• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Algorithmic Randomness and Approximate Identities*

    2018-07-05 09:04:24ChaoChen
    邏輯學(xué)研究 2018年2期

    Chao Chen

    Institute of Logic and Cognition,Sun Yat-sen University Department of Philosophy,Sun Yat-sen University

    chench53.logic@gmail.com

    1 Introduction

    In this paper we propose an effective version of Differentiation Theorem for Approximate Identities.Recent results have shown that algorithmic randomness is a very useful tool to study the effective aspects of classical analysis.Many theorems have been investigated,including the ergodic theorem([1,4]),Lebesgue differentiation theorem([7])and many other topics([3,2]).Generally,these results have this form:

    A realxhas a certain property that holds almost everywhere

    ?xsatisfies a certain randomness notion.

    Approximate identity is a very important topic in the study of functional and harmonic analysis.The Differentiation Theorem for Approximate Identities is a basic theorem concerning approximate identity.It says that for ak∈L1with a radially decreasing majorant such thatkε=ε-1k(ε-1x),we havekε?f→f,for allxexcept a null set asε→0.

    This theorem also indicate the Lebesgue differentiation theorem.It has been shown in[7]that the Lebesgue differentiation theorem can characterize Schnorr randomness.In this paper,our main result is that the Differentiation Theorem for Approximate Identities also characterize Schnorr randomness.And we will obtain an effective version of Lebesgue differentiation theorem which is slightly different from[7].

    In section 2,we present the necessary preliminaries.Section 3 and 4 contain the proof of the two directions of our main theorem respectively.

    2 Preliminaries

    The classical version of the Differentiation Theorem for Approximate Identities can be found in[5].To introduce this theorem,we begin with some definitions:

    Definition 1(convolution) Letf,gbe inL1(R).Theconvolution f?gis

    Itisknownthatconvolutionsatisfiescommutativity,associativityanddistributivity.

    Definition2Anapproximateidentity(asε→0)isafamilyofL1(R)functionskε(0<ε≤1)with the following three properties:

    ·There exists a constantc>0 such thatfor allε.

    ·for allε>0.

    ·For any neighborhoodVof 0 we haveasε→0.

    LetB(x,θ)be the neighborhood(x-θ,x+θ)andVcbe R-V.B(E,θ)denotes{y|?x∈E(|y-x|<θ)}whereE?R.We useχAas the characteristic function ofA,whereA?R.Next comes the basic theorem concerning approximate identities:

    Theorem 1([5])Letkεbe an approximate identity on R.

    (1)Iff∈L1,then‖kε?f-f‖L1→0 asε→0.

    (2)Iffis continuous in a neighborhood of a compact setEand bound on R,thenkε?fconverges uniformly tofonEasε→0.

    In this paper we focus on a special kind of approximate identity.Letk(x)be a integrable function with integral one.Then we definekε:=ε-1k(ε-1x).It is straightforward to seekεis an approximate identity.

    A functionfis called radial,iff(x)=f(y)whenever|x|=|y|.If suchfis decreasing on[0,∞)andf≥|g|in R,we callfa radial decreasing majorant ofg.

    Definition 3(Dominated Approximate Identity) Given a functionk∈L1(R)such that,we callkεadominated approximate identityif:

    ·khas a radial decreasing majorantKwhich is continuous except at a finite number of points.

    Definition 4The function

    is called thecentered Hardy-Littlewood maximal functionoff.Actually,if we define,then we have

    Here are two classical results which are useful in our proof.We refer to[5]for more details.

    Lemma 1(2.1.12,[5]) Ifkεis a dominated approximate identity with the radially decreasing majorantK,then the estimate

    is valid for all functionf∈L1(R).

    Lemma 2(2.1.6,[5]) Iff∈L1(R),then

    Next comes the differentiation theorem for approximate identities,which can be viewed as a generalization of Lebesgue differentiation theorem:

    Theorem2(DifferentiationTheoremforApproximateIdentities,2.1.17,[5]) Letkbea dominated approximate identity with a radially decreasing majorantK.Thenkε?f→fa.e.asε→0 for allf∈L1(R).

    Our job is to find the effective version of this theorem.The first thing we need to do is extending the computable notion from N to R.The next definitions can be found in[8].Letakbe a computable enumeration of all rationals on R.

    Definition 5A real number is computable if there are two computable functionsh:N→N andd:N→N s.t.

    This computable realxis coded by the indices ofhandd.Letrebe the computable real on R indexed bye.

    Definition 6Eis a compact set on R.A functionf:E→R is computable if:·fis sequentially computable:there is a computable functionh:N→N s.t.f(re)=rh(e);·fis effectively uniformly continuous onE:there is a computable functiond:N→Q s.t.for allx,y∈E:

    A functionf:R→R is computable if:

    ·fis sequentially computable:there is a computable functionh:N→N s.t.f(re)=rh(e);

    ·fis effectively uniformly continuous on every compact subset:there is a computable functiond:N2→Q s.t.for allx,y∈[-N,N]:

    The computable functionfis coded by the indices ofhandd.Notice that for every[-N,N],the functions sup[-N,N](f)andfdxare uniformly computable onN.([8])A functionfis compactly supported,iff(x)=0 everywhere outside a compact set.

    Definition 7Eis a compact set of R.A functionf:E→R isL1(E)-computable,orL1comp(E)for short if:there is a sequence of uniformly computable functionsfkonE→R and a computable functiond:N→N s.t.

