking the value of ω as a constant 0,1 or i, we will get usual polynomial B-splines, trigonometric polynomial B-splines and hyperbolic polynomial B-splines respectively. ωB-splines inherit most of optimal properties from polynomial B-splines, including the subdivision property. Due to optimal properties of these B-like splines, many applications are studied in recent years [Mannia, Pelosi and Speleers (2012); Xu, Sun, Xu et al. (2017)]. In this paper, we perfect the subdivision method and theory of ωB-splines in order to apply them better in the future.

    Subdivision is a standard technique of recursively generating smooth curves/surfaces from an initial polygon/mesh. Please see paper [Chaikin (1974); Doo and Sabin (1978);Catmull and Clark (1978); Dyn (1992); Stam (2001); Jena, Shunmugaraj and Das(2002);Jena, Shunmugaraj and Das (2003); Andersson, Lars-Erik, Stewart et al. (2010); Conti and Romani (2011); Conti, Cotronei and Sauer (2017)] for more details. This kind of modeling method is popularly applied in geometric modelling and 3D animation because of its numerical stability, simple implement and suitability for arbitrary topology. But most of subdivision curves and surfaces lack exactly mathematical representations, which are the fundamental of all kinds of differential/integral computations. So subdivision methods which have spline backgrounds are very interesting. Subdivision models with spline backgrounds include all merits mentioned above. For example, Doo-Sabin method[Doo and Sabin (1978)], Catmull-Clark method [Catmull and Clark (1978)], and the subdivision method proposed in paper [Stam (2001)] respectively have their spline backgrounds of B-splines of degree 2, cubic B-splines, polynomial B-splines of arbitrary order. These subdivision methods are all stationary, i.e, their subdivision rules persist unchanged in each level of subdivision. While stationary subdivision can not generate ωB-spline curves with frequency parameters.

    In this paper, we introduce a parameter relative to the frequency parameter to build a nonstationary subdivision method with the background of ωB-splines. Then this kind of modeling method has the merits of both subdivision and ωB-splines. Concretely, we consider the subdivision of uniform ωB-splines with uniform knot intervals and ω taking a certain constant. At first, we derive the definition of uniform ωB-spline bases and curves according to the corresponding definitions in paper [Wang, Chen and Zhou (2004)].

    Definition 1.1(uniform ωB-spline bases) LetTbe a given uniform knot sequencebe the length of uniform knot intervals,krefers to the order of splines .ωbe a given frequency parameter, where ω can take value as a non-negative real numberin this case) or a pure imaginary number whose imaginary part is positive.constructed by the following formula are called uniform ωB-spline bases in the span of.We first define uniform ωB-spline basic functions of orderk=2 as follows.

    In formula (1.1), when ω = 0, we compute it by the L’Hospital rule about ω.

    Definition 1.2(uniform ωB-spline curves) Letbe uniform ωB-spline bases of orderkcorresponding to the partitionthe parameter axis.

    Thencalled an uniform ωB-spline curve of orderkcorresponding to the knot vectorT.are control points.ωB-spline curves can reproduce conics, trigonometric and hyperbolic curves. They also have many useful properties for geometry modelling, including those inherited from common B-spline curves and some special merits. Please refer to paper [Fang and Wang(2008)] for details. But we can see that the basic functions need to be recursively computed by integration from their definition, which results in low efficiency of evaluation. In this paper, we devote to build a high-efficiency subdivision method of generating ωB-spline curves.

    The rest of this paper is organized as follows. In Section 2, we derive the relation formula of control points between two representations of the same uniform ωB-spline curve of orderkrespectively with the original knot intervals and their bisections. Then the explicit subdivision rule is constructed based on this. By this kind of subdivision rule of orderk, a sequence of control polygons generates from the original control polygon of an uniform ωB-spline curve of orderk.We directly prove that the limit of this sequence converges to the-continuous uniform ωB-spline curve in Section 3. But this kind of proof method is hard to be applied in the corresponding proof of the continuity for the case of surface subdivision. So in Section 4, we reconsider the proof from the aspect of subdivision masks and provide a more general proof of the continuity of subdivision which will be easier to be extended to the case of surface subdivision. Because our proposed surface scheme is non-stationary, we use the theories of asymptotic equivalence between non-stationary subdivision and the corresponding stationary subdivision with the rule in limit status to complete the proof. The approximation order of the proposed subdivision scheme is also discussed. Section 5 makes a conclusion.

    2 The subdivision method of uniform ωB-spline curves

    According to Definition 1.1 and Definition 1.2, we find that an uniform ωB-spline curve can also be equivalently represented by another uniform ωB-spline curve with knot intervals after bisection.

    So the conclusion holds fork+ 1.

