• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Organic carbon content and carbon isotope variations across the Permo-Triassic boundary in the Gartnerkofel-1 borehole,Carnic Alps,Austria

    2018-07-04 11:28:14BrookfieldWolbachStebbinsGilmourRoegge
    Acta Geochimica 2018年3期
    關鍵詞:楊鵬圍屋內向

    M.E.Brookfield?W.S.Wolbach?A.G.Stebbins?I.Gilmour ?D.R.Roegge

    1 Introduction

    The Gartnerkofel borehole is one of the most thoroughly studied and described Permo-Triassic sections in the world(summary in Holser et al.1989,1991).Although Klein(1991)included organic carbon contents in his more inclusive study of elements,the results of detailed organic carbon isotope studies across the PTr boundary in the core have only been reported in a brief abstract(Wolbach et al.1994).In view of the importance of such studies in other Permo-Triassic sections,this paper summarizes these analyses of the total Gartnerkofel organic carbon,organic carbon isotopes,together with carbonate carbon and oxygen isotopes from Magaritz and Holser(1991),compares them with the total organic carbon analyses of Klein(1991)on the same samples,and compares our Gartnerkofel carbon patterns to other Permo-Triassic Tethyan sections.

    2 Geology

    The Gartnerkofel core was drilled in 1986 near the western end of the Permian Tethys Sea in a shallow-water shelf area interpreted as a currently eastward facing carbonate ramp(Brandner et al.2009)(Figs.1,2).

    Over most of its outcrop,the Late Permian Bellerophon Formation consists of thick carbonate-sulphate succession deposited in marginal(sabkha)to shallow shelf marine conditions with the top~1 m(Bulla member)consisting of more normal marine highly fossiliferous dark bioclastic wackestone,packstone and interbedded thin marls limestone with calcareous algae,foraminifera,mollusks and brachiopods(Noé1987;Farabegoli et al.2007).A top erosional surface on the Bulla Member is sharply overlain by the Tesero member of the Werfen Formation,which consists of diverse micrite,microbialites and marls interbedded with oolitic,peloidal and bioclastic packstones(Farabegoli et al.2007).The Tesero member blankets the underlying diverse Bulla Member facies,and varies little and irregularly(between 3 and 5 m)across the entire area,though it is absent between Bulla and Gartnerkofel(Noé1987).

    Fig.1 Late Permian palaeogeography(courtesy Ron Blakey)with places cited

    The previously proposed carbonate ramp interpretation of the Tesero oolite section(Brandner et al.2009)is incompatible with the limited thickness and facies variations shown in the sections,and with the juxtaposition of very different sections across Alpine thrusts,with large translations of tens of km,within the Dolomites(Doglioni 1987).Thusthe Tesero ooliteismissing in the San Antonio section though present in the thrust sheets on either side(Fig.2).Furthermore the ramp interpretation(as shown in Fig.2b)is arbitrarily based on arranging Tesero oolite sections and the burrowed datum on which they rest,in a line downstepping to the east:the thinning of the lowermost oolite from Tramin to Gartnerkofel(interrupted by the fault-enclosed San Antonio section)is typical of carbonate platforms like the Bahama Bank,where marginal oolite shoals thin and pass into pelletoidal finer sediments towards the interior of the platform(Harris et al.2015).A flat carbonate platform environment fits the lack of horizontal but marked vertical facies change(during sea level variations)far better,and was the interpretation shown by Noé(1987)in the first comprehensive study of the PTr boundary sections in the area(Fig.2c).

    Furthermore,the Permian paleomagnetism of the Dolomites shows around 50°anticlockwise rotations of the southern Alps relative to central Europe during large post-Permian lateral movements and disruption of the Adria block(Muttoni et al.2013)and can thus not be compared to units now adjacent to it,like the Lombardy Verrucano to the west across the Judicaria fault(Gaetani 2010).

    The biodiversity drops markedly at the Bulla/Tesero contact but Permian brachiopods and bivalves persist into the Tesero Member(Posenato 2009).The first appearance datum(FAD)of the conodont Hindeodus parvus which defines the base of the Triassic is at 6 m above the base of the Tesero Member at Gartnerkofel,but only 2 m above the base at Bulla(Sch?nlaub 1991)(Fig.2).

    The main lithological change(the Late Permian Event Horizon,LPEH)from the Bulla to the Tesero Members thus does not co-incide with the main extinction,nor with the base of the Triassic as defined by H.parvus.The strata between the LPEH and the base of the Triassic are thus of great interest for interpreting environmental changes associated with the extinction.

    3 Materials and methods

    One set of PTr samples were used for all Gartnerkofel geochemical analyses(Klein 1991).

    3.1 Wolbach and Gilmour methods

    To cover the PTr boundary adequately,bulk C residues were isolated from samples between 115.95 and 330 m depth in the core,using HCl and HF–HCl procedures of Wolbach and Anders(1989).Organic carbon wasseparated from any elemental carbon using extended acid dichromate oxidation(Wolbach and Anders 1989).Residues were combusted to CO2for mass-spectrometric analysis,yielding isotopic data,and weights for organic carbon.Carbon isotopes were measured on a VG SWIRA 24 mass spectrometer using sealed-tube combustion.

    Fig.2 a Location of Gartnerkofel and other PTr sections in the Dolomites,southern Alps.b Reconstructed cross-section of the Early Triassic carbonate ramp at the end of Tesero oolite deposition(after Brandner et al.2009,Fig.8),with representative sections.Note that the only the Tramin,Tesero and Bulla sections are in the same tectonic unit,the other sections are across thrust faults,and actual thickness variation is nowhere greater than 5 m across a horizontal distance of over 130 km.c Thickness variation and persistence of Bulla and Tesero Oolite facies from west to east(from Noé1987).Source:Stratigraphic columns:Tramin:Brandner et al.(2012);Tesero:Posenato(2009);Bulla:Farabegoli and Tonidandel(2012),Posenato(2009);San Antonio;Brandner(1988);Kraus et al.(2013);Dierico:Buggisch and Noé(1986);Gartnerkofel:Holser et al.(1991)

    3.2 Klein(1991)methods

    The carbon content was analyzed on separate aliquots of the powdered samples.For determination of total carbon(Ctot)a 100 mg portion was weighed into a ceramic crucibleby electronic balance.With aglassspoon about 2 g of LECOCEL(a Sn-W alloy)and 1 g of steel(7 ppm C,14 ppm S)were added.The mixture was combusted in a furnaceat 1400 °C,using oxygen(> 99.5%pure)ascarrier gas.The evolved gas CO2was measured in infrared cells by integrating its peaks.The system was calibrated with LECO calibration samples and with internal laboratory standard Bellerophon Dolomite A/1.

    Each sample was analyzed two to four times.The relative standard deviations were<1%for C.For determination of organic carbon(Corg),500 mg of powder were weighed into a porous filter crucible,leached three times with 8 mL 2 M HCl,rinsed ten times with deionized water,and filtered with a filtering flask.The crucibles were dried in an oven at 150°overnight.Measurements were carried out as for total C.Acid-soluble carbon(Ccarb)was calculated by difference.