    A functionf:R→R isL1(R)-computable,orL1comp(R)for short,if there is a sequence of uniformly computable compactly supported functionsfkon R→R and a computable functiond:N→N s.t.fkis supported on[-k,k]and:

    f∈L1comp(R)is coded by the indices offkandd.

    It is easy to see that we can extend everyfunction to afunction uniformly.Notice that we actually define anL1-computable functionfas an equivalence class onL1.We will select a representativefrom such equivalence class such thathas a certain value whenxis Schnorr random.

    Definition 8A sequence of setUn?R,n∈N is uniformly effectively open,or uniformly Σ1,if

    wherean,i,bn,iis a double sequence of uniformly computable reals.

    Based on the conception of uniformly effectively open sets,we can define different versions of algorithmic randomness.Intuitively,a real is random if it avoids all‘effectively null’sets.The most commonly accepted randomness notions are Martin-L?f randomness and Schnorr randomness.

    Definition 9AMartin-L?f testis a uniformly Σ1sequence ofUn?R such thatμ(Un)≤2-nfor alln.A pointx∈R is said to pass the test ifx/∈∩nUn.xisMartin-L?f randomif it pass every Martin-L?f test.

    ASchnorr testis a uniformly Σ1sequence ofUn?R such thatμ(Un)is uniformly computable onnandμ(Un)≤2-nfor alln.A pointx∈R is said to pass the test if.xisSchnorr randomif it pass every Schnorr test.

    Theorem3(EffectiveWeierstrassTheorem,[8])EisacompactsetonR.AfunctionfonEis computable if and only if there is a computable sequence of rational polynomialspm(x)which converges effectively tofin uniform norm:there is a computable functiond:N→N such that|pm-f|≤2-nifm≥d(n).

    A functionfon R is computable if and only if for anyN>0 there is a computable sequence of rational polynomialspm,N(x)which converges effectively tofon compact set[-N,N]i.e.,there is a computable functiond:N×N→N such that|pm,N-f|≤2-nifm≥d(n,N).

    Moreover,thepm(x)andpm,N(x)above can be obtained effectively from the index off.

    According to effective Weierstrass Theorem,the‘a(chǎn) sequence of uniformly computable functions’in the definition ofL1-computable function can be replaced by ‘a(chǎn) sequence of uniformly computable rational polynomials’.

    Lemma 3([7,9])Supposef∈L1comp[0,1]andfkis a sequence of uniformly computable rational polynomials such that‖f-fk‖L1≤2-k.

    ·(Existence)The limit limk→∞fk(x)exists on all Schnorr randomx.

    ·(Uniqueness)Given another sequence of uniformly computable rational polyno

    mialsgksuch that‖f-gk‖L1≤2-k,

    for all Schnorr randomx

    It is straightforward to see the result above also holds inL1([-N,N]).Note that iffisL1(R)-computable,thenf?[-N,N]isL1([-N,N])-computable,so actually this result also holds inL1(R).We useto denote limk→∞fk(x)whenfkis the sequence as in the lemma above,which implies the value of(x)does not depend on the choice offkwhenxis Schnorr random.

    A dominated approximate identitykεis computable ifkisL1-computable.Our main result is

    Theorem 4(effective version of Differentiation Theorem for Approximate Identities)Letkεbe a computable dominated approximate identity.Thenfor allif and only ifxis Schnorr random.

    We will use the following lemmas.

    Lemma 4([7])Letsuch thatAnis uniformly c.e.andμ(An)is uniformly computable andμ(An)≤2-n.ThenAis c.e.andμ(A)is computable.Moreover,this holds uniformly.

    Lemma 5([7,6])IfAandBare Σ1sets andμ(A)andμ(B)are computable,thenA∩BandA∪Bare Σ1sets andμ(A∩B)andμ(A∪B)are computable.

    Letan∈R forn∈N and limnan=a.Then we say that it has a computable speed of approximation if there is a computable functionhs.t.for allk≥h(n)we have|ak-a|<2-n.

    3 Schnorr random points satisfy differentiation theorem for approximate identities

    In this section we will prove that the differentiation theorem for approximate identities holds for all Schnorr randomx∈R.First,we show how it works whenfis computable on a compact set.

    Lemma 6,thendyis a computable function ofxon R.In particular,is computable.

    ProofSee[8].□

    Lemma7 Letkεbe a computable dominated approximate identity.Eis a compact set andFisacompactneighborhoodofE,B(E,θ)?F,fiscomputableonFandbounded on R,i.e.there is aM>0 s.t.|f|<M.Thenkε?f→funiformly asε→0 onE.Moreover,the speed of this approximation is uniform computable onf?F,Mandθ.

    ProofSincekεis a dominated approximate identity,letc=‖kε‖L1=‖k‖L1.Letη>0 be an arbitrary real.We know that∫kε(y)dy=1,so we have

    whereVis the neighborhoodB(0,δ).We need to find a sufficient smallδ<1.Sincefis computable onF,there is aδsuch thaifx∈Eand|y|<δ.So

    for allx∈E.Notice that thisδdepends onθ.