    Based on this, an uniform ωB-spline curve can be generated by continuously using formula (4) from its initial control polygon. Letthe following definition of generating uniform ωB-spline curves by subdivision (ωBS for short).

    Definition 2.1(ωBS scheme) Letbe the initial control polygon andbe the tension parameter. The subdivision rule of ωBS curves of order

    is defined as:

    式中:ak>0,取am=1.根據(jù)rkm的定義,當ak的賦值準確時,設評價指標xjk的權重系數(shù)wk,各指標的權重可以由以下公式確定:

    Using the subdivision rule,the iterative process of ωBS is described as below.

    Table 1: The time report of generating ωBS curves and ωB-spline curves from the same control polygon

    Figure 1: The subdivision rules (a)(b)(c) and an example (d)(e)(f).

    In Fig. 1 (a),is computed by formula (5) from the initial control polylineis computed by formula (5) fromSimilarlycan be computed by formula (5) fromIn Fig. 1(c),the black poly lines are respectively the results after one level and two levels of subdivision from the initial control poly line whenk=5,u=3. The red curve is the results after six levels of subdivision which can be seen as the approximation of the limit curve.The green and purple curves respectively correspond to the cases ofk=5,u=1 andk=5,u=0.5. In Fig. 1(d), the profile of an industrial model which consists of three pieces of circular arcs (red), some line segments and some cushioning curves. In Fig. 1(e), the control polygon of the profile is computed according to the ωB-spline representation proposed in paper [Fang and Wang (2008)]. In Fig. 1(f), the profile is reproduced by subdividing the control polygon according to the proposed method in this paper,

    Comparing Definition 2.2 with Definition 1.1 and 1.2, we can see that ωBS curves only include linear computations, which is much simpler and more efficient than those recursive integral computations included in the definition of uniform ωB-spline bases.This is very important for real-time rendering and hierarchically displaying curves and surfaces. Taking the control polygon illustrated in Fig. 1(e) with 33 control points as an example, Tab. 1 shows the comparison of the efficiency of both methods to render the curve jointed with the same number (about 300) of points. Apparently, the efficiency of rendering ωBS curves is much faster than rendering ωB-spline curves. And with the increase of order, the difference between them becomes bigger and bigger.

    From Theorem 2.1, we know ωBS curve is derived by the knot interpolation method of uniform ωB-spline curves. The sequence of control polygons formed by continuous bisections of knot intervals will converge to smooth ωB-spline curves, which are-continuous. That is to say, ωB-spline curve is the limit curve of ωBS curve with the same control polygon when the subdivision level tends to infinity. In the next two sections, we prove that ωBS curves are alsocontinuous using two proving methods.

    3 One proof of C k?2 -continuity of ωBS curves

    Theorem 2.1 shows how the new control polygon can be obtained from the old control polygon after a round of subdivision. We have the following theorem.

    Proof. Based on Definition 2.1 and Theorem 3.1, we can conclude that ωBS curves of orderk(k≥3) converge to uniform ωB-spline curves of order k whose-continuity are obvious according to the definition of ωB-spline basis functions and paper [Wang,Chen and Zhou (2004)]. So the conclusion holds.

    4 Another proof of -continuity of ωBS curves

    The proof in Section 3 is simple. But this proof method is difficult to be extended to the case of surface subdivision, especially non-tensor product surface subdivision. So we provide another proof method for-continuity of ωBS curves based on those theories upon subdivision masks, which will be advantageous to be applied in the proof of our further surface subdivision.

    From the steps of ωBS described in Definition 2.2, we can see that the tension parameter is changing with the subdivision level, so ωBS is a non-stationary subdivision scheme.For convenience of proving its continuity, we introduce the corresponding notions of the mask of ωBS at first.

    It can be easily checked that the support of the maskis indeed the same as the one of the classical B-spline of orderk[Stam (2001)].

    It’s difficult to directly prove the continuity of a kind of non-stationary subdivision scheme. So we prove-continuity of ωBS curves according to the theorems including asymptotic equivalence proposed in paper [Dyn and Levin (1995)]. Here we cite the notion of asymptotic equivalence between two schemes defined in paper [Dyn and Levin (1995)].

    This is the mask of the Chaikin’s corner cutting algorithm and it generateslimit curve(see Chaikin [Chaikin (1974); Dyn and Levin (1995)]). Now, to estimate the-smoothness of the proposed scheme of order 3, it is necessary to estimate the difference betweenand. From (9), we see that

    Following the D’Alembert criteria for convergence of positive series and in view of (13),the claim (14) is proved.

    We are now ready to prove the smoothness of the proposed scheme of orderk>3. In the following analysis, we will see that it is convenient to represent a subdivision rule with the maskin terms of the symbol

    wherehe symbol of the ωBS scheme of order 3 with the mask(10).By Theorem 4.1, the scheme associated to the Laurent polynomialHence, applying Lemma 4.2 inductively, we can conclude that the proposed scheme of order k is.