    4 Results

    Total organic carbon and organic carbon isotopes of our study,together with the total organic carbon of Klein(1991),and carbonate carbon and oxygen isotope resultsof Magaritz and Holser(1991),plus the Sandδ34Sresults of Pak and Holser(1991)are shown on Table 1 and Fig.3.In our study,the brown color of all carbonaceous residues and rapid disappearance of residue aliquots on dichromate oxidation,together with their carbon content(~100%);indicate that the residues were composed entirely of organic carbon.The organic carbon content of the sediments was relatively low(<2000 ppm)except at 216 m(> 5000 ppm),and at 215 and 268 m(> 2000 ppm)(Table 1,Fig.3).These high valuescorrespond with lower negativeδ13Corgvalues,which are in keeping with their inferred oceanic origin,as these samples were easily oxidized by dichromate—residual land-derived organic matter is much more difficult to destroy(Wolbach et al.1994).The total organic carbon results of Klein(1991)are divergent from ours and tend to be an order of magnitude higher(Table 1).The reasons for this are not entirely clear(we could not contact Peter Klein for comment),but could be due to:(a)sampling differences—unlikely,as we analyzed the same layers;(b)mineral acid differences—2 M HCl for Klein,9 M HCl followed by 15 M HF/1 M HCl for Wolbach,more aliphatic organic carbon would be destroyed by these methods—which would explain the lower Wolbach values;(c)destruction of silicates—by dissolving silicates,Wolbach freed up any carbon bound by the silicate crystal structure itself that carbon fraction would have been measured by Wolbach,but not by Klein—again this does not explain the lower Wolbach values;(d)oxidation—Wolbach made a concerted effort to destroy organics,then determine their isotopic values by difference whereas Klein measured organics directly,which might have missed silicate-encapsulated organics,but included any elemental carbon present with his Corgdata and assumed it to be organic.

    Nevertheless,the trends are the same in both analyses and the total organic values are all low in any case(Table 1,Fig.3).

    Our organic carbon isotopestudiesshow anegativebase shift of-24‰ to-28‰ in the upper Bellerophon Formation to-26‰ to-28‰ in the Tesero Member,which latter values persists into the earliest Triassic Mazzin Member,after which it decreases slightly to-26‰(Table 1,Fig.3).Superimposed on this are two sharp negative peaks of> -38‰ in the Latest Permian(at 286.33 and 252 m depth)and a broader negative peak of>-31‰ (215.07–207.14 m depth)in the Early Triassic(Fig.3).The two negative peaks in the upper Bellerophon Formation are not recorded in Wolbach et al.(1994)as they did not plot the values below 242 m.

    Theδ13Ccarbvalues show a gradual drop from the Bellerophon through the Tesero Member into the lower Mazzin Member,followed by subdued fluctuations(Fig.3).This is consistent with the general average worldwide drop of-2‰across the PTr boundary(Korte et al.2001).

    Theδ18Ocarbvalues also show a gradual drop from the Bellerophon into the Tesero Member after which they remain fairly constant until some zigzags in the lower Mazzin Member at the same level as the organic carbon zigzag(Fig.3).Although these beds show both Early and Late dolomitization(Boeckelmann and Magaritz 1991),and the oxygen isotopes therefore unlikely to be primary,and though the Gartnerkofel values are whole rock values,the significant fluctuations suggest that the oxygen isotopes in the section have not been homogenized.Under meteoric diagenesis Phanerozouc carbonate rocksshow elevated Mn and decreasing Sr contents due to dissolution of primary carbonate and precipitation of carbonate cements(Brand and Veizer 1980):carbonate samples with Mn/Sr ratio of<10 might still retain their primary isotopic signatures(Kaufman and Knoll 1995).All Gartnerkofel samples studied have Mn/Sr ratios of<5(data of Klein 1991).

    It isinteresting that thegeneral warming trend acrossthe Tesero Member is compatible with the warming across thePermian–Triassic boundary in China inferred from conodont apatite(Sun et al.2012).The calculated seawater temperatures for Gartnerkofel based on Sun et al.’s(2012)methods,but using bulkδ18Ocarbvalues,show a low of-10 °C in the Ostracod unit rising to+6 to+26 °C in the overlying units.The Ostracod unit temperatures are unreasonably low,but may be caused by variable salinities in this sabkha-type environment(Mette and Roozbahani 2012).The higher temperatures are not inconsistent with a modern tropical carbonate environment like the Persian Gulf,where the lagoons and the open ocean can reach 24–32 °C and the coastal sabkhas can occasionally dip as low as 0°C(Al-Farraj 2005;Warren 2006).

    Table 1 Carbon,carbonate and organic carbon isotope,and su8lfur and sulfur isotope data for the Gartnerkofel core

    Table 1 continued

    Fig.3 Late Permian to Early Triassic section of Gartnerkofel core(Holser et al.1991;Sch?nlaub 1991);organic carbon and organic carbon isotope plots(this study);organic carbon plots from data in Klein 1991);carbonate and oxygen isotope plots from data in Magaritz and Holser(1991);Sand Sisotope plots from data in Klein(1991),Pak and Holser(1991)(see Table 1).Note expanded scale from 232 to 222 m depth

    δ34S values of pyrite reflect the relative abundance of pyrite that formed within the water-column(syngenetic)and within the sediments(diagenetic),with lower values generally reflecting an increase in syngenetic pyrite due to anoxic or euxinic waters.The Tesero Member of the Bulla PTr section contains two relative minima inδ34Svalues of sulfide around-30‰with increases in S concentrations and S/Corgratios(Gorjan et al.2007).The values in these intervals reflect an anoxic or euxinic water-column in the Tesero Member(Gorjan et al.2007),and similar valuesare recorded at multiple locations after the LPEH(Shen et al.2016 and references therein).At Gartnerkofel,the sharp increase in Sconcentrations and low values ofδ34Sin the Mazzin Member suggests an additional anoxic or euxinic interval in the Early Triassic,extending the record of transient anoxic intervals from the Tesero Member of the Bulla section.

    5 Discussion and comparisons

    Carbon isotope fluctuations in marine carbonates and marine plankton reflect the dissolved inorganic carbon reservoir in seawater.Organic carbon isotope fluctuations reflect the proportions contributed by marine and continental organic matter as well as by the contribution of green sulfur bacteria growing in anoxic conditions—negative trends in organic carbon isotope values have been used to infer anoxia(Berner 2005).

    The strong fluctuations inδ13Corgvalues across the Permian–Triassic boundary in Alpine sections are readily attributable to variations in the proportions of marine versusterrestrial organic matter(Krauset al.2013).Therange of values ofδ13Corgreported for modern terrestrial higher plants(average-26.1‰),differs greatly from those for modern marine phytoplankton(average-17.7‰)(Wickman 1952;Craig 1953;Smith and Epstein 1971).Changes in δ13Corgvalues of up to 6.0‰,(from ~ -19‰ to-25‰)were measured across the Pleistocene–Holocene boundary in cores from the Gulf of Mexico abyssal plain,reflecting increased transport of terrestrial plant remains from re-established Holocene lowland forests to the Gulf basin(Newman et al.1973).In the Quaternary,therefore,increased land plant input is marked by more negative δ13Corgvalues.