    We knowfhas a bound|f|<M.Then

    Sincekεis an approximate identity,the

    It remains to calculate the speed of this convergence.Obviously it is determined by the speed of this convergence∫Vc|kε|dy→0 asε→0.For convenience we letδbe a rational.Replacet=ε-1ywe have

    It is a computable function ofεby Lemma 6.So we useθandfto computeδ,then useδandkto find theε0to ensurefor allε≤ε0.We have

    The following result can be viewed as an effective version of Egorov Theorem.

    Lemma 8(Lemma 3.6,[7]) LetandE=[-N,N].fkis a sequence of uniformly computable rational polynomials onEsuch that

    then there is a Schnorr testUmonEsuch that for anym,fk→uniformly onE-Um.Moreover,the speed of this convergence is uniform onm.

    ByLemma3,weknowthatlimforSchnorrrandomx.Thefollowing lemma is very useful in our proof.

    Lemma 9(Lemma 3.3,[7]) LetSbe a bounded set in R such thatSis first-order definableinthefieldofR.ThenthemeasureofSisacomputablerealnumber.Moreover,this holds uniformly on the first-order definition ofS.

    Theorem 5Letkεbe a computable dominated approximate identity.Then for allf∈and Schnorr randomxwe have

    Proof Notice that the valuekε?f(x)ignoresfon a null set of R,so we can assumef=without losing generality.The main idea is to prove the Lemma 8 also holds forkε?f(x)andkε?fk(x)for allε.We assumex<N.LetEbe[-N,N]andfkbe the sequence of polynomials as in Lemma 8(fk=0 outsidesE).

    Our idea is to construct such a chain asε→0 andn→∞:

    Firstly,let us deal with the first→.Notice that

    Sincekεis a computable dominated approximate identity,it has aL1-computable radial decreasing majorantK.SinceKcan be arbitrary large we can choose suchKthat‖K‖L1(R)=ais a rational.By Lemma 1 we have

    DefineAiasBy the definition we know

    It is easy to see thatAiis uniformly first-order definable oni,so by Lemma 9μ(Ai)is uniformly computable oni.By Lemma 2 we have

    Let.It follows from Lemma 4 thatμ(Vs)is computable.We also have

    SoVsis a Schnorr test.Ifx/∈Vs,then for alli≥2s:

    Combining with the definition ofMand triangle inequality we can have

    LetGm=Vm∪UmwithUmas in Lemma 8.VmandUmboth have measure limits,so by Lemma 5Gmis a Schnorr test.Supposex/∈Gm.Fixδ,search a sufficient largensuch that|f-fn|(x)<δ/3 and supε>0|(kε?(f-fn))(x)|<δ/3.Then by Lemma 7 there is a sufficient smallεsuch that|(kε?fn-fn)(x)|<δ/3.Then we have

    Thisδcan be arbitrary small so we conclude lim.This proves the required conclusion. □

    4 The points satisfy differentiation theorem for approximate identities are Schnorr

    In this section we will prove the converse part of the main theorem.Actually,we will show that ifxis not Schnorr random,the limit ofkε?f(x)may not exist.

    Lemma 10Given a computable dominated approximate identitykε,kε?χA→0 asμ(A)→0.Moreover,the speed of this convergence does not depend on the specificA.

    ProofSincekεisacomputabledominatedapproximateidentity,thereisaL1-computable radial decreasingKsuch thatK≥k.Note thatKε(x)≥Kε(y)when|x|≤|y|.We have

    Hence,kε?χA(x)→0 asμ(A)→0.And the speed of this convergenceis uniform onε. □

    We will show that our result hold for computablexfirst.

    Theorem 6Given a computable dominated approximate identitykεand a computable realr,there is ansuch thatdiverges asε→0.

    We will use the similar technic used in Lemma 4.5 in[7]to prove our theorem.

    ProofSupposer<Nfor some natural numberN.SetE=[-N,N].We will construct a uniformly computable sequence of 0,1-valued functionsfnon R such thatf=limfn.First,Letfn?Ec=0 for alln.So we only need to definefn?E.Letδbe a small positive rational.We will also construct an computable sequenceεnand an sequence of neighborhoodAnofrs.t.:Whennis even,kεn?fn(r)<δandkεn?fn+1(r)<δ;whennis odd,kεn?fn(r)>1-δandkεn?fn+1(r)>1-δ.

    Conduct the induction onn.

    The next stage is to find a rational neighborhoodA0?Eofrsuch thatμ(A0)<2-1and|kε0?χA0|(r)<δ.We definef1=f0+χA0.Sokε0?f1(r)<δ.f1(x)=1 for allx∈A0,by Lemma 7 there is aε1such thatkε1?f1(r)>1-δ.

    Stagen+1.

    ·Assumeniseven.ApplyLemma10toobtainarationalneighborhoodAn?An-1ofrsuch thatμ(An)<2-n+1and|kεn?fn|(r)+|kεn?χAn|(r)<δ.Letfn+1=fn+χAn.So we still havekεn?fn+1(r)<δ.Note thatfn+1(x)=1 forx∈An,wecanapplyLemma7toobtainanεn+1suchthatkεn+1?fn+1(r)>1-δ.

    · Ifnis odd,then we need theAnsatisfy|kεn?fn|(r)-|kεn?χAn|(r)>1-δ.Letfn+1=fn-χAn.Here we havefn+1(x)=0 onAn,so we can obtain anεn+1such thatkεn+1?fn+1(r)<δ.

    So actually for everyn,we definefn+1?An=1-fnandfn+1?Acn=fn.By this construction we have

    which means thekεn?fnis always close enough tofnandAnis too small to change it.