    The approximation order of the proposed non-stationary subdivision is also important. In the following, we discuss this problem. Theorem 4.3 shows that it is of approximation orderk-1, wherekrefers to the order of the corresponding ωB-splines.

    Theorem 4.3 For the ωBS schemef orderk≥ 3, the approximation order of this non-stationary subdivision isk-1.

    Proof.Based on Lemma 4.1, the proposed non-stationary subdivision scheme is asymptotically equivalent to a stationary schemeconverges to ωB-splines of orderk, with a constant frequency sequence, which can reproduce polynomials of orderk-1.According to the results concluded in paper [Conti, Dyn, Manni et al. (2015); Conti,Romani and Yoon (2016)], we know a non-stationary subdivision implies approximation order k-1 (k-1 refers to the degree of ωB-splines) asymptotic similarity to stationary scheme is assumed. So based on the above, the conclusion of Theorem 4.3 is proved.

    5 Conclusion

    In this paper, we proposed the subdivision scheme for uniform ωB-spline curves. Then a uniform ωB-spline curve has both perfect mathematical representation and efficient generation method. We also provide two proofs of-continuity ωBS curves ofkorder in two different aspects and discuss its approximation order. The first method is direct and simple. The second kind of proof is based on subdivision masks and some corresponding theories, which will be advantageous to prove the corresponding conclusions of surface subdivision. In the future, we will extend the subdivision scheme to the case of surfaces with tensor product form and further arbitrary topology as well. In addition, we will apply ωB-splines and especially the subdivision scheme in the all kinds of applications relative to finite element method (FEM) and isogeometric analysis (IGA)to improve the accuracy during modeling and analysis [Wang, Shen, Zou et al. (2018);

    Guo and Nairn (2017); Xu, Sun, Xu et al. (2017)].

    Acknowledgement:The work described in this article is partially supported by the National Natural Science Foundation of China (61772164, 61761136010) and the Natural Science Foundation of Zhejiang Province (LY17F020025).

    Andersson, L. E.; Stewart, N. F.(2010): Introduction to the mathematics of subdivision surfaces.Society for Industrial and Applied Mathematics, Philadelphia.

    Catmull, E.; Clark, J.(1978): Recursively generated B-spline surfaces on arbitrary topological meshes.Computer Aided Design, vol. 10, no. 6, pp. 350-355.

    Chaikin, G. M.(1974): An algorithm for high speed curve generation.Computer Graphics and Image Processing, vol. 3, no. 4, pp. 346-349.

    Conti, C.; Dyn, N.; Manni, C.; Mazure, M. L.(2015): Convergence of univariate nonstationary subdivision schemes via asymptotic similarity.Computer Aided Geometric Design,vol. 37, no. 6, pp. 1-8.

    Conti, C.; Romani, L.(2011): Algebraic conditions on non-stationary subdivision symbols for exponential polynomial reproduction.Journal of Computational and Applied Mathematics,vol. 236, no. 4, pp. 543-556.

    Conti, C.; Romani, L.; Yoon, J.(2016): Approximation order and approximate sum rules in subdivision.Journal of Approximation Theory, vol. 207, no. 2, pp. 380-401.

    Conti, C.; Cotronei, M.; Sauer, T.(2017): Convergence of level-dependent hermite subdivision schemes.Applied Numerical Mathematics, vol. 116, no. 1, pp. 119-128.

    Doo, D.; Sabin, M.(1978): Behaviour of recursive subdivision surfaces near extraordinary points.Computer Aided Design, vol. 10, no. 6, pp. 356-360.

    Dyn, N.(1992): Subdivision schemes in computer-aided geometric design. In:Advances in numerical analysis: Volume II: Wavelets, subdivision algorithms and radial basis functions.Clarendon Press, Oxford.

    Dyn, N.; Levin, D.(1995): Analysis of asymptotically equivalent binary subdivision schemes.Journal of Mathematicl Analysis and Application, vol. 193, no. 2, pp. 594-621.

    Fang, M.; Wang, G.(2008):ωB-splines.Science in China Series F: Information Sciences, vol. 51, no. 8, pp. 985-1102.

    Guo, Y.; Nairn, J.(2017): RETRACTED: Simulation of Dynamic 3D crack propagation within the material point method.Computer Modeling in Engineering & Sciences,vol.113, no. 4, pp. 389-410.

    Jena, M. K.; Shunmugaraj, P.; Das, P. C.(2003): A non-stationary subdivision scheme for generalizing trigonometric spline surfaces to arbitrary meshes.Computer Aided Geometric Design, vol. 20, no. 2, pp. 61-77.