    In contrast to modern organics,Permian plant material has heavier carbon isotope values(δ13C=-24‰)compared with Permian plankton such as acritarchs(δ13C=-30‰)(Faure et al.1990;Strauss and Peters-Kottig 2003;Herrmann et al.2012).The difference from modern situations is because plants with C4 metabolism(all angiosperms)which have higherδ13Corgvalues between-8‰ and-15‰,did not evolve until the Cretaceous(O’Leary 1988).Kraus et al.(2013)noted that the Alpine PTr sectionsfrom near shoreto offshoreshowed the same organic carbon isotope trends but that the more offshore sections showed lighter,more negative values,consistent with greater plankton and lesser land plant input.Furthermore,their zigzag fluctuations inδ13Corgof up to 4‰in the Tesero Member are most plausibly caused by variations in land versus marine organic content,especially as theδ13Ccarbvalues do not change much.In contrast to Kraus et al.’s(2013)results,however,our main zigzag fluctuations occur lower down in the Bulla Formation,while their fluctuations in the Tesero member(admittedly based on much closer spaced samples)are not seen in our Tesero Member samples(Table 1,Fig.3).

    The two very negativeδ13Corgpeaks at 251/2(-35‰,-39‰)and 286 m(-38‰)depth at Gartnerkofel suggest marine incursions into the variable salinity Bellerophon sabkha environment.These extreme negativeδ13Corgvalues are,however,beyond the range of both mantlederived(δ13C=-5‰)and organic carbon,including sulphur bacteria(δ13C< -30‰)sources and require methane input(δ13C=-60‰)(Summons et al.1994;Higgins and Schrag 2006;Retallack and Krull 2006;Taipale et al.2015).Even the overlying Bulla and Werfen values need either almost pure marine organic sources or methane input—but the methane would need to be metabolized by organisms.One possibility is that the recently discovered ‘methane-eating’Methylobakter is responsible(Ettwig et al.2010).Since these use nitrate reduction in their metabolism,then they might be detected from nitrogen isotope studies(to be done).

    Smallerδ13Corgfluctuations also occur above 222 m depth where pyrite,sulfur and,shortly above,carbon content increase,with a marked shift to lighter,more negative marineδ13Corgvalues(Holser et al.1989),consistent with the continuing Early Triassic marine transgression.The subsequent shift to heavier less negative values above 207 m suggests input of land plant material during the earliest Triassic which is recorded in other Alpine sections(Sephton et al.2002;Gorjan et al.2008).

    The Val Badia section shows greatδ13Corgfluctuations during Late Permian Tesero Member times with a more detailed sampling than Gartnerkofel(Fig.4).In fact,all the PTr boundary section along both the southern and northern sides of the Neotethys and on the South China microcontinent show marked positive shiftsinδ13Corgvaluesthough not necessarily at the same time if the correlations are accurate(Figs.4,5).If caused by greater land plant input,however,and if they are synchronous,then the positive shift is consistent with the destruction of land ecosystems and vegetation burning at this time,and with the marked negative shift inδ13Ccarbat this time(Grasby et al.2011;Retallack 2013).

    In Kashmir In the transitional beds equivalent to the lower Tesero Member,zigzags inδ13Corgvalues(from-27‰ to-23‰)(Algeo et al.2007)are due to values from the background clays(more negative)and bioclastic beds introduced from shallower water(less negative)(Fig.4).In China,both Meishan and Shangsi show similar negative shifts in δ13Ccarbbut the δ13Corgshows somewhat divergent trends(Fig.5).The Meishan section is,however,very condensed with several erosion surfaces which juxtapose very different isotope values:missing sediments needs to be taken into account(Zheng et al.2013).

    楊鵬幼時所居住的房子,是一座四百多平方米的圍屋。童年時的楊鵬,性格很內向,也很孤獨,因此,這一時期的他特別愛幻想。小小的孩子,大大的房間,難免心生恐懼之感。孤獨內向的孩子,向外很難尋求慰藉,只能向內尋求力量。害怕之時,又有哪個孩子不希望有個英雄能來拯救自己呢?又有哪個孩子不想讓自己成為拯救他人的英雄呢?好在,書本給了楊鵬戰(zhàn)勝孤獨與恐懼的力量。

    In all Tethyan sections noted here,the δ13Corg–δ13Ccarbvalues are greater in the shallower water sections like Gartnerkofel and Val Badia than in the deeper shelf sections at Guryul ravine,Shangsi and Meishan(Figs.4,5),which is in keeping with the decreasing continental input noted in the Alps(Kraus et al.2013).

    If the zigzags in the organic carbon isotope curves between the LPEH and the base of the Triassic are due to different proportions of land-and marine-derived organic matter,then either a number of marine transgressions and regressions need to be considered(as they have in the past—e.g.Brandner et al.2009)or climatically-or eventcontrolled variations need to be considered.

    Though rapid eustatic changes of sea-level occur in glacial times,there is no evidence of a Latest Permian glaciation and,in fact,the evidence is for rapid and significant ocean warming at the time(Sun et al.2012;Song et al.2014),which would raise sea-level by many metres due to thermal expansion since a 1°C rise in mean ocean temperature raises sea-level by 2 m(Southam and Hay 1981).Rising sea level during warming and bringing more marine conditions over the area during deposition of the Tesero Member would explain the gradually lighter trends in both δ13Corgand δ13Ccarb.Climate warming is thus a possible control—but a marine transgression in the Latest Permian does not explain the spasmodic input of landderived vegetation at thetime,nor theextremenegativeδ13Corgvalues.

    Input by backwash of land-derived material during storms,or even tsunamis,may explain some of the positive δ13Corgshiftsassociated with land vegetation input,even as far as the apparently isolated Bahamian-type Tesero oolite platform.Tsunami deposits have been identified in the Latest Permian in Kashmir,India(Brookfield et al.2013).Vast amounts of land-derived floating material were transported into and across the Pacific Ocean by the relatively small 2011 Japanese tsunami(Lebreton and Borrero 2013).The Tesero oolitic beds,with their hummocky cross-stratification and great extent(Brandner et al.2009)are also possible tsunamirather than simple storm deposits.

    Fig.4 Comparison of Late Permian to Early Triassic organic carbon and carbonate Cisotopeplotsfor Gartnerkofel with variouslocalities along southern Tethyan margin(modified from Korte et al.2010)with additions and changes for Val Badia(Kraus et al.2013),Guryul(Baud et al.1996;Algeo et al.2007).Height between LPEH and base of the Triassic has been standardized for all sections

    Fig.5 Comparison of Late Permian to Early Triassic organic carbon and carbonate Cisotopeplotsfor Gartnerkofel with variouslocalities along northern Tethyan margin and South China(modified from Korte et al.2010),with additions and changes for Djulfa(Kozur 2007;Ghaderi et al.2014),Shangsi(Wignall et al.1995;Jiang et al.2011;Riccardi et al.2007)Heping(Krull et al.2004).Height between LPEH and base of the Triassic has been standardized for all sections

    6 Conclusions

    A detailed carbon isotope curve across the Permian–Triassic boundary for the thoroughly studied Gartnerkofel coreshowsδ13Corgvaluesgenerally becomemorenegative upwards in parallel with theδ13Ccarbvalues showing that atmospheric and oceanic carbon dioxide controlled both.Several extremeδ13Corgexcursions,expressed in the δ13Corg–δ13Ccarbvalues are attributed to periodic input of land vegetation either by storms or tsunamis.The overall trend of both δ13Corgand δ13Ccarbvalues follow the other studied sections in the Alps and both northern and southern edges of the NeoTethys Ocean.