    ItiseasytocheckthatfnisuniformlyL1-computable.Definefasf(x)=limn→∞fn(x).We needf∈L1compso it does not matterfis undefined on a null set.Since‖f-fn‖L1<μ(An-1)<2-n,we knowfis aL1-computable function.This sequencekεn?f(r)diverges since for allnit is always betweenkεn?fn(r)andkεn?fn+1(r),that is,kεn?f(r)<δwhennis even,andkεn?f(r)>1-δwhennis odd. □

    A finite decimal is a real with the form 2-nkand a decimal intervalIis an interval on R with the form[2-nk,2-n(k+1)]wherenis a natural number andkis a integer.A decimal interval can be viewed as a interval on Cantor space.Two intervals are said to bealmost disjointif their intersection has at most one element.It is known that for any Σ1setU,there is a uniformly computable decimal intervalIisuch thatandare almost disjoint.

    Lemma 11Letkεbe a computable dominated approximate identity.Eis a compact set andFis a neighborhood ofE,B(E,θ)?F.fis constant onFand 0,1-valued on R.Then there is a computable functionS:R+×R+→R+such that for allε≤S(θ,δ)we have

    onE.

    ProofIt is a straight forward conclusion from the proof of Lemma 7.Note that this functionSonly depends on the majorantK. □

    Theorem 7Given a computable dominated approximate identitykεand a Schnorr testGm,we can construct asuch thadiverges for alwherexis not finite decimal.

    We will modify the technic used in theorem 6 to construct the desiredf.

    ProofSetE=[-N,N],clearlyGm∩EisaSchnorrtest.Sowithoutlosinggenerality we can assume thatx∈Gm?Efor allm.We will construct a sequence of 0,1-valued functionfnandf=limfn.Letfn?Ec=0 for alln.Letδbe a small positive real.

    Stagesuch thatI0,iare almost disjoint decimal interval.fn(x)=0 for allx∈E.

    Just like the proof of previous theorem we need to find anεsuch thatkε?fis close enough tofon an intervalI,but this generalεdoes not exist.Actually,we need to cut eachIinto infinite parts,and find a specificεfor each part.

    Stagesuch thatIis a computable sequence of pairwisen,ialmost disjoint decimal intervals.Fixi,letl,k∈N andIn,i=[2-lk,2-l(k+1)].We defineaj∈In,iforj∈Z as follows:

    ·a0is the midpoint ofIn,i:

    ·Forj>0,ajis the midpoint of[aj-1,2-l(k+1)]:

    ·Forj<0,ajis the midpoint of[2-lk,aj+1]:

    Then we defineJj=[aj,aj+1].To eachjwe define anεj.By the property of approximate identity,findεjs.t.for allx∈Jjandεjsatisfiesεj≤S(μ(Jj)/2,δ/2)withSdefined in Lemma 11.

    Apply Lemma 10 to obtainαjsuch that|kεj?χA|≤δ/4 ifμ(A)≤αj.Then we effectively find a large integermjsuch that

    Let.We construct suchHn,ifor alli∈N.Then define

    Let

    Due to the construction ofUn+1we knowμ(Un+1)≤2-nfor alln>0.So by the same argument of the previous theorem we concludef=limfnisL1-computable.

    It remain to show thatkε?fdiverges a.SupposeUn.Letεjbe the real as in our construction.By the definition of functionSWe have.Notice that,we then have

    Combining the definition ofεjit follows that

    which means thekεj?fnis always close enough tofnandUn+1is too small to change it.So

    Thus for all,we have

    Thus,kε ?fdiverges atxasε→0.□

    Let the functionkbe,we have this result directly:

    Corollary 1

    holds for all functionsif and only ifxis Schnorr random.

    This effective version of the Lebesgue differentiation theorem is slightly different from[7]:

    Theorem 8 ([7])

    holds for all functionsif and only ifxis Schnorr random.

    Compared with this theorem,our effective version of Lebesgue differentiation theorem requires thexto be the ‘center’ofQ,and also extends the theorem from[0,1]to R.

    [1]L.Bienvenu,A.R.Day,M.Hoyrup,I.Mezhirov and A.Shen,2012,“A constructive version of Birkhoff’s ergodic theorem for Martin-L?f random points”,Information and Computation,210:21-30.

    [2]L.Bienvenu,R.H?lzl,J.S.Miller and A.Nies,2014,“Denjoy,Demuth and density”,Journal of Mathematical Logic,14(01):1450004.

    [3]V.Brattka,J.Miller and A.Nies,2016,“Randomness and differentiability”,Transactions of the American Mathematical Society,368(1):581-605.

    [4]J.Franklin,N.Greenberg,J.Miller and K.M.Ng,2012,“Martin-L?f random points satisfy Birkhoff’s ergodic theorem for effectively closed sets”,Proceedings of the American Mathematical Society,140(10):3623-3628.

    [5]L.Grafakos,2008,Classical Fourier Analysis,New York:Springer.

    [6]M.Hoyrup and C.Rojas,2009,“Computability of probability measures and Martin-L?f randomness over metric spaces”,Information and Computation,207(7):830-847.

    [7]N.Pathak,C.Rojas and S.Simpson,2014,“Schnorr randomness and the Lebesgue differentiation theorem”,Proceedings of the American Mathematical Society,142(1):335-349.

