• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Source and yearly distribution of PAHs in the snow from the Hailuogou glacier of Mountain Gongga,China

    2018-07-04 11:28:18ChaoqiYuMeihanLiYinlingCaoXianHeHongZhouTingtingZhangChongyingLi
    Acta Geochimica 2018年3期

    Chaoqi Yu?Meihan Li?Yinling Cao?Xian He?Hong Zhou?Tingting Zhang?Chongying Li

    1 Introduction

    Polycyclic aromatic hydrocarbons(PAHs)and their derivatives are associated with the incomplete combustion of organic material,arising from episodes of volcanic eruptions,forest fires(Bjorseth and Ramdahl 1985),and from human activities of burning fossil fuels(Baek et al.1991).Because of their inertness and volatility,PAHs can travel long distances in the air and be distributed in different environmental media,leading to widespread pollution(Wang et al.2006).

    In high latitude or high-altitude areas,PAHs are transferred and trapped in the ice and snow via wet atmospheric deposition(rain,snow,etc).Over time,significant amounts of PAHscanbeaccumulated insuchlocations.Wheniceand snow melt as a result of seasonal temperature changes,the accumulated PAHs will be released to other environmental compartmentssuch assurrounding water,soil,and air,thus causing adetrimental impact to theecosystem of theregion.The general trend of global warming is making this dire situationeven morepressing.Therefore,itisvery important to investigate PAHs in ice and snow from glacier(Li et al.2010)and study theirorigin,distribution,and transport.Until now,research on organic pollutants,particularly PAHs in snow and ice,have been mainly focused on the north and southpoles(Kangetal.2012;Herbertetal.2005;Gregorand Gummer 1989;Halsall 2004;Jaffrezo et al.1993),Greenland(Jaffrezo etal.1994),and the Alpsregion(Carreraetal.2001;Villaet al.2006;Finizo et al.2006).Studiesof PAHs in the Qinghai Tibet Plateau region started fairly late and publications on the topic are still scarce(Li et al.2010)although the sediment core and road dusts were carefully studied(Han etal.2015;Weietal.2015).Wangetal.(2008)studied levels and distribution of organochlorine pesticides and PAHsin iceand snow from the Dasuopu glacier.Wang et al.(2007)reported concentrations of organochlorine pesticidesin new snow samplesat four different altitudesin east Rongbuk glacier of the Everest region and studied their correlationswith altitude.Lietal.(2010)investigated on the distribution and source of the PAHs in ice and snow from four glaciersincluding the Qilian Mountain Qiyiglacier and the Tanggula Dongkemadiglacier.More recently,Yu et al.(2014)studied thedistributionand thesourceof the PAHsin snow over a short period in the Hailuogou glacier,Mt.Gongga.

    Inthiswork,snow samplesfromthe Hailuogou glacier of Mt.Gongga in China were collected over a 3-year period from 2012 to 2014,and their concentrations were analyzed for 16PAHs.Themainpurposeof thispreliminarystudywas to determine the levels of PAHs in this glacier and try to identify the distribution and source of these PAHs and‘to estimate their transport distance from origin.

    1.1 Sample collection

    In January of each year,three snow sampleswere collected from Hailuogou for a total of nine samples over the 3-year period from 2012 to 2014.The sampling sitesare shown in Fig.1.The thickness of snow cover was always greater than 25 cm.Snow samples were collected with a clean stainless-steel shovel and packed in a 10-L clean aluminum drum which was sealed with three layers of aluminum paper.The sample information is given in Table 1.The amount of each sample was equivalent to 3–4 L of water.

    2 Experimental

    2.1 Sample pretreatment

    A solid phasemembraneextraction method wasadopted for the enrichment of PAHsfrom snow samples.The C18solid phase extraction disks membrane(Supelco Analytical,diameter 47 mm)was fixed on a sand core suction filter device.The membrane was activated by passing through 5.0 mL of cyclohexane,n-hexane,methanol,and purewater each in sequence.All of the organic reagents used were HPLC grade.The snow sample was melted at room temperature and the upper clear liquid was loaded on the activated C18membrane.The flow rate was regulated between 12 and 30 mL·min-1.The eluent was discarded,and 5.0 mL of n-hexane was then added to the C18membrane and let soaking for 10 min before being eluted.This step was repeated three times.The combined eluent was passed through a chromatography column filled with anhydrous sodium sulfate(activated in a muffle furnace at 400°C for 24 h),and the volumewasfurther reduced to 1.0 mL under astream of high purity nitrogen.A procedureblank(3 L of pure water)was processed along with the snow samples.

