• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    關(guān)于1 1/2 … 1/n的一類初等對稱函數(shù)的2-adic賦值

    2023-04-29 00:44:03邱敏林宗兵譚千蓉
    關(guān)鍵詞:賦值函數(shù)

    邱敏 林宗兵 譚千蓉

    References:

    [1] Theisinger L. Bemerkung über die harmonische Reihe [J]. Monatsh Math Phys, 1915, 26: 132.

    [2] Nagell T. Eine eigenschaft gewisser summen [J]. Skr Norske Vid Akad Kristiania, 1923, 13: 10.

    [3] Erds P, Niven I. Some properties of partial sums of the harmonic series [J]. Bull Amer Math Soc, 1946, 52: 248.

    [4] Chen Y G, Tang M. On the elementary symmetric functions of 1, 1/2, …, 1/n [J]. Amer Math Monthly, 2012, 119: 862.

    [5] Hong S F, Wang C L. The elementary symmetric functions of reciprocal arithmetic progressions [J]. Acta Math Hungari, 2014, 144: 196.

    [6] Feng Y L, Hong S F, Jiang X, et al. A generalization of a theorem of Nagell [J]. Acta Math Hungar, 2019, 157: 522.

    [7] Wang C L, Hong S F. On the integrality of the elementary symmetric functions of 1, 1/3, …,1/(2n-1) [J]. Math Slovaca, 2015, 65: 957.

    [8] Luo Y Y, Hong S F, Qian G Y, et al.The elementary symmetric functions of a reciprocal polynomial sequence [J]. C R Math Acad Sci Paris, 2014, 352: 269.

    [9] Feng Y L, Zhao W. On the integrality of the second elementary symmetric function of 1,1/3s1,…,1/(2n-1)sn-1 [J]. J Sichuan Univ: Nat Sci Ed, 2020, 57: 431.

    [10] Wolstenholm J. On certain properties of prime numbers [J]. Quart J Pure Appl Math, 1862, 5: 35.

    [11] Eswarathasan A, Levine E. p-integral harmonic numbers [J]. Discrete Math, 1991, 91: 249.

    [12] Boyd D. A p-adic study of the partial sums of the harmonic series [J]. Experiment Math, 1994, 3: 287.

    [13] Kamano K. On 3-adic valuations of generalized harmonic numbers [J]. Integers, 2012, 12: 311.

    [14] Sanna C. On the p-adic valuation of harmonic numbers [J]. J Number Theory, 2016, 166: 41.

    [15] Sun Q, Hong S F. A p-adic proof of Wolstenholm's Theorem and its generalizations [J]. J Sichuan Univ: Nat Sci Ed, 1999, 36: 840.

    [16] Wu B L, Chen Y G. On certain properties of harmonic numbers [J]. J Number Theory, 2017, 175: 66.

    [17] Leonetti P, Sanna C. On the p-adic valuation of Stirling numbers of the first kind [J]. Acta Math Hungari, 2017, 151: 217.

    [18] Lengyel T. On p-adic properties of the Stirling numbers of the first kind [J]. J Number Theory, 2015, 148: 73.

    [19] Komatsu T, Young P. Exact p-adic valuations of Stirling numbers of the first kind [J]. J Number Theory, 2017, 177: 20.

    [20] Qiu M, Hong S F. 2-adic valuations of Stirling numbers of the first kind [J]. Int J Number Theory, 2019, 15: 1827.

    [21] Hong S F, Qiu M. On the p-adic properties of Stirling numbers of the first kind [J]. Acta Math Hungari, 2020, 161: 366.

    [22] Qiu M, Feng Y L, Hong S F. 3-Adic valuations of Stirling numbers of the first kind [EB/OL]. [2022-11-30]. https://arxiv.org/abs/2109.13458.

    [23] Feng Y L, Qiu M. Some results on p-adic valuations of Stirling numbers of the second kind [J]. AIMS Math, 2020, 5: 4168.

    [24] Hong S F. On the p-adic behaviors of Stirling numbers of the first and second kinds [J]. RIMS Kokyuroku Bessatsu, 2020, 2162: 104.

    [25] Hong S F, Zhao J R, Zhao W. The 2-adic valuations of Stirling numbers of the second kind [J]. Int J Number Theory, 2012, 8: 1057.

    [26] Hong S F, Zhao J R, Zhao W. The universal Kummer congruences [J]. J Aust Math Soc, 2013, 94: 106.

    [27] Zhao J R, Hong S F, Zhao W. Divisibility by 2 of Stirling numbers of the second kind and their differences [J]. J Number Theory, 2014, 140: 324.

    [28] Zhao W, Qiu M. Some new results on the p-adic valuations of Stirling numbers of the second kind [J]. J Sichuan Univ: Nat Sci Ed, 2020, 57: 865.

    [29] Zhao W, Zhao J R, Hong S F. The 2-adic valuations of differences of Stirling numbers of the second kind [J]. J Number Theory, 2015, 153: 309.

    [30] Koblitz N. p-adic numbers, p-adic analysis and zeta-functions [M]. New York: Springer-Verlag, 1984.

    猜你喜歡
    賦值函數(shù)
    L-代數(shù)上的賦值
    第3講 “函數(shù)”復(fù)習(xí)精講
    二次函數(shù)
    第3講 “函數(shù)”復(fù)習(xí)精講
    二次函數(shù)
    函數(shù)備考精講
    第3講“函數(shù)”復(fù)習(xí)精講
    強(qiáng)賦值幺半群上的加權(quán)Mealy機(jī)與加權(quán)Moore機(jī)的關(guān)系*
    算法框圖問題中的易錯(cuò)點(diǎn)
    利用賦值法解決抽象函數(shù)相關(guān)問題オ
    肇州县| 阳江市| 临安市| 青河县| 大名县| 巴彦县| 凯里市| 楚雄市| 时尚| 新郑市| 呈贡县| 三原县| 邯郸县| 广灵县| 启东市| 长乐市| 蓬莱市| 江安县| 彝良县| 正宁县| 和静县| 五家渠市| 炎陵县| 邵武市| 平邑县| 常熟市| 临汾市| 新沂市| 偏关县| 台南市| 双柏县| 乌兰察布市| 宜章县| 青浦区| 辽宁省| 丹凤县| 樟树市| 文化| 肇东市| 扶风县| 台安县|