    [8]M.B.Pour-El and J.I.Richards,1989,Computability in Analysis and Physics,Berlin:Springer-Verlag.

    [9]J.Rute,2012,“Algorithmicrandomness,martingalesanddifferentiability”:http://www.personal.psu.edu/jmr71/preprints/RMD1_paper_draft.pdf.

    天天添夜夜摸| 久久久久久亚洲精品国产蜜桃av| 亚洲av日韩在线播放| videosex国产| 老汉色av国产亚洲站长工具| 日韩欧美一区视频在线观看| 在线观看人妻少妇| 丝袜喷水一区| 国产成人系列免费观看| 久久精品国产a三级三级三级| 韩国高清视频一区二区三区| 欧美精品啪啪一区二区三区 | 69精品国产乱码久久久| av超薄肉色丝袜交足视频| 亚洲欧美一区二区三区黑人| 中文字幕人妻丝袜制服| 最近中文字幕2019免费版| 免费高清在线观看日韩| 午夜福利在线免费观看网站| 80岁老熟妇乱子伦牲交| 热re99久久精品国产66热6| 国产亚洲精品一区二区www | 男女无遮挡免费网站观看| 91成人精品电影| 在线观看人妻少妇| 欧美 亚洲 国产 日韩一| 各种免费的搞黄视频| 交换朋友夫妻互换小说| 欧美精品人与动牲交sv欧美| 国产精品 国内视频| 亚洲国产精品一区二区三区在线| 精品免费久久久久久久清纯 | 国产高清国产精品国产三级| 亚洲国产欧美在线一区| 欧美中文综合在线视频| 搡老乐熟女国产| 免费一级毛片在线播放高清视频 | 国产成人精品无人区| 亚洲激情五月婷婷啪啪| a级毛片在线看网站| 国产成人影院久久av| 麻豆av在线久日| 成人黄色视频免费在线看| 国产av又大| 大型av网站在线播放| 久久天躁狠狠躁夜夜2o2o| 国产色视频综合| 日本wwww免费看| 亚洲av男天堂| 国产激情久久老熟女| 高清av免费在线| 国产日韩一区二区三区精品不卡| 色视频在线一区二区三区| 高潮久久久久久久久久久不卡| 国产高清国产精品国产三级| 我的亚洲天堂| 在线观看舔阴道视频| 亚洲专区国产一区二区| 动漫黄色视频在线观看| 狂野欧美激情性bbbbbb| 黑人巨大精品欧美一区二区mp4| 亚洲国产欧美日韩在线播放| 乱人伦中国视频| 一区福利在线观看| 国产欧美日韩精品亚洲av| 黄色视频,在线免费观看| 啪啪无遮挡十八禁网站| 成人黄色视频免费在线看| 女警被强在线播放| 亚洲精品乱久久久久久| 亚洲综合色网址| 熟女少妇亚洲综合色aaa.| 欧美另类一区| 亚洲av成人一区二区三| 久久ye,这里只有精品| 午夜影院在线不卡| 国产欧美亚洲国产| 久久精品国产亚洲av高清一级| 久久99一区二区三区| 交换朋友夫妻互换小说| 在线av久久热| 美女福利国产在线| 一区二区三区激情视频| 丝袜在线中文字幕| 国产色视频综合| 日韩制服骚丝袜av| 可以免费在线观看a视频的电影网站| 成年女人毛片免费观看观看9 | 欧美日韩av久久| 超碰97精品在线观看| 久久国产精品男人的天堂亚洲| 欧美午夜高清在线| 老司机影院毛片| 一级片免费观看大全| 亚洲天堂av无毛| 欧美黄色淫秽网站| 久久久久精品国产欧美久久久 | 亚洲专区中文字幕在线| 国产av一区二区精品久久| 亚洲成人国产一区在线观看| av有码第一页| 狠狠狠狠99中文字幕| 欧美精品一区二区免费开放| 爱豆传媒免费全集在线观看| av一本久久久久| 窝窝影院91人妻| 一本久久精品| netflix在线观看网站| 一二三四在线观看免费中文在| 男人舔女人的私密视频| 国产一区有黄有色的免费视频| 亚洲,欧美精品.| 精品国产乱码久久久久久男人| 国产91精品成人一区二区三区 | 秋霞在线观看毛片| 欧美国产精品va在线观看不卡| 国产1区2区3区精品| 欧美精品啪啪一区二区三区 | 日韩电影二区| 亚洲精品美女久久av网站| 51午夜福利影视在线观看| 岛国毛片在线播放| 人人妻人人澡人人爽人人夜夜| 黑丝袜美女国产一区| 亚洲精品日韩在线中文字幕| 亚洲伊人久久精品综合| 亚洲国产中文字幕在线视频| 9色porny在线观看| 欧美乱码精品一区二区三区| 丰满饥渴人妻一区二区三| 女人高潮潮喷娇喘18禁视频| 1024香蕉在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品日韩在线中文字幕| 99久久精品国产亚洲精品| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美一区二区三区久久| 午夜两性在线视频| 