    2.2 Sample analysis

    2.2.1 Reference standards and reagents

    Sixteen certified PAHs standards were purchased from AccuStandard(USA),including Naphthalene(Nap),Acenaphthylene(Ace),Acenaphthene(Acp),Fluorene(Fle),Phenanthrene(Phe),Anthracene(Ant),Fluoranthene(Fla),Pyrene(Pyr),Benzo(a)anthracene(BaA),Chrysene(Chry),Benzo(b)fluoranthene (BbF),Benzo [k]fluoranthene(BkF),Benzo[a]pyrene(BaP),Indeno[1,2,3-cd]pyrene(InP),Dibenz[a,h]anthracene(DahA),and Benzo(g,h,i)-perylene(BghiP).Individual stock solutions at concentrations of 100.00 μg·mL-1each were prepared in dichloromethane–acetone 50:50(v:v).The working standard solutions were prepared by mixing each of the PAH stock solutions and diluting with dichloromethane–acetone 50:50 for a final concentration of 2.00 μg·mL-1each.

    Fig.1 Map of sampling sites

    Table 1 Sample information

    All organic solventswere HPLCgradefrom Changzheng Chemical Reagent Co.Ltd.(Chengdu,China).Milli-Qwater was used as pure water.Unless otherwise stated,all the reagentsused inthisstudy wereof analytical gradeor higher.

    2.2.2 GC–MSconditions

    Analyses were performed using a 7890-5975 Gas Chromatography–Mass Spectrometer(GC–MS)(Agilent Technologies,Santa Clara,CA)equipped with an autosampler(Triplus Co.USA).Separations were facilitated using an HP-5MS analytical column,30 m×0.25 mm×0.25μm(SN:USB439554H,Agilent Technologies).

    Thecarrier gaswashelium(99.999%purity)with aflow rate of 2.0 mL·min-1at 164.6 kPa.Injections were made in the splitless mode with an injection volume of 2.00μL.The injector temperature was 290°C.The temperature program was as follows:holding initial temperature at 100 °C for 1 min,ramping to 240 °C at 10 °C·min-1(linear),holding for 5.0 min,ramp to 280°C at 20 °C·min-1(linear)and holding for 8.0 min.

    The mass spectrometry measurements were carried out through an electron impact(EI,70 eV,230°C)coupled with a full scan mode.Other parameters included scanning range of 0–500 amu,transmission temperature of 150 °C and solvent delay time of 2.0 min.

    3 Results and discussion

    3.1 Qualification of the method

    The analysis was performed using a five-point standard calibration curve.Linear correlation coefficients of the 16 PAHs varied from 0.9975 to 0.9998.Recoveries and relative standard deviations were 75.9%–99.2%and 2.8%–15.8%,respectively.Detection limits were ranged from 0.001 to 0.010 μg·L-1.

    3.2 Distribution of PAHs in sample area

    The results for individual 16 PAHs over the 3-year period from 2012 to 2014 are listed in Tables 2,3 and 4 of Appendix 1,and they are plotted in Fig.2.The amount of individual PAHs varies widely,ranging from non-detectable(DahA and BghiP)to~100 ng·L-1(Phe).Among the 16 PAHs that are reported here,nine PAHs(Nap,Ace,Acp,Fle,Phe,Fla,Pyr,BaA,BkF)were highest for the year 2012,four(Chry,BbF,BaP,INP)for 2013 and one(Ant)for 2014.This change in dominance possibly indicates a change in the source of PAHs over the 3-year period.

    The total concentration of the 16 measured PAHs was 452 ± 31 ng·L-1for 2012,305 ± 54 ng·L-1for 2013 and 290 ± 30 ng·L-1for 2014(Fig.3),seemingly suggesting a downward trend which would be in synchronization with the Chinese government’s environmental protection policies installed in energy-saving and emission-reduction.Although the results of year 2014 cannot be considered as significantly different from thoseof year 2013,thefact that apart from 2 exceptions,all other PAHs are lower in 2014 seems suggesting the downward trend of PAHs emission.Regardless of the trend,measured PAH concentrations are still much higher in the Hailuogou glacier in comparison to those from the Qinghai-Tibet Plateau glacier between 20.45 and 60.57 ng·L-1(Li et al.2010)and some remote mountains in Europe between 5.6 and 81 ng·L-1(Carrera et al.2001).