    Jena, M. K.; Shunmugaraj, P.; Das, P. C.(2002): A subdivision algorithm for trigonometric spline curves.Computer Aided Geometric Design, vol. 19, no. 1, pp. 71-88.

    Mainar, E.; Pe?na, J. M.(2002): A basis of C-Bezier splines with optimal properties.Computer Aided Geometric Design, vol. 19, no. 4, pp. 161-175.

    Manni, C.; Pelosi, F.; Speleers, H.(2012): Local hierarchical h-refinements in IgA based on generalized B-Splines.International Conference on Mathematical Methods for Curves & Surfaces, vol. 8177, no. 4, pp. 341-363.

    Stam, J.(2001): On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree.Computer Aided Geometric Design, vol. 18, no. 5, pp. 383-396.

    Vasov, B. K.; Sattayatham, P.(1996): GB-splines of arbitrary order.Journal of Computational and Applied Mathematics, vol. 1, no. 1, pp. 155-173.

    Wang, C.; Shen, Q.; Zou, Y.; Li, T.; Feng X.(2018): Stiffness degradation characteristics cestructive testing and finite-element analysis of prestressed concrete T-beam.Computer Modeling in Engineering & Sciences, vol. 114, no. 1, pp. 75-93.

    Wang, G.; Chen, Q.; Zhou, M.(2004): NUAT B-spline curves.Computer Aided Geometric Design, vol. 21, no. 2, pp. 193-205.

    Xu, G.; Sun, N.; Xu, J.; Hui, K.; Wang, G.(2017): A unified approach to construct generalized B-Splines for isogeometric applications.Journal of Systems Science &Complexity, vol. 30, no. 4, pp. 983-998.

    Zhang, J.(1996): C-curves: an extension of cubic curves.Computer Aided Geometric Design, vol. 13, no. 3, pp. 199-217.