    AcknowledgementsWe thank R.Schmitt for donating the samples and J.Gibson for making the Cisotope measurements.We appreciate the comments of Elke Schneebeli-Hermann on an earlier draft of the manuscript.

    Compliance with ethical standards

    Conflict of interestAll authors declare that they have no conflict of interest.

    Al-Farraj A(2005)An evolutionary model for sabkha development on the north coast of the UAE.JArid Environ 63:740–755

    Algeo TJ,Hannigan R,Rowe H,Brookfield ME,Baud A,Krystyn L,Ellwood B(2007)Sequencing events across the Permian–Triassic boundary,Guryul Ravine(Kashmir,India).Palaeogeogr Palaeoclimatol Palaeoecol 252:328–346

    Baud A,Atudorei V,Sharp Z(1996)Late Permian and Early Triassic evolution of the northern Indian margin:carbon isotope and sequence stratigraphy.Geodinamica Acta(Paris)9:57–77

    Berner RA(2005)The carbon and sulfur cycles and atmospheric oxygen from Middle Permian to Middle Triassic.Am J Sci 69:3211–3217

    Boeckelmann K,Magaritz M(1991)The Permian–Triassic of the Gartnerkofel-1 core(Carnic Alps,Austria):dolomitization of the Permian–Triassic sequence.Abh Geologischen Bundesanstalt 45:61–68

    Brand U,Veizer J(1980)Chemical diagenesis of a multicomponent carbonate system,1.Trace elements.J Sediment Petrol 50:1219–1236

    Brandner R(1988)The Permian–Triassic boundary in the Dolomites(Southern Alps,Italy),San Antonio section.Ber Geologischen Bundesanstalt 15:49–56

    Brandner R,Horacek M,Keim L,Scholger R(2009)The Pufels/Bulla road section:deciphering environmental changes across the Permian–Triassic boundary to Olenekian by integrated litho-,magneto-and isotope stratigraphy.A field guide.Geol Alp 6:116–132

    Brandner R,Horacek M,Keim L(2012)Permian–Triassic-boundary and lower Triassic in the Dolomites,Southern Alps(Italy).JAlp Geol 55:375–400

    Brookfield ME,Algeo TJ,Hannigan R,Williams J,Bhat GM(2013)Shaken and stirred:seismites and Tsunamites at the Permian–Triassic boundary,Guryul Ravine,Kashmir,India.Palaios 28:568–582

    Buggisch W,NoéS(1986)Upper Permian and Permian–Triassic boundary of the Carnian(Bellerophon Formation,Tesero horizon,northern Italy).Mem Soc Géol d’Italia 34:91–106

    Craig H(1953)The geochemistry of the stable carbon isotopes.Geochim Cosmochim Acta 3:53–92

    Doglioni C(1987)Tectonics of the Dolomites(Southern Alps,northern Italy).JStruct Geol 9:181–193

    Ettwig KF,Butler MK,Le Paslier D,Pelletier E,Mangenot S,Kuypers MMM,Schreiber F,Dutilh BE,Zedelius J,De Beer D,Gloerich J,Wessels HJCT,Van Alen T,Luesken F,Wu ML,Van De Pas-Schoonen KT,Op Den Camp HJM,Janssen-Megens EM,Francoijs KJ,Stunnenberg H,Weissenbach J,Jetten MSM,Strous M(2010)Nitrite-driven anaerobic methane oxidation by oxygenic bacteria.Nature 464:543–548

    Farabegoli E,Tonidandel D(2012)Stratigrafia e facies al limite Permianao-Triassico nell dolomite occidentali(Provincia di Bolzano,Italia):una revisione.Geol Alp 9:120–155

    Farabegoli E,Perri MC,Posenato R(2007)Environmental and biotic changes across the Permian–Triassic boundary in western Tethys:the Bulla parastratotype,Italy.Glob Planet Change 55:109–135

    Faure G,Mensing TM,Taylor EL(1990)Carbon isotope composition of Permian and Triassic plants in silicified peat,Transantarctic Mountains.Antarct JRev 1990:26–27

    Gaetani M(2010)From Permian to Cretaceous:Africa as pivotal between extensions and rotations of Tethys and Atlantic Oceans.JVirtual Explor.https://doi.org/10.3809/jvirtex.2010.00235

    Ghaderi A,Leda L,Schobben M,Korn D,Ashouri AR(2014)Highresolution stratigraphy of the Changhsingian(Late Permian)successions of NW Iran and the Transcaucasus based on lithological features,conodonts and ammonoids.Foss Rec 17:41–57

    Gorjan P,Kaiho K,Kakegawa T,Niitsuma S,Chen ZQ,Kajiwara Y,Nicora A(2007)Paleoredox,biotic and sulfur-isotopic changes associated with the end-Permian mass extinction in the western Tethys.Chem Geol 244:483–492

    Gorjan P,Kaiho K,Chen ZQ(2008)A carbon-isotope study of an end Permian mass-extinction horizon,Bulla,northern Italy:a negativeδ13C shift prior to the marine extinction.Terra Nova 20:253–258

    Grasby SE,Sanei H,Beauchamp B(2011)Catastrophic dispersion of coal fly ash into oceansduring the Latest Permian extinction.Nat Geosci 4:104–107

    Harris PM,Purkis SJ,Ellis J,Swart PK,Reijmer JJG(2015)Mapping bathymetry and depositional facies on Great Bahama Bank.Sedimentology 62:566–589

    Herrmann E,Hochuli PA,Bucher H,Roohi G(2012)Uppermost Permian to Middle Triassic palynology of the Salt Range and Surghar Range,Pakistan.Rev Palaeobot Palynol 169:61–965

    Higgins JA,Schrag DP(2006)Beyond methane:towardsatheory for the Paleocene–Eocene thermal maximum.Earth Planet Sci Lett 245:523–537

    Holser WT,Sch?nlaub H-P,Attrep M Jr,Boeckelmann K,Klein P,Magaritz M,Orth CJ,Fenninger A,Jenny C,Kralik M,Mauritsch H,Pak E,Schramm J-M,Statteger K,Schm?ller R(1989)A unique geochemical record at the Permian/Triassic boundary.Nature 337:39–44

    Holser WT,Sch?nlaub H-P,Boeckelmann K,Magaritz M(1991)The Permian–Triassic of the Gartnerkofel-1 core(Carnic Alps,Austria):synthesis and conclusions.Abh Geologischen Bundesanstalt 45:213–232

    Jiang H,Lai X,Yan C,Aldridge RJ,Wignall P,Sun Y(2011)Revised conodont zonation and conodont evolution across the Permian–Triassic boundary at the Shangsi section,Guangyuan,Sichuan,South China.Glob Planet Change 77:103–115

    Kaufman AJ,Knoll AH(1995)Neoproterozoic variations in the C-isotopic composition of seawater:stratigraphic and biogeochemical implications.Precambr Res 73:27–49

    Klein P(1991)The Permian–Triassic of the Gartnerkofel-1 core(Carnic Alps,Austria):geochemistry of common and trace elements 1—ICP,AAS and LECO.Abh Geologischen Bundesanstalt 45:109–121