    3.3 Origin of PAHs

    3.3.1 Source of PAHs

    In spite of its limitations,many researchers have used ratiosof PAHsto tentatively identify their sourcesin whichthe same molecular weight but different structure(i.e.,isomers)are used in the calculation.Among them Phenanthrene(Phe)/Anthracene(Ant),Fluoranthene(Fla)/Pyrene(Pyr),Benzo[a]Anthracene(BaA)/Chrysene(Chry),and Benzo[b]Fluoranthene(BbF)/Benzo[k]Fluoranthene(BkF)are included(Guinan et al.2001;Lee et al.1977;Yunker et al.2002;Colmsjo et al.1986;Simoneit et al.1993;Dominguez et al.1996).It isimportant to select PAH isomerswhoseratiosare stable during their emission,migration,and deposition.In their simulating studies of atmospheric particles,Behymer and Hites(1985)showed that Fluoranthene(Fla)and Pyrene(Pyr),and Benzo[a]Anthracene(BaA)and Chrysene(Chry)have very similar half-lifes and are highly stable,and therefore they can be used reliably for pollution source identification.

    Fig.2 Concentration distribution of PAHs in snows

    Fig.3 Inter-annual distribution and trend of total PAHs in snow

    Fig.4 Cross chart of PAHs ratio

    The isomer ratio characteristics in ice and snow from Hailuogou are shown in Table 5.Research conducted by Yunker et al.(2002)has indicated that the ratio of Fla/(Pyr+Fla)from petroleum crude oil pollution istypically less than 0.4;this ratio gets greater than 0.5 for wood and coal burning and between 0.4 and 0.5 for petroleum refinery products.The ratio value from Hailuogou was greater than 0.5(see Table 2;Fig.4),suggesting that the PAHs in ice and snow from Hailuogou are mainly from coal and timber burning.

    According to Colmsjo et al.(1986),Simoneit et al.(1993),and Dominguez et al.(1996),theratio of BaA/Chry can be used to differentiate PAHsfrom automobileexhaust and coal combustion produces.The values are typically 0.53±0.06 and 1.11±0.06 for automobile exhaust and coal burning,respectively.Hailuogou snow samples show that the ratio of BaA/Chry in 2012 averaged 1.16,but decreased at 0.44 for 2013 and 2014,respectively(Table 5 in Appendix 1;Fig.4),thus suggesting an increase contribution from automobile activitiesover the 3-year period.

    In summary,datafrom Hailuogou snow samplesseem to suggest that the PAHswere mainly coming from wood and coal burning early on(2012),and automobile activities contributed more significantly in 2013 and 2014.Pollution from petroleum industries was much less than expected in the study area.This conclusion fits well with the characteristics of local industry,residence,and recent development of tourism in the surrounding areas.The Hailuogou glacier is located in the Ganzi district of the southeast Sichuan Province and surrounded by mining industry.It is also close to several largest cities in Western China,including Chengdu and Chongqing.Pollution from industrial emissions,mining in particular,has become a serious concern.In addition,it is estimated more than 1 million touriststravel to the Hailuogou glacier by automobileseach year,and this number has been steadily increasing in the last years(Administration of Hailuogou scenic spot 2015).Several hundred restaurants and hotels have been built recently,and nearly half of them burn coal and wood as their energy sources.Almost all local residents use coal and timber for their cooking and heating needs on an everyday basis.All these factors are leading to a much higher amount of PAHs as compared to Qinghai-Tibet Plateau glacier and the characteristic PAH ratio patterns in snow from the Hailuogou glacier.

    3.3.2 Estimation of distance from emission source

    In this study,2,3,and 4-ring PAHs have high loadings in snow from the Hailuogou glacier,and the sum of them accounted for 96.4%,91.6%,and 96.0%of total PAHs in 2012,2013,and 2014,respectively.The distance of migration,or mobility of PAHs is directly related to their molecular weights,as with a lower molecular weight,a PAH likely migrating further in the atmosphere.

    An accurate estimate of the distance travelled by PAHs isan important step in determining thelocation of emission and deciphering their origin to better protecting the environment.Li et al.(2014)have established a model to estimate PAH travel distance in the atmosphere,based on factors such as the ratio between the concentrations of Phenanthrene(Phe)and Anthracene(Ant)in the samples collected at the destination and at the emission source the concentration of OH free radicals and wind speed.The travel distance for Hailuogou was then estimated as follows:

    Fig.5 Backward trajectories for Hailuogou(left 2012;middle 2013;right 2014)

    Fig.6 The maximum range of emission sources of the Hailuogou snow PAHs

    where Dt(km)is the longest possible distance that a PAH can travel in the atmosphere;COH(mol·cm-3)is the average concentration of OH free radical in the atmosphere;SW(m·s-1)is the wind speed;is the concentration ratio of phenanthrene and anthracene at the site of emission;is the concentration ratio of anthracene and phenanthrene in snow samples(destination).