    猜你喜歡
    賦值權重公式
    關于1 1/2 … 1/n的一類初等對稱函數(shù)的2-adic賦值
    L-代數(shù)上的賦值
    排列數(shù)與排列數(shù)公式
    組合數(shù)與組合數(shù)公式
    等差數(shù)列前2n-1及2n項和公式與應用
    權重常思“浮名輕”
    當代陜西(2020年17期)2020-10-28 08:18:18
    為黨督政勤履職 代民行權重擔當
    人大建設(2018年5期)2018-08-16 07:09:00
    強賦值幺半群上的加權Mealy機與加權Moore機的關系*
    例說:二倍角公式的巧用
    基于公約式權重的截短線性分組碼盲識別方法
    電信科學(2017年6期)2017-07-01 15:44:57
    欧美黑人欧美精品刺激| 久久综合国产亚洲精品| 侵犯人妻中文字幕一二三四区| 午夜免费成人在线视频| 国产在线视频一区二区| 国产欧美日韩一区二区精品| 欧美黄色淫秽网站| 久久久国产一区二区| 亚洲欧美一区二区三区久久| 天天躁夜夜躁狠狠躁躁| 亚洲av美国av| 亚洲美女黄色视频免费看| av一本久久久久| 一边摸一边抽搐一进一出视频| 女人高潮潮喷娇喘18禁视频| 性高湖久久久久久久久免费观看| 中文欧美无线码| 超色免费av| 成人三级做爰电影| 国产精品一区二区免费欧美 | 两个人免费观看高清视频| 欧美激情高清一区二区三区| 欧美一级毛片孕妇| 国精品久久久久久国模美| 韩国高清视频一区二区三区| 人妻一区二区av| 视频在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 我要看黄色一级片免费的| av线在线观看网站| 亚洲人成77777在线视频| 欧美日韩一级在线毛片| 日日夜夜操网爽| 国产精品久久久久久精品古装| 91麻豆精品激情在线观看国产 | 国产一级毛片在线| 国产91精品成人一区二区三区 | 亚洲精品国产色婷婷电影| 曰老女人黄片| 久久天堂一区二区三区四区| 在线观看免费日韩欧美大片| 久久人人爽av亚洲精品天堂| 亚洲专区中文字幕在线| 国产精品av久久久久免费| 黄色片一级片一级黄色片| av国产精品久久久久影院| 妹子高潮喷水视频| 99国产精品免费福利视频| 国产成人影院久久av| 免费av中文字幕在线| 老司机在亚洲福利影院| 久久精品aⅴ一区二区三区四区| 久久精品国产亚洲av高清一级| 亚洲国产av影院在线观看| 美女福利国产在线| 男女午夜视频在线观看| 国产成人精品久久二区二区91| 亚洲成国产人片在线观看| 美国免费a级毛片| 91成人精品电影| 午夜福利在线免费观看网站| 成年女人毛片免费观看观看9 | 成年女人毛片免费观看观看9 | 国产成人啪精品午夜网站| 色老头精品视频在线观看| 国产日韩欧美在线精品| 欧美xxⅹ黑人| 国产精品欧美亚洲77777| 亚洲va日本ⅴa欧美va伊人久久 | 自拍欧美九色日韩亚洲蝌蚪91| 日韩免费高清中文字幕av| 少妇精品久久久久久久| 狠狠狠狠99中文字幕| 91麻豆av在线| 欧美成人午夜精品| 亚洲精品国产精品久久久不卡| 久久香蕉激情| 亚洲自偷自拍图片 自拍| 少妇精品久久久久久久| 久久天躁狠狠躁夜夜2o2o| 免费av中文字幕在线| 亚洲精品第二区| 久久久欧美国产精品| 9191精品国产免费久久| 亚洲国产毛片av蜜桃av| 免费看十八禁软件| 人人澡人人妻人| 国产日韩欧美视频二区| 岛国毛片在线播放| 精品熟女少妇八av免费久了| 国产精品欧美亚洲77777| 搡老熟女国产l中国老女人| 秋霞在线观看毛片| 丁香六月天网| 欧美黑人欧美精品刺激| 天天操日日干夜夜撸| 日韩有码中文字幕| 国产精品欧美亚洲77777| 国产成+人综合+亚洲专区| 国产无遮挡羞羞视频在线观看| 久久国产精品男人的天堂亚洲| 亚洲精品美女久久av网站| 永久免费av网站大全| 视频区图区小说| 正在播放国产对白刺激| 丝袜脚勾引网站| 国产亚洲精品第一综合不卡| 亚洲精品粉嫩美女一区| 麻豆av在线久日| 午夜老司机福利片| 国产精品一区二区免费欧美 | 超色免费av| 熟女少妇亚洲综合色aaa.