    Korte Ch,Veizer J,Leythaeuser D,Below R,Schwartz L(2001)Evolution of Permian and lower Triassicδ13C in marine and terrigenous organic material.Terra Nostra 4:30–34

    Korte C,Pande P,Kalia P,Kozur HW,Joachimski MM,Oberh?nsli H(2010)Massive volcanism at the Permian–Triassic boundary and its impact on the isotope composition of the ocean and atmosphere.JAsian Earth Sci 37:293–311

    Kozur HW(2007)Biostratigraphy and event stratigraphy in Iran around the Permian–Triassic Boundary(PTB):implications for the causes of the PTB biotic crisis.Glob Planet Change 55:155–176

    Kraus SH,Brandner R,Heubeck C,Kozur HW,Struck U,Korte C(2013)Carbon isotope signatures of Latest Permian marine successions of the Southern Alps suggest a continental runoff pulse enriched in land plant material.Foss Rec 16:97–109.https://doi.org/10.1002/mmng201300004

    Krull ES,Lehrmann DJ,Druke D,Kessel B,Yu YY,Li R(2004)Stable carbon isotope stratigraphy across the Permian–Triassic boundary in shallow marine carbonate platforms,Nanpanjiang basin,south China.Palaeogeogr Palaeoclimatol Palaeoecol 204:297–315.https://doi.org/10.1016/S0031-0182(03)00732-6

    Lebreton CCM,Borrero JC(2013)Modeling the transport and accumulation of floating debris generated by the 12 March,2011 Tohoku tsunami.Mar Pollut Bull 66:53–58

    Magaritz M,Holser WT(1991)The Permian–Triassic of the Gartnerkofel-1 core(Carnic Alps,Austria):carbon and Oxygen isotope variations.Abh Geologischen Bundesanstalt 45:149–163

    Magaritz M,Krishnamurthy RV,Holser WT(1992)Parallel trends in organic and inorganic carbon isotopes across the Permian/Triassic boundary.Am JSci 292:727–739

    Mette W,Roozbahani P(2012)Late Permian(Changsinghian)ostracods of the Bellerophon Formation at Seis (Siusi)(Dolomites,Italy).JMicropaleontol 31:73–87

    Muttoni G,Dallanave E,Channell JET(2013)The drift history of Adria and Africa from 280 Ma to present,Jurassic true polar wandering,and zonal climate control on Tethyan sedimentary facies.Palaeogeogr Palaeoclimatol Palaeoecol 386:415–435

    Newman JW,Parker PL,Behrens EW(1973)Organic carbon isotope ratios in Quaternary cores from the Gulf of Mexico.Geochim Cosmochim Acta 37:225–238

    NoéSU(1987)Facies and palaeogeography of the marine Upper Permian and of the Permian–Triassic boundary in the southern Alps (Bellerophon Formation, Tesero horizon). Facies 16:89–142

    O’Leary MH(1988)Carbon isotopes in photosynthesis.Bioscience 38:328–336

    Pak EN,Holser WT(1991)The Permian–Triassic of the Gartnerkofel-1 core(Carnic Alps,Austria):sulfur isotopes.Abh Geologischen Bundesanstalt 45:165–167

    Posenato R(2009)Survival patterns of macrobenthic marine assemblages during the end-Permian mass extinction in the western Tethys(Dolomites,Italy).Palaeogeogr Palaeoclimatol Palaeoecol 280:150–167

    Retallack GJ(2013)Permian and Triassic greenhouse crises.Gondwana Res 24:90–103

    Retallack GJ,Krull ES(2006)Carbon isotopic fractionation in lipids from methanotrophic bacteria:relevancefor interpretation of the geochemical record of biomarkers.Geol Soc Am Spec Pap 399:249–268

    Riccardi A,Kump LR,Arthur MA,D’Hondt S(2007)Carbon isotope evidence for chemocline upward excursions during the end-Permian event. Palaeogeogr Palaeoclimatol Palaeoecol 248:73–81

    Sch?nlaub H-P(1991)The Permian–Triassic of the Gartnerkofel-1 core(Carnic Alps,Austria):conodont biostratigraphy.Abh Geologischen Bundesanstalt 45:79–98

    Sephton MA,Looy CV,Veefkind RJ,Brinkhuis H,De Leeuw JW,Visscher H(2002)Synchronous record ofδ13C shift in the oceans and atmosphere at the end of the Permian.Geol Soc Am Spec Pap 356:455–462

    Shen J,Feng Q,Algeo TJ,Li C,Planavsky NJ,Zhou L,Zhang M(2016)Two pulses of oceanic environmental disturbance during the Permian–Triassic boundary crisis.Earth Planet Sci Lett 443:139–152

    Smith BN,Epstein S(1971)Two categories ofδ13C ratios for higher plants.Plant Physiol 47:380–384

    Song H,Wignall PB,Daoliang C,Tong J,Sun Y,Song H,He W,Tian L(2014)Anoxia/high temperature double whammy during the Permian–Triassic marine crisis and its aftermath.Sci Rep.https://doi.org/10.1038/srep04132

    Southam JR,Hay WW(1981)Global sedimentary mass balance and sealevel changes.In:Emiliani C(ed)Thesea,vol 7.Wiley,New York,pp 1617–1684

    Strauss H,Peters-Kottig W(2003)The Paleozoic to Mesozoic carbon cycle revisited:the carbon isotopic composition of terrestrial organic matter.Geochem Geophys Geosyst 4:1–15.https://doi.org/10.1029/2003GC000555

    Summons RE,Jahnke LL,Roksandic Z(1994)Carbon isotopic fractionation in lipids from methanotrophic bacteria:relevance for interpretation of the geochemical record of biomarkers.Geochim Cosmochim Acta 58:2853–2863

    Sun Y,Joachimski MM,Wignall PB,Yan Chumbo,Chen Yanlong,Jiang Haishul,Lai Xulong(2012)Lethally hot temperatures during the early Triassic greenhouse.Science 338:366–370

    Taipale SJ,Peltomaa E,Hiltunen M,Jones RI,Hahn MW,Biasi C,Brett MT(2015)Inferring phytoplankton,terrestrial plant and bacteria bulkδ13C values from compound specific analyses of lipids and fatty acids.PLoS ONE 10(7):e0133974.https://doi.org/10.1371/journal.pone.0133974

    Warren JK(2006)Evaporites:sediments,resources and hydrocarbons.Springer,Berlin

    Wickman FE(1952)Variations in the relative abundance of the carbon isotopesin plants.Geochim Cosmochim Acta 2:243–252

    Wignall PB,Hallam A,Xulong Lai,Fengqing Yang(1995)Palaeoenvironmental changes across the Permian/Triassic at Shangsi(N.Sichuan,China).Hist Biol 10:175–189

    Wilkin RT,Barnes HJ,Brantley SL(1996)The size distribution of framboidal pyrite in modern sediments:an indicator of redox conditions.Geochim Cosmochim Acta 60:3897–3912

    Wolbach WS,Anders E(1989)Elemental carbon in sediments:determination and isotopic analysis in the presence of Kerogen.Geochim Cosmochim Acta 53:1637–1647.https://doi.org/10.1016/0016-7037(89)90245-7