好男人电影高清在线观看| 久久精品aⅴ一区二区三区四区| 大香蕉久久网| 中国美女看黄片| 免费人妻精品一区二区三区视频| 亚洲七黄色美女视频| 国产一区二区三区av在线| 大片电影免费在线观看免费| 在线观看免费高清a一片| 99热全是精品| av在线老鸭窝| 久久女婷五月综合色啪小说| 国产色视频综合| 首页视频小说图片口味搜索| 成人18禁高潮啪啪吃奶动态图| 99久久综合免费| 国产精品99久久99久久久不卡| 好男人电影高清在线观看| 国产精品久久久人人做人人爽| 成年人免费黄色播放视频| 色精品久久人妻99蜜桃| 亚洲成国产人片在线观看| 精品少妇久久久久久888优播| 亚洲欧美日韩另类电影网站| 91成人精品电影| 成年人免费黄色播放视频| 1024视频免费在线观看| 久久久久久亚洲精品国产蜜桃av| 国产成人av激情在线播放| 老司机影院成人| 国产野战对白在线观看| 久久亚洲国产成人精品v| 啪啪无遮挡十八禁网站| 精品久久久久久电影网| av一本久久久久| av不卡在线播放| 久久久久久久大尺度免费视频| 热99久久久久精品小说推荐| 最近中文字幕2019免费版| 一区在线观看完整版| 夫妻午夜视频| 真人做人爱边吃奶动态| 丰满饥渴人妻一区二区三| 国产精品久久久人人做人人爽| 精品久久久久久久毛片微露脸 | 777米奇影视久久| 中文字幕av电影在线播放| 亚洲欧美激情在线| 日韩制服丝袜自拍偷拍| 黄色视频不卡| 亚洲一区二区三区欧美精品| 一本色道久久久久久精品综合| 日日爽夜夜爽网站| 激情视频va一区二区三区| 国产主播在线观看一区二区| 国产男女超爽视频在线观看| 久9热在线精品视频| 色综合欧美亚洲国产小说| 搡老熟女国产l中国老女人| 亚洲国产欧美日韩在线播放| 久久天堂一区二区三区四区| 国产成人精品无人区| 国产欧美日韩一区二区精品| 搡老乐熟女国产| 国产精品久久久久久精品电影小说| 日本五十路高清| 一二三四社区在线视频社区8| 久久精品成人免费网站| 欧美一级毛片孕妇| 国产成人精品久久二区二区免费| 妹子高潮喷水视频| 精品一品国产午夜福利视频| 俄罗斯特黄特色一大片| 99久久国产精品久久久| 国产成人av激情在线播放| 激情视频va一区二区三区| 女人高潮潮喷娇喘18禁视频| 日韩,欧美,国产一区二区三区| 久久久久网色| 成人三级做爰电影| 亚洲国产欧美网| 超碰97精品在线观看| 日韩欧美一区视频在线观看| 成人免费观看视频高清| 国产一区二区三区av在线| 正在播放国产对白刺激| 精品福利观看| 美女午夜性视频免费| 亚洲国产精品999| 视频在线观看一区二区三区| 精品欧美一区二区三区在线| av电影中文网址| 韩国高清视频一区二区三区| 日韩精品免费视频一区二区三区| 中文字幕人妻丝袜制服| 亚洲伊人久久精品综合| 91精品伊人久久大香线蕉| 免费在线观看影片大全网站| 国产淫语在线视频| 黄色视频,在线免费观看| 一区二区av电影网| 一区二区三区四区激情视频| 999久久久精品免费观看国产| 国产xxxxx性猛交| 中文字幕人妻丝袜制服| 成年女人毛片免费观看观看9 | 久久久精品免费免费高清| 一级,二级,三级黄色视频| 两人在一起打扑克的视频| 国产亚洲精品一区二区www | 亚洲精品国产一区二区精华液| 国产免费一区二区三区四区乱码| 悠悠久久av| 99re6热这里在线精品视频| 国产色视频综合| 青青草视频在线视频观看| 国产精品国产三级国产专区5o| 国产又色又爽无遮挡免| 国产精品 国内视频| 亚洲综合色网址| 欧美性长视频在线观看| videos熟女内射| 久久女婷五月综合色啪小说| 两人在一起打扑克的视频| 亚洲精品国产av成人精品| 亚洲伊人色综图| 国产亚洲精品久久久久5区| 日韩大片免费观看网站| 午夜福利影视在线免费观看| 午夜免费成人在线视频| 国产免费现黄频在线看| 日本一区二区免费在线视频| 丝袜美足系列| 国产日韩欧美亚洲二区| 性色av乱码一区二区三区2| 亚洲精品国产一区二区精华液| 又紧又爽又黄一区二区| 欧美日本中文国产一区发布| 操美女的视频在线观看| 老司机在亚洲福利影院| 久久久欧美国产精品| 亚洲天堂av无毛| 女人爽到高潮嗷嗷叫在线视频| 一区福利在线观看| 大香蕉久久成人网| 久久青草综合色| 日韩欧美国产一区二区入口| 女人久久www免费人成看片| 热99re8久久精品国产| 精品久久久精品久久久| 午夜影院在线不卡| 天天操日日干夜夜撸| 多毛熟女@视频| 亚洲精品成人av观看孕妇| 国产免费av片在线观看野外av| 亚洲一区二区三区欧美精品| 精品第一国产精品| 久久久久久免费高清国产稀缺| 19禁男女啪啪无遮挡网站| bbb黄色大片| 黄色毛片三级朝国网站| 