| 亚洲国产欧美网| 亚洲欧美激情在线| 亚洲av电影在线观看一区二区三区| 亚洲中文日韩欧美视频| 亚洲国产成人一精品久久久| 美女中出高潮动态图| 久久国产精品大桥未久av| 成人手机av| 欧美另类亚洲清纯唯美| 国产精品一区二区在线不卡| 老司机福利观看| 天天躁日日躁夜夜躁夜夜| 悠悠久久av| 另类亚洲欧美激情| 少妇裸体淫交视频免费看高清 | 天堂俺去俺来也www色官网| 男女午夜视频在线观看| 高清视频免费观看一区二区| 天堂中文最新版在线下载| 免费高清在线观看视频在线观看| 亚洲国产av新网站| 黄片播放在线免费| 久久久久网色| 国产日韩欧美亚洲二区| 91精品三级在线观看| 视频在线观看一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲午夜精品一区,二区,三区| 久久精品国产a三级三级三级| 美女高潮到喷水免费观看| 国产黄频视频在线观看| av片东京热男人的天堂| 一级毛片女人18水好多| av免费在线观看网站| 在线观看人妻少妇| kizo精华| 美女脱内裤让男人舔精品视频| 中文字幕人妻熟女乱码| 免费久久久久久久精品成人欧美视频| 久久精品国产综合久久久| 亚洲精品国产区一区二| 考比视频在线观看| 永久免费av网站大全| 首页视频小说图片口味搜索| 亚洲av片天天在线观看| 中文字幕制服av| 深夜精品福利| 青草久久国产| 青春草亚洲视频在线观看| 欧美精品亚洲一区二区| 巨乳人妻的诱惑在线观看| 人人妻人人澡人人爽人人夜夜| av又黄又爽大尺度在线免费看| 久久久久国产精品人妻一区二区| 久久女婷五月综合色啪小说| 久久久精品94久久精品| 新久久久久国产一级毛片| 欧美精品一区二区大全| 91精品国产国语对白视频| 国产成人系列免费观看| 亚洲美女黄色视频免费看| 丰满少妇做爰视频| 亚洲男人天堂网一区| 日本wwww免费看| 色婷婷久久久亚洲欧美| 亚洲精品国产精品久久久不卡| 精品欧美一区二区三区在线| 中文字幕制服av| 男女免费视频国产| 亚洲精品av麻豆狂野| tube8黄色片| 亚洲成人国产一区在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲综合色网址| 国产在视频线精品| 国产深夜福利视频在线观看| 五月开心婷婷网| 亚洲国产av影院在线观看| 欧美日韩国产mv在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 久久久欧美国产精品| 精品亚洲乱码少妇综合久久| 黄片小视频在线播放| 久9热在线精品视频| 啦啦啦中文免费视频观看日本| 妹子高潮喷水视频| 久久毛片免费看一区二区三区| 香蕉丝袜av| 成人国语在线视频| 欧美人与性动交α欧美软件| 免费在线观看视频国产中文字幕亚洲 | 一个人免费看片子| 91av网站免费观看| 亚洲精品乱久久久久久| 天天躁日日躁夜夜躁夜夜| www.自偷自拍.com| 午夜福利在线免费观看网站| 少妇人妻久久综合中文| 国产亚洲精品一区二区www | 欧美精品av麻豆av| 国产亚洲精品第一综合不卡| 久久精品久久久久久噜噜老黄| 岛国在线观看网站| 亚洲人成77777在线视频| 国产片内射在线| 日韩欧美国产一区二区入口| 久久久久国内视频| 男人爽女人下面视频在线观看| 十八禁网站网址无遮挡| 伦理电影免费视频| 极品少妇高潮喷水抽搐| 久9热在线精品视频| 亚洲一区中文字幕在线| 老司机影院毛片| 黑人猛操日本美女一级片| 乱人伦中国视频| 亚洲一区二区三区欧美精品| 欧美性长视频在线观看| 亚洲性夜色夜夜综合| 欧美久久黑人一区二区| 一区福利在线观看| 久久久久久亚洲精品国产蜜桃av| 好男人电影高清在线观看| 美女大奶头黄色视频| 男男h啪啪无遮挡| 午夜福利乱码中文字幕| 国产国语露脸激情在线看| 水蜜桃什么品种好| 日本a在线网址| 啦啦啦在线免费观看视频4| 久久精品国产亚洲av香蕉五月 | 免费观看a级毛片全部| 亚洲一区中文字幕在线| 日韩视频一区二区在线观看| 免费在线观看日本一区| 国产一卡二卡三卡精品| 熟女少妇亚洲综合色aaa.| 韩国精品一区二区三区| 后天国语完整版免费观看| 亚洲欧美清纯卡通| 国产xxxxx性猛交| 日韩 亚洲 欧美在线| 国产又爽黄色视频| 满18在线观看网站| 黑人猛操日本美女一级片| 两性午夜刺激爽爽歪歪视频在线观看 | 考比视频在线观看| 伊人亚洲综合成人网| 男女高潮啪啪啪动态图| 99热全是精品| 日本精品一区二区三区蜜桃| tocl精华| 国产成人a∨麻豆精品| 女人高潮潮喷娇喘18禁视频| 69av精品久久久久久 | 国产激情久久老熟女| 一边摸一边抽搐一进一出视频| 欧美黑人精品巨大| cao死你这个sao货| 99精品久久久久人妻精品| 国产成人a∨麻豆精品| 亚洲欧美激情在线| 亚洲第一青青草原| 午夜精品久久久久久毛片777| 我要看黄色一级片免费的| 久久毛片免费看一区二区三区| 欧美亚洲 丝袜 人妻 在线| 一级毛片女人18水好多| 美女高潮喷水抽搐中文字幕| 美女扒开内裤让男人捅视频| 天天影视国产精品| 狂野欧美激情性xxxx| 18禁观看日本| 波多野结衣一区麻豆| a级毛片黄视频| 国产一区二区三区在线臀色熟女 | 少妇裸体淫交视频免费看高清 | 久久久久精品人妻al黑| 国产男女内射视频| 在线观看一区二区三区激情| 三级毛片av免费| 欧美日韩黄片免| 午夜福利在线观看吧| 国产在视频线精品| 欧美日韩中文字幕国产精品一区二区三区 | 成人国语在线视频| 新久久久久国产一级毛片| 最黄视频免费看| 一级黄色大片毛片| 亚洲一区二区三区欧美精品| 女性被躁到高潮视频| 成在线人永久免费视频| 热re99久久国产66热| 欧美日本中文国产一区发布| 我的亚洲天堂| 十八禁网站免费在线| 搡老乐熟女国产| 亚洲精品久久成人aⅴ小说| 精品久久久久久电影网| 亚洲av片天天在线观看| 丝袜喷水一区| 丝袜人妻中文字幕| 亚洲欧美精品综合一区二区三区| 日韩视频一区二区在线观看| 伦理电影免费视频| 老司机影院成人| av一本久久久久| 老熟妇仑乱视频hdxx| 少妇裸体淫交视频免费看高清 | 亚洲 国产 在线| 免费女性裸体啪啪无遮挡网站| 日本猛色少妇xxxxx猛交久久| 国产一级毛片在线| 国产伦人伦偷精品视频| 国产片内射在线| 午夜精品国产一区二区电影| 99国产综合亚洲精品| 国产高清videossex| 男人添女人高潮全过程视频| 最近最新免费中文字幕在线| 亚洲 欧美一区二区三区| 一个人免费看片子| 两性夫妻黄色片| 久久精品国产综合久久久| 一区二区日韩欧美中文字幕| av福利片在线| 久久久久网色| 成年人免费黄色播放视频| 久久久久国产一级毛片高清牌| 亚洲欧美精品综合一区二区三区| 亚洲精品美女久久久久99蜜臀| 亚洲欧美一区二区三区黑人| svipshipincom国产片| 少妇粗大呻吟视频| 亚洲七黄色美女视频| 国产人伦9x9x在线观看| 伊人久久大香线蕉亚洲五| 一级片免费观看大全| 亚洲精品av麻豆狂野| 国产在线观看jvid| 嫁个100分男人电影在线观看| 一本大道久久a久久精品| 人妻一区二区av| 99久久精品国产亚洲精品| 少妇 在线观看| 叶爱在线成人免费视频播放| 国产日韩一区二区三区精品不卡| 亚洲伊人色综图| 青草久久国产| 丰满少妇做爰视频| 精品乱码久久久久久99久播| e午夜精品久久久久久久| 亚洲中文字幕日韩| 日韩三级视频一区二区三区| 午夜久久久在线观看| 伊人久久大香线蕉亚洲五| 亚洲激情五月婷婷啪啪| 大片免费播放器 马上看| 日本五十路高清| 51午夜福利影视在线观看| 9色porny在线观看| 国产日韩欧美亚洲二区| 一级片免费观看大全| 99久久综合免费| 国产精品国产av在线观看| 99热网站在线观看| 午夜两性在线视频| 精品国产乱码久久久久久男人| av国产精品久久久久影院| 新久久久久国产一级毛片| 久久九九热精品免费| 超碰成人久久| 亚洲国产日韩一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久久国产电影| 中亚洲国语对白在线视频| 久久 成人 亚洲| 欧美在线黄色| 亚洲国产av影院在线观看| 国产精品国产三级国产专区5o| 黑丝袜美女国产一区| 亚洲av电影在线观看一区二区三区| 在线观看一区二区三区激情| 69精品国产乱码久久久| 国产精品免费视频内射| 女人久久www免费人成看片| 国产亚洲午夜精品一区二区久久| 亚洲专区中文字幕在线| 1024视频免费在线观看| 国产1区2区3区精品| 精品一品国产午夜福利视频| 久久久精品国产亚洲av高清涩受| 狂野欧美激情性bbbbbb| 午夜福利在线免费观看网站| 国产人伦9x9x在线观看| 亚洲伊人色综图| 香蕉国产在线看| 9热在线视频观看99| 19禁男女啪啪无遮挡网站| 国产高清国产精品国产三级| 精品亚洲成a人片在线观看| 两性夫妻黄色片| 下体分泌物呈黄色| 久久国产精品大桥未久av| 精品一区二区三区av网在线观看 | 亚洲精品成人av观看孕妇| 欧美激情高清一区二区三区| 中文字幕av电影在线播放| 日韩视频在线欧美| 国产精品秋霞免费鲁丝片| 亚洲精品第二区| 国产亚洲精品久久久久5区| 黄色a级毛片大全视频| 一区福利在线观看| 亚洲伊人久久精品综合| 在线观看www视频免费| 俄罗斯特黄特色一大片| 欧美大码av| 国产真人三级小视频在线观看| 久9热在线精品视频| 秋霞在线观看毛片| 少妇裸体淫交视频免费看高清 | 亚洲精品日韩在线中文字幕| 无限看片的www在线观看| 欧美黑人欧美精品刺激| 欧美另类亚洲清纯唯美| 新久久久久国产一级毛片| 久久香蕉激情| 亚洲精品第二区| 51午夜福利影视在线观看| 黑人操中国人逼视频| 一二三四社区在线视频社区8| www.