    Wolbach WS,Roegge DR,Gilmour I(1994)The Permian–Triassic of the Gartnerkofel-1 core(Carnic Alps,Austria):organic carbon isotope variation.In:Conference on new developments regarding the K/T event and other catastrophes in earth history.Lunar and Planetary Institute,Houston,pp 133–134

    Zheng QF,Cao CQ,Zhang MY(2013)Sedimentary features of the Permian–Triassic boundary sequence of the Meishan section in Changxing County,Zhejiang Province.Sci China Earth Sci 56:56–969

    猜你喜歡
    楊鵬圍屋內向
    黔中訪古·榕江客家圍屋
    內向的你
    呼喚生命
    贛南圍屋與閩中土堡的建筑比較研究
    稱呼
    對內向人的8個誤解
    文苑(2018年17期)2018-11-09 01:29:30
    做最好的內向者
    文苑(2018年17期)2018-11-09 01:29:28
    你回避社交,真不是因為內向
    文苑(2018年17期)2018-11-09 01:29:28
    Proton Beam Generated by Multi-Lasers Interaction with Rear-Holed Target
    圍屋的月光
    嶺南音樂(2017年1期)2017-03-18 06:44:50
    免费黄频网站在线观看国产| 亚洲欧美成人综合另类久久久| 日韩av不卡免费在线播放| 欧美日韩一区二区视频在线观看视频在线| 国产一区二区三区综合在线观看| 免费看不卡的av| 日韩欧美一区视频在线观看| 免费黄色在线免费观看| 黄色配什么色好看| 国产成人午夜福利电影在线观看| 亚洲欧美色中文字幕在线| 秋霞伦理黄片| av有码第一页| 国产有黄有色有爽视频| 男女边摸边吃奶| 日本午夜av视频| 精品国产一区二区久久| 9色porny在线观看| 美女福利国产在线| 人妻系列 视频| tube8黄色片| 宅男免费午夜| 99精国产麻豆久久婷婷| 欧美亚洲 丝袜 人妻 在线| 美女主播在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 校园人妻丝袜中文字幕| 91精品伊人久久大香线蕉| 亚洲国产最新在线播放| 男人爽女人下面视频在线观看| 日韩欧美精品免费久久| 不卡av一区二区三区| 99久久精品国产国产毛片| www.精华液| 国产精品人妻久久久影院| 性少妇av在线| 大片电影免费在线观看免费| 中国国产av一级| av电影中文网址| 国产深夜福利视频在线观看| 国产男女超爽视频在线观看| av片东京热男人的天堂| 精品国产国语对白av| 韩国精品一区二区三区| 亚洲经典国产精华液单| 亚洲美女视频黄频| 亚洲av免费高清在线观看| 免费少妇av软件| 在线看a的网站| av免费在线看不卡| 精品卡一卡二卡四卡免费| 天天躁夜夜躁狠狠躁躁| 波野结衣二区三区在线| 爱豆传媒免费全集在线观看| 欧美日韩av久久| 在线观看免费视频网站a站| av网站免费在线观看视频| 亚洲综合色网址| 性色avwww在线观看| 亚洲成人一二三区av| 国产毛片在线视频| 欧美bdsm另类| 亚洲精品av麻豆狂野| 国产精品久久久久久久久免| 色网站视频免费| 亚洲av男天堂| 亚洲av免费高清在线观看| 亚洲三级黄色毛片| 超色免费av| 中国国产av一级| 热re99久久精品国产66热6| 国产精品二区激情视频| 少妇人妻 视频| 男男h啪啪无遮挡| 亚洲美女搞黄在线观看| 日本-黄色视频高清免费观看| 爱豆传媒免费全集在线观看| 亚洲精品成人av观看孕妇| 另类亚洲欧美激情| 亚洲精品视频女| 国产视频首页在线观看| 欧美日韩亚洲高清精品| 国产av码专区亚洲av| 桃花免费在线播放| 久久久久精品性色| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品人妻偷拍中文字幕| 精品国产一区二区三区久久久樱花| 国产探花极品一区二区| 日本免费在线观看一区| 麻豆av在线久日| 久久精品国产自在天天线| 中文精品一卡2卡3卡4更新| 午夜免费鲁丝| av不卡在线播放| 妹子高潮喷水视频| 国产xxxxx性猛交| 国产欧美亚洲国产| 亚洲精品aⅴ在线观看| 看非洲黑人一级黄片| 午夜久久久在线观看| 少妇猛男粗大的猛烈进出视频| 人妻系列 视频| 亚洲精品美女久久久久99蜜臀 | 久久av网站| 欧美亚洲 丝袜 人妻 在线| 亚洲精品久久午夜乱码| 久久久a久久爽久久v久久| 国产成人精品久久久久久| 一边亲一边摸免费视频| 香蕉精品网在线| 亚洲人成77777在线视频| 精品一区二区免费观看| 亚洲欧美一区二区三区国产| 亚洲在久久综合| 国产欧美日韩综合在线一区二区| 国产精品香港三级国产av潘金莲 | 99re6热这里在线精品视频| 欧美人与性动交α欧美精品济南到 | 丰满乱子伦码专区| 女的被弄到高潮叫床怎么办| 男女下面插进去视频免费观看| 欧美国产精品一级二级三级| 久久久久久人妻| 黄频高清免费视频| 一级毛片电影观看| 国产爽快片一区二区三区| 久久国产精品大桥未久av| 777米奇影视久久| 少妇人妻精品综合一区二区| 九草在线视频观看| av网站在线播放免费| 日韩一区二区三区影片| 成人亚洲欧美一区二区av| 精品午夜福利在线看| 最近2019中文字幕mv第一页| 午夜福利,免费看| 中文字幕人妻熟女乱码| 中文乱码字字幕精品一区二区三区| av视频免费观看在线观看| 亚洲熟女精品中文字幕| 一区二区三区乱码不卡18| 在线观看免费视频网站a站| 交换朋友夫妻互换小说| 色网站视频免费| 亚洲图色成人| 女人高潮潮喷娇喘18禁视频| 国产精品久久久av美女十八| 不卡视频在线观看欧美| 狠狠婷婷综合久久久久久88av| 亚洲天堂av无毛| 中文字幕最新亚洲高清| 久久久久网色| 自线自在国产av| 人妻一区二区av| 伊人亚洲综合成人网| av片东京热男人的天堂| 一区二区三区四区激情视频| 