国产精品影院久久| 黄色视频,在线免费观看| 精品欧美一区二区三区在线| 少妇 在线观看| 精品少妇黑人巨大在线播放| 成人黄色视频免费在线看| 国产成人a∨麻豆精品| 欧美av亚洲av综合av国产av| 免费女性裸体啪啪无遮挡网站| 国产精品免费大片| 九色亚洲精品在线播放| 少妇被粗大的猛进出69影院| 狠狠狠狠99中文字幕| 久久久久精品国产欧美久久久 | 久久久欧美国产精品| 日本av免费视频播放| 日本av手机在线免费观看| 亚洲 国产 在线| 黄频高清免费视频| 国产高清国产精品国产三级| 激情视频va一区二区三区| 五月开心婷婷网| 少妇人妻久久综合中文| 国产精品久久久久久精品电影小说| 欧美变态另类bdsm刘玥| 成人手机av| 国产成人精品久久二区二区免费| 新久久久久国产一级毛片| 最近最新中文字幕大全免费视频| 国产日韩一区二区三区精品不卡| 999久久久国产精品视频| 肉色欧美久久久久久久蜜桃| 中文精品一卡2卡3卡4更新| 亚洲精品成人av观看孕妇| 国产在线视频一区二区| 久久久精品国产亚洲av高清涩受| 又黄又粗又硬又大视频| 在线观看免费视频网站a站| 一区二区三区精品91| 久久99热这里只频精品6学生| 久久人人97超碰香蕉20202| 美女脱内裤让男人舔精品视频| 黑人猛操日本美女一级片| 亚洲欧美激情在线| 19禁男女啪啪无遮挡网站| 18禁黄网站禁片午夜丰满| 久久久久网色| 久久久久久久国产电影| 女性生殖器流出的白浆| 自拍欧美九色日韩亚洲蝌蚪91| 一边摸一边做爽爽视频免费| 国产三级黄色录像| 亚洲精品乱久久久久久| 国产视频一区二区在线看| 女性生殖器流出的白浆| 日韩中文字幕视频在线看片| 手机成人av网站| 午夜福利,免费看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品成人久久小说| 高清视频免费观看一区二区| 黄色片一级片一级黄色片| 亚洲欧美一区二区三区久久| 久久精品国产亚洲av香蕉五月 | 日本五十路高清| 欧美精品人与动牲交sv欧美| 亚洲 欧美一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 永久免费av网站大全| 国产人伦9x9x在线观看| 天天躁夜夜躁狠狠躁躁| 在线看a的网站| 精品少妇久久久久久888优播| 国产亚洲av片在线观看秒播厂| 一区二区三区精品91| 一本大道久久a久久精品| 欧美黑人精品巨大| 中文欧美无线码| av不卡在线播放| 亚洲久久久国产精品| 成年女人毛片免费观看观看9 | 黄色视频,在线免费观看| av网站在线播放免费| 美女视频免费永久观看网站| 免费女性裸体啪啪无遮挡网站| 欧美大码av| 欧美精品高潮呻吟av久久| 后天国语完整版免费观看| av电影中文网址| 男女床上黄色一级片免费看| 久久久久久亚洲精品国产蜜桃av| 欧美成人午夜精品| 黑丝袜美女国产一区| 青春草亚洲视频在线观看| 777久久人妻少妇嫩草av网站| 久久亚洲国产成人精品v| 日本一区二区免费在线视频| av在线播放精品| 午夜影院在线不卡| 精品熟女少妇八av免费久了| 岛国在线观看网站| 成人免费观看视频高清| 多毛熟女@视频| 丁香六月天网| 国产欧美日韩一区二区精品| 女人爽到高潮嗷嗷叫在线视频| 久久av网站| 91麻豆av在线| 亚洲 国产 在线| 老鸭窝网址在线观看| 亚洲国产欧美网| 久热这里只有精品99| 人人妻人人澡人人看| 丝袜脚勾引网站| 国产精品自产拍在线观看55亚洲 | 岛国毛片在线播放| 亚洲综合色网址| 老熟女久久久| 亚洲激情五月婷婷啪啪| netflix在线观看网站| 午夜福利,免费看| 色综合欧美亚洲国产小说| 丝瓜视频免费看黄片| 亚洲精品日韩在线中文字幕| 搡老熟女国产l中国老女人| 日本精品一区二区三区蜜桃| 色综合欧美亚洲国产小说| 亚洲少妇的诱惑av| 一区二区三区精品91| 欧美性长视频在线观看| 欧美激情极品国产一区二区三区| 久久久久视频综合| 成人av一区二区三区在线看 | 老司机影院成人| 亚洲av电影在线进入| 国产精品一区二区在线不卡| 在线观看一区二区三区激情| 国产极品粉嫩免费观看在线| 久久久久久免费高清国产稀缺| 亚洲激情五月婷婷啪啪| 老司机深夜福利视频在线观看 | 亚洲欧美成人综合另类久久久| 国产欧美日韩一区二区三 | 丰满人妻熟妇乱又伦精品不卡| 亚洲成人免费电影在线观看| 99国产精品一区二区蜜桃av | 永久免费av网站大全| 99久久综合免费| a级片在线免费高清观看视频| 国产97色在线日韩免费| 免费在线观看影片大全网站| 伊人亚洲综合成人网| 一本大道久久a久久精品| 女性生殖器流出的白浆| 