精华液| 天天躁狠狠躁夜夜躁狠狠躁| 日本一区二区免费在线视频| 一级黄色大片毛片| 久久国产精品大桥未久av| 中文字幕人妻熟女乱码| 9191精品国产免费久久| 19禁男女啪啪无遮挡网站| 搡老乐熟女国产| 日韩 欧美 亚洲 中文字幕| 性少妇av在线| 久久久久久久国产电影| 免费人妻精品一区二区三区视频| 久久久久网色| 国产有黄有色有爽视频| 亚洲成人手机| www.av在线官网国产| 91大片在线观看| 两个人免费观看高清视频| 日韩中文字幕视频在线看片| 极品少妇高潮喷水抽搐| 免费观看a级毛片全部| 精品少妇一区二区三区视频日本电影| 亚洲一码二码三码区别大吗| 久久精品国产综合久久久| 国产欧美亚洲国产| 精品国产乱子伦一区二区三区 | 男女国产视频网站| videos熟女内射| 91国产中文字幕| 国产亚洲av高清不卡| 国产伦人伦偷精品视频| 亚洲av片天天在线观看| 久久中文看片网| 久久ye,这里只有精品| 欧美97在线视频| 国产成人欧美在线观看 | 久久久精品94久久精品| 日本欧美视频一区| 国产一区二区在线观看av| 12—13女人毛片做爰片一| 大香蕉久久成人网| 97精品久久久久久久久久精品| 男女之事视频高清在线观看| 黑人操中国人逼视频| 亚洲中文av在线| 啦啦啦在线免费观看视频4| 国产精品二区激情视频| 中国国产av一级| 欧美午夜高清在线| 男女高潮啪啪啪动态图| 午夜福利乱码中文字幕| 精品久久蜜臀av无| 波多野结衣av一区二区av| 国产成人免费观看mmmm| av线在线观看网站| 成人手机av| 热re99久久精品国产66热6| 丝袜人妻中文字幕| 国产精品免费视频内射| 一级,二级,三级黄色视频| 精品福利观看| av网站免费在线观看视频| 国产精品久久久久久精品电影小说| 日本a在线网址| 亚洲va日本ⅴa欧美va伊人久久 | 国产精品 欧美亚洲| av在线老鸭窝| 国产一区二区在线观看av| 十八禁高潮呻吟视频| 人人妻人人澡人人看| 亚洲av成人不卡在线观看播放网 | 91字幕亚洲| 99热国产这里只有精品6| 亚洲三区欧美一区| 久久免费观看电影| 黄色视频在线播放观看不卡| 久久久久久久久久久久大奶| 曰老女人黄片| 亚洲黑人精品在线| 成年人午夜在线观看视频| 国产福利在线免费观看视频| 一本久久精品| 欧美日韩亚洲综合一区二区三区_| 国产亚洲精品一区二区www | av免费在线观看网站| 国产伦人伦偷精品视频| 久久精品亚洲熟妇少妇任你| 欧美精品一区二区大全| 五月天丁香电影| 国产成人精品久久二区二区91| 国产精品久久久久久精品电影小说| 啪啪无遮挡十八禁网站| 一级a爱视频在线免费观看| 这个男人来自地球电影免费观看| 一级a爱视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 欧美精品亚洲一区二区| 久久天躁狠狠躁夜夜2o2o| 欧美成人午夜精品| 久久九九热精品免费| 另类精品久久| 免费在线观看黄色视频的| 国产精品影院久久| 国产成人一区二区三区免费视频网站| 精品亚洲乱码少妇综合久久| 久久久久久亚洲精品国产蜜桃av| av在线老鸭窝| 亚洲国产欧美在线一区| 搡老岳熟女国产| 亚洲avbb在线观看| 国产免费av片在线观看野外av| 国产人伦9x9x在线观看| 亚洲男人天堂网一区| 欧美久久黑人一区二区| 国产一区二区三区综合在线观看| 亚洲精品av麻豆狂野| 91成年电影在线观看| 国产在视频线精品| 欧美在线一区亚洲| 手机成人av网站| 免费高清在线观看视频在线观看| 麻豆乱淫一区二区| 波多野结衣一区麻豆| 亚洲 国产 在线| 久久久久久亚洲精品国产蜜桃av| 日本91视频免费播放| 亚洲第一欧美日韩一区二区三区 | 黑人巨大精品欧美一区二区mp4| 日韩大码丰满熟妇| 另类精品久久| 女警被强在线播放| 久久久国产欧美日韩av| 国产成人啪精品午夜网站| 一区二区日韩欧美中文字幕| 久久国产精品人妻蜜桃| 国产欧美亚洲国产| 色播在线永久视频| 精品免费久久久久久久清纯 | 精品国产乱码久久久久久小说| 亚洲av成人不卡在线观看播放网 | 亚洲欧美色中文字幕在线| 亚洲精品国产一区二区精华液| 一区二区日韩欧美中文字幕| 正在播放国产对白刺激| 久久av网站| 少妇猛男粗大的猛烈进出视频| 免费观看人在逋| 一级a爱视频在线免费观看| 在线观看免费日韩欧美大片| 久久久久久久国产电影| 欧美黄色淫秽网站| 精品人妻在线不人妻| 久久国产精品人妻蜜桃| 色94色欧美一区二区| 我要看黄色一级片免费的| av超薄肉色丝袜交足视频| 天堂俺去俺来也www色官网| 女警被强在线播放| 国产日韩欧美在线精品| 欧美国产精品一级二级三级| 国产一区二区三区综合在线观看| netflix在线观看网站| 男女之事视频高清在线观看| 久久久久国产精品人妻一区二区| 69精品国产乱码久久久| 日本五十路高清| √禁漫天堂资源中文www| 精品少妇黑人巨大在线播放| 精品国产国语对白av|