国产精品免费视频内射| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产日韩一区二区| 久久这里只有精品19| 欧美日韩视频高清一区二区三区二| 在线观看免费高清a一片| 精品一区二区三区四区五区乱码 | 色吧在线观看| 午夜福利在线观看免费完整高清在| 久久久精品国产亚洲av高清涩受| 成人18禁高潮啪啪吃奶动态图| 欧美日韩国产mv在线观看视频| 天天躁夜夜躁狠狠躁躁| 黄色配什么色好看| 美女主播在线视频| 久久久久久久精品精品| 妹子高潮喷水视频| 亚洲精品美女久久久久99蜜臀 | 欧美国产精品va在线观看不卡| 久久精品国产a三级三级三级| 99久久人妻综合| 国产日韩欧美亚洲二区| 十八禁网站网址无遮挡| 欧美日韩成人在线一区二区| 国产亚洲欧美精品永久| 久久国内精品自在自线图片| 伊人久久大香线蕉亚洲五| 亚洲男人天堂网一区| 一级片免费观看大全| 精品久久久久久电影网| 精品第一国产精品| 久久人人爽人人片av| 人妻 亚洲 视频| 永久网站在线| av免费在线看不卡| av国产久精品久网站免费入址| 精品99又大又爽又粗少妇毛片| 亚洲经典国产精华液单| 国产日韩一区二区三区精品不卡| 一级爰片在线观看| 又大又黄又爽视频免费| 99热全是精品| 叶爱在线成人免费视频播放| 欧美少妇被猛烈插入视频| 国产精品久久久久成人av| 一边摸一边做爽爽视频免费| 欧美日韩亚洲国产一区二区在线观看 | 91成人精品电影| 国产欧美亚洲国产| 这个男人来自地球电影免费观看 | 天堂8中文在线网| 另类精品久久| 人人妻人人爽人人添夜夜欢视频| 男女啪啪激烈高潮av片| 日韩三级伦理在线观看| 国产精品久久久久久av不卡| 久热久热在线精品观看| 久久精品国产a三级三级三级| 国产精品.久久久| 人人妻人人澡人人看| 亚洲色图综合在线观看| 国产av一区二区精品久久| 精品国产一区二区久久| 香蕉精品网在线| 欧美精品一区二区大全| 中文字幕精品免费在线观看视频| 国产在线免费精品| 青春草亚洲视频在线观看| 精品人妻一区二区三区麻豆| 国产 一区精品| 一区二区三区乱码不卡18| 久久av网站| 亚洲av.av天堂| 超碰97精品在线观看| 免费观看在线日韩| videossex国产| 久久久a久久爽久久v久久| 国产精品成人在线| 亚洲精品第二区| 国产av码专区亚洲av| 久久影院123| 亚洲国产毛片av蜜桃av| 国产国语露脸激情在线看| 777久久人妻少妇嫩草av网站| 国产在线免费精品| 两个人看的免费小视频| 久久久精品免费免费高清| 少妇人妻久久综合中文| 久久人人97超碰香蕉20202| 这个男人来自地球电影免费观看 | 日本欧美视频一区| 亚洲av.av天堂| 国产成人欧美| 久久免费观看电影| 国产精品熟女久久久久浪| av有码第一页| 欧美精品av麻豆av| 成年女人在线观看亚洲视频| 国产97色在线日韩免费| 男人舔女人的私密视频| 五月伊人婷婷丁香| 亚洲精品在线美女| 欧美亚洲 丝袜 人妻 在线| 在现免费观看毛片| 精品国产一区二区三区久久久樱花| 综合色丁香网| 久久狼人影院| 精品久久久久久电影网| 自线自在国产av| 最近最新中文字幕大全免费视频 | 亚洲一级一片aⅴ在线观看| 啦啦啦中文免费视频观看日本| 亚洲av综合色区一区| 午夜福利一区二区在线看| 国产有黄有色有爽视频| 亚洲,一卡二卡三卡| 国产午夜精品一二区理论片| 国产男人的电影天堂91| 波多野结衣av一区二区av| 美女主播在线视频| 黄色 视频免费看| 美女大奶头黄色视频| 久久午夜福利片| 人妻一区二区av| 午夜激情久久久久久久| 丝袜喷水一区| 免费在线观看黄色视频的| 韩国高清视频一区二区三区| 国产极品天堂在线| 免费日韩欧美在线观看| 成年美女黄网站色视频大全免费| 精品久久久精品久久久| 波野结衣二区三区在线| 亚洲婷婷狠狠爱综合网| 人人妻人人澡人人爽人人夜夜| 久久ye,这里只有精品| 国产精品久久久av美女十八| 各种免费的搞黄视频| 狠狠精品人妻久久久久久综合| 国产精品偷伦视频观看了| 午夜激情av网站| 一级毛片黄色毛片免费观看视频| 国产免费一区二区三区四区乱码| 国产精品.久久久| 天美传媒精品一区二区| 91精品三级在线观看| 国产高清国产精品国产三级| 亚洲三级黄色毛片| 一边亲一边摸免费视频| 亚洲精品久久成人aⅴ小说| 亚洲一级一片aⅴ在线观看| 免费黄网站久久成人精品| 午夜av观看不卡| 亚洲欧美精品综合一区二区三区 | 国产1区2区3区精品| 熟女av电影| 国产亚洲午夜精品一区二区久久| 男人添女人高潮全过程视频| 日本vs欧美在线观看视频| 黄色 视频免费看| 国产黄频视频在线观看| 一级a爱视频在线免费观看| 高清黄色对白视频在线免费看| 国产在视频线精品| 夫妻性生交免费视频一级片| 中文字幕色久视频| 性色av一级| av有码第一页| 欧美日韩视频精品一区| 国产成人a∨麻豆精品| 亚洲图色成人| 日本av免费视频播放| 99久国产av精品国产电影| 国产探花极品一区二区| 国产精品秋霞免费鲁丝片| 一区二区三区激情视频| 亚洲第一区二区三区不卡| 777米奇影视久久| 国产黄色视频一区二区在线观看| 欧美激情极品国产一区二区三区| 日本wwww免费看| 欧美精品亚洲一区二区| 亚洲在久久综合| 国产男女内射视频| 超碰97精品在线观看| 永久免费av网站大全| 国精品久久久久久国模美| 日本欧美视频一区| 波多野结衣一区麻豆| 欧美 亚洲 国产 日韩一| kizo精华| 亚洲精品久久久久久婷婷小说| 黄色毛片三级朝国网站| 巨乳人妻的诱惑在线观看| 国产精品偷伦视频观看了| 国产在视频线精品| 尾随美女入室| 亚洲av.av天堂| 国产精品国产三级国产专区5o| 国产av精品麻豆| 亚洲欧洲精品一区二区精品久久久 | 日韩大片免费观看网站| 三级国产精品片| 大陆偷拍与自拍| 国产视频首页在线观看| tube8黄色片| 最新中文字幕久久久久| 久久久久精品性色| 一级毛片黄色毛片免费观看视频| 久久97久久精品| 在线观看一区二区三区激情| 日本-黄色视频高清免费观看| 黄色一级大片看看| 免费观看a级毛片全部| 国产成人免费无遮挡视频| 丝瓜视频免费看黄片| 日韩人妻精品一区2区三区| 亚洲成人手机| 另类亚洲欧美激情| 桃花免费在线播放| 超碰97精品在线观看| 纵有疾风起免费观看全集完整版| 久久韩国三级中文字幕| 久热这里只有精品99| av片东京热男人的天堂| 国产精品国产三级国产专区5o| 肉色欧美久久久久久久蜜桃| 日韩成人av中文字幕在线观看| 免费少妇av软件| 日韩精品有码人妻一区| 一二三四在线观看免费中文在| 