久久午夜综合久久蜜桃| 日韩视频在线欧美| 精品国产乱码久久久久久小说| 亚洲中文字幕日韩| av网站免费在线观看视频| 在线观看舔阴道视频| 日韩,欧美,国产一区二区三区| 欧美少妇被猛烈插入视频| 在线观看一区二区三区激情| 99香蕉大伊视频| 国产精品一区二区精品视频观看| 99国产综合亚洲精品| 91精品国产国语对白视频| 另类亚洲欧美激情| 少妇的丰满在线观看| 新久久久久国产一级毛片| 国产精品秋霞免费鲁丝片| 曰老女人黄片| 成人免费观看视频高清| 欧美久久黑人一区二区| 欧美97在线视频| 亚洲av男天堂| 欧美+亚洲+日韩+国产| 后天国语完整版免费观看| 亚洲欧美激情在线| av网站免费在线观看视频| 色婷婷久久久亚洲欧美| videosex国产| 日本av手机在线免费观看| 欧美变态另类bdsm刘玥| 高清av免费在线| 国产区一区二久久| 亚洲三区欧美一区| 久久久久久久久久久久大奶| 超碰成人久久| 日韩视频一区二区在线观看| 真人做人爱边吃奶动态| 久久久久精品人妻al黑| 人人澡人人妻人| 国产伦理片在线播放av一区| 黑人猛操日本美女一级片| 亚洲欧美色中文字幕在线| 亚洲国产av新网站| 蜜桃国产av成人99| a在线观看视频网站| 国产精品99久久99久久久不卡| 亚洲av日韩在线播放| 亚洲国产欧美网| 国产在线免费精品| 免费在线观看日本一区| 亚洲第一青青草原| 正在播放国产对白刺激| 一区福利在线观看| 国产成人啪精品午夜网站| h视频一区二区三区| 国产男人的电影天堂91| 少妇精品久久久久久久| 国产精品秋霞免费鲁丝片| 在线亚洲精品国产二区图片欧美| 久久香蕉激情| 啦啦啦啦在线视频资源| 最新的欧美精品一区二区| 欧美精品亚洲一区二区| 日本a在线网址| 亚洲自偷自拍图片 自拍| 国产免费现黄频在线看| 少妇猛男粗大的猛烈进出视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产免费福利视频在线观看| 亚洲国产欧美网| 大陆偷拍与自拍| 咕卡用的链子| 久久久国产精品麻豆| 日日摸夜夜添夜夜添小说| 国产成人精品在线电影| 亚洲av成人一区二区三| 欧美日本中文国产一区发布| 久久青草综合色| 一本一本久久a久久精品综合妖精| 国产精品一区二区在线不卡| 欧美老熟妇乱子伦牲交| 久久国产精品人妻蜜桃| 亚洲精品一二三| 久久人人爽av亚洲精品天堂| 欧美黑人欧美精品刺激| 人人澡人人妻人| 欧美日本中文国产一区发布| 国产99久久九九免费精品| 成年人免费黄色播放视频| 免费一级毛片在线播放高清视频 | 97人妻天天添夜夜摸| 精品国产乱码久久久久久男人| 久久精品国产综合久久久| 俄罗斯特黄特色一大片| 无限看片的www在线观看| 精品免费久久久久久久清纯 | 午夜精品久久久久久毛片777| 亚洲国产欧美日韩在线播放| 国产成人av教育| 97在线人人人人妻| 女人精品久久久久毛片| 午夜影院在线不卡| 午夜激情久久久久久久| 80岁老熟妇乱子伦牲交| 国产高清videossex| 欧美黄色片欧美黄色片| 日本av手机在线免费观看| 亚洲精品粉嫩美女一区| 大片免费播放器 马上看| 国产精品.久久久| 亚洲欧美一区二区三区久久| 天堂中文最新版在线下载| 亚洲va日本ⅴa欧美va伊人久久 | av网站在线播放免费| 久久精品aⅴ一区二区三区四区| 国产男人的电影天堂91| 午夜影院在线不卡| 美女扒开内裤让男人捅视频| 热99久久久久精品小说推荐| 伦理电影免费视频| 人妻一区二区av| 免费一级毛片在线播放高清视频 | av天堂在线播放| 精品久久蜜臀av无| 午夜影院在线不卡| 丰满人妻熟妇乱又伦精品不卡| 一本一本久久a久久精品综合妖精| 啦啦啦在线免费观看视频4| 国产一区二区三区在线臀色熟女 | 97在线人人人人妻| 777米奇影视久久| 在线永久观看黄色视频| 国产日韩一区二区三区精品不卡| 亚洲精品美女久久av网站| 大片免费播放器 马上看| 中文字幕人妻丝袜制服| 9热在线视频观看99| 久久性视频一级片| 亚洲国产成人一精品久久久| 操美女的视频在线观看| 男女无遮挡免费网站观看| 欧美另类一区| 在线精品无人区一区二区三| 亚洲av成人一区二区三| 在线看a的网站| 久久人人爽人人片av| 精品熟女少妇八av免费久了| videos熟女内射| 亚洲国产中文字幕在线视频| 一本一本久久a久久精品综合妖精| 男男h啪啪无遮挡| 最近最新中文字幕大全免费视频| av免费在线观看网站| 成年人黄色毛片网站| 嫩草影视91久久| 亚洲综合色网址| 欧美老熟妇乱子伦牲交| 一级毛片精品| 国内毛片毛片毛片毛片毛片| 手机成人av网站| 亚洲色图 男人天堂 中文字幕| 精品人妻1区二区|