亚洲成人av在线免费| 色视频在线一区二区三区| 欧美日韩综合久久久久久| 一区二区三区四区激情视频| 久久久久久久久久人人人人人人| 最近手机中文字幕大全| 国产女主播在线喷水免费视频网站| 国产老妇伦熟女老妇高清| 黄频高清免费视频| 狂野欧美激情性bbbbbb| 欧美精品一区二区免费开放| 天堂俺去俺来也www色官网| 青草久久国产| 欧美日韩亚洲高清精品| 国产成人91sexporn| 国产野战对白在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美色中文字幕在线| 亚洲精品国产一区二区精华液| 国产免费又黄又爽又色| 欧美bdsm另类| 国产黄色视频一区二区在线观看| 久久女婷五月综合色啪小说| 国产日韩一区二区三区精品不卡| 国产色婷婷99| 国产97色在线日韩免费| 麻豆乱淫一区二区| 美女脱内裤让男人舔精品视频| xxxhd国产人妻xxx| 一区福利在线观看| 国产成人91sexporn| 欧美亚洲日本最大视频资源| 国产成人精品久久二区二区91 | 男女下面插进去视频免费观看| 日本爱情动作片www.在线观看| 国产淫语在线视频| 国产精品偷伦视频观看了| 9热在线视频观看99| 久久国产精品大桥未久av| 丰满迷人的少妇在线观看| 久久婷婷青草| av免费在线看不卡| 狠狠精品人妻久久久久久综合| 日产精品乱码卡一卡2卡三| 国产精品久久久久成人av| 五月开心婷婷网| 两个人看的免费小视频| 成人午夜精彩视频在线观看| 最近最新中文字幕免费大全7| 久久久久久人妻| 两性夫妻黄色片| a 毛片基地| 国产男女超爽视频在线观看| 日本av手机在线免费观看| 国产不卡av网站在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产野战对白在线观看| 日本wwww免费看| 欧美成人午夜免费资源| 欧美日韩视频精品一区| 麻豆精品久久久久久蜜桃| 狠狠婷婷综合久久久久久88av| 国产成人a∨麻豆精品| 伊人久久大香线蕉亚洲五| 少妇被粗大的猛进出69影院| 2022亚洲国产成人精品| 欧美精品亚洲一区二区| 一级毛片黄色毛片免费观看视频| 搡女人真爽免费视频火全软件| 久久精品久久久久久久性| 国产女主播在线喷水免费视频网站| 看免费av毛片| 精品久久蜜臀av无| 天堂中文最新版在线下载| 可以免费在线观看a视频的电影网站 | 国产精品一区二区在线不卡| 久久精品aⅴ一区二区三区四区 | 一边摸一边做爽爽视频免费| 精品福利永久在线观看| 老司机影院成人| 久久精品国产亚洲av高清一级| 午夜福利影视在线免费观看| 国产男女超爽视频在线观看| 亚洲欧美一区二区三区久久| 午夜福利在线免费观看网站| 久久精品国产综合久久久| 成人亚洲精品一区在线观看| 91精品伊人久久大香线蕉| 最近中文字幕2019免费版| 超碰成人久久| 亚洲av欧美aⅴ国产| 欧美日韩av久久| 边亲边吃奶的免费视频| 精品国产国语对白av| 国产av精品麻豆| 亚洲精品国产av成人精品| 欧美日韩一区二区视频在线观看视频在线| 黄色毛片三级朝国网站| 色网站视频免费| 99久久精品国产国产毛片| 在线看a的网站| 曰老女人黄片| 汤姆久久久久久久影院中文字幕| 黄网站色视频无遮挡免费观看| 成人手机av| 晚上一个人看的免费电影| 哪个播放器可以免费观看大片| 丝袜脚勾引网站| 精品福利永久在线观看| 在线免费观看不下载黄p国产| 亚洲av中文av极速乱| 久久久久网色| 黄色配什么色好看| videossex国产| 叶爱在线成人免费视频播放| 亚洲 欧美一区二区三区| 亚洲国产日韩一区二区| 午夜日韩欧美国产| 国产精品二区激情视频| 91在线精品国自产拍蜜月| 日韩熟女老妇一区二区性免费视频| 黄色毛片三级朝国网站| 亚洲av电影在线进入| 超碰成人久久| 电影成人av| 一边摸一边做爽爽视频免费| 一区在线观看完整版| 飞空精品影院首页| 精品久久久久久电影网| 国产精品麻豆人妻色哟哟久久| 少妇的丰满在线观看| 亚洲国产看品久久| 大片电影免费在线观看免费| 日韩精品免费视频一区二区三区| 国产视频首页在线观看| 国产一区二区三区综合在线观看| 中文字幕最新亚洲高清| 久久亚洲国产成人精品v| 综合色丁香网| 女人久久www免费人成看片| 我的亚洲天堂| 免费看不卡的av| 欧美少妇被猛烈插入视频| 亚洲成av片中文字幕在线观看 | 亚洲国产精品成人久久小说| 18在线观看网站| 国产精品久久久久久精品古装| 成人手机av| 欧美成人精品欧美一级黄| 国产精品秋霞免费鲁丝片| 日本欧美视频一区| 久久久久人妻精品一区果冻| 80岁老熟妇乱子伦牲交| 黄色怎么调成土黄色| 波野结衣二区三区在线| 毛片一级片免费看久久久久| 人体艺术视频欧美日本| 曰老女人黄片| 国产精品 国内视频| 性色av一级| 国产麻豆69| 十八禁高潮呻吟视频| 成人国语在线视频| 国产免费现黄频在线看| av国产久精品久网站免费入址| 你懂的网址亚洲精品在线观看| 欧美日韩av久久| 青草久久国产| 久久精品国产亚洲av天美| 日韩三级伦理在线观看| 日韩欧美一区视频在线观看| 成人漫画全彩无遮挡| 伦理电影大哥的女人| av电影中文网址| 精品人妻偷拍中文字幕| 丰满饥渴人妻一区二区三| 日韩中字成人| 乱人伦中国视频| 欧美最新免费一区二区三区| 国产免费视频播放在线视频| 免费观看av网站的网址| 久久久久网色| 久久精品亚洲av国产电影网| 久久久久久人妻| 99热国产这里只有精品6| 亚洲精品在线美女| 欧美日韩视频精品一区| 熟妇人妻不卡中文字幕| 国产精品成人在线| 三级国产精品片| 午夜av观看不卡| 精品人妻一区二区三区麻豆| 又粗又硬又长又爽又黄的视频| 蜜桃在线观看..| 国产免费视频播放在线视频| 日韩,欧美,国产一区二区三区| 午夜日韩欧美国产| 亚洲欧美一区二区三区黑人 | 国产不卡av网站在线观看| 黄色怎么调成土黄色| 香蕉丝袜av| 少妇熟女欧美另类| 国产熟女午夜一区二区三区| 精品亚洲成国产av| 国产片内射在线| 亚洲精品美女久久av网站| 一级毛片我不卡| 男的添女的下面高潮视频| 啦啦啦啦在线视频资源| 极品人妻少妇av视频| 久久婷婷青草| 在线精品无人区一区二区三| 日韩大片免费观看网站| 久久久欧美国产精品| xxxhd国产人妻xxx| 在线天堂最新版资源| 老司机影院成人| 国产熟女午夜一区二区三区| 巨乳人妻的诱惑在线观看| 黄色怎么调成土黄色| 永久网站在线| 精品国产超薄肉色丝袜足j| 精品久久久久久电影网| 欧美在线黄色| 久久人人爽av亚洲精品天堂| 熟女电影av网|