    The wind speed,Sw,used in our calculation was the maximum possible wind speed of 60 m·s-1(Gatey and Miller 2007)instead of the actual wind speed,since we intended to estimate the longest possible travel distance.Also,the lowest possible OH radical concentration of 0.3×106molecules cm-3in the atmosphere(Hewett and Harrison 1985)was used for the same reason.The value ofwastaken from coal burning,which isestimated at 5.67(Galarneau 2008,US EPA).The average values ofat the Hailuoguo sampling sites were 0.117,0.131,and 0.125 for 2012,2013,and 2014,respectively.The maximum distance between the emission source and Hialuogou was then estimated to be 492,357,and 413 km for 2012,2013,and 2014,respectively.

    The 120 h backward trajectories were calculated using the hybrid single-particle lagrangian integrated trajectory model and the NOAA data downloaded from http://ready.arl.noaa.gov/hypub-bin/traj1.pl.The trajectory end points were set at 500 m above the sampling site.Back trajectories showed that the air mass originates from different directions(Fig.5).

    Therefore,the concentrations of PAHs in the snow samples should reflect the PAHs emissions surrounding Hailuogou.Figure 6 shows areas and cities within 500 km radius of Hailuoguo,which cover part of Sichuan,Yunnan,Chongqing and Tibet.

    4 Conclusions

    Analyses of snow samples from the Hailuogou glacier revealed high concentrations of 16 PAHs,ranging from 452 ± 31 to 290 ± 30 ng·L-1over the years from 2012 to 2014,demonstrating a remarkable decreasing trend,which may suggest the possible consequence of implementation of more strict air pollution law(Air pollution prevention action plan,2013).Compounds with 2–4 rings are accounted for more than 90%of the total PAHs.The maximum travel distance of these PAHs was estimated to be~500 km.The main source of the PAHs is likely coming from coal combustion with increasing contributions from automobile emissions in more recent years.This conclusion is in agreement with the characteristics of coal as a main energy source and recent development in tourism around the Hailuogou area.

    AcknowledgementsThis study was supported by the National Natural Science Foundation of China(41073085,41573014)and the programof Sichuan Provincefor researchinnovationteamof universities(12TD001).The authors thank Prof.Belzile N and Chen YW at Laurentian University(Canada)and Dr.S.Huang at Mallinckrodt Biopharmaceuticals(USA)for the helpful edits and valuable discussions.

    Appendix 1:GC/MSresults of 16 PAHs in Hailuoguo snow samples

    See Tables 2,3,4 and 5.

    Table 2 PAH results for 2012

    Table 3 PAH results for 2013

    Table 4 PAH results for 2014

    Table 5 PAH isomer ratios in snow from Hailuogou

    Administration of Hailuogou scenic spot(2015)http://www.hailuo gou.com/html/info/about_us/

    Air pollution prevention action plan(2013)http://www.gov.cn/jrzg/2013-09/12/content_2486918.htm

    Baek SO,Field RA,Goldstone ME,Kirk PW,Lester JN,Perry R(1991)A review of atmospheric polycyclic aromatic hydrocarbons:sources,fate and behaviour.Water Air Soil Pollut 60:273–300

    Behymer TD,Hites RA(1985)Photolysis of polycyclic aromatic hydrocarbons adsorbed on simulated atmospheric particulates.Environ Sci Technol 19(10):1004–1006

    Bjorseth A,Ramdahl T(1985)Source and emissions of PAH,handbook of polycyclic aromatic hydrocarbons,vol 2.Marcel Dekker Inc,New York

    Carrera G,Fernandez P,Vilanova RM,Grimalt JO(2001)Persistent organic pollutants in snow from European high mountain areas.Atmos Environ 35(2):245–254

    Colmsjo AL,Ostman CE,Zebuhr YU,Soderstrom H,Wadding A(1986)Polynuclear aromatic compounds in the ambient air of Stockholm.Chemosphere 15(2):169–182

    Dominguez A,Alvarez R,Blanco CG,Diez MA(1996)Chromatographic evaluation of some selected polycyclic aromatic hydrocarbons of coal tars produced under different coking conditions and pitches derived from them.JChromatogr A 719(1):181–194

    Finizo A,Villa S,Raffaele F,Vighi M(2006)Variation of POP concentrations in fresh–fallen snow and air on an Alpine glacier(Monte Rosa).Ecotoxicol Environ Saf 63(1):25–32

    Galarneau E(2008)Source specificity and atmospheric processing of airborne PAHs:implications for source apportionment.Atmos Environ 42(35):8139–8149

    Gatey DA,Miller CA(2007)An investigation into 50-year return period wind speed differences for Europe.J Wind Eng Ind Aerodyn 95:1040–1052

    Gregor DJ,Gummer WD(1989)Evidence of atmospheric transport and deposition of organochlorine pesticides and polychlorinated biphenyls in Canadian Arctic snow.Environ Sci Technol 23(5):1528–1531

    Guinan J,Charlesworth M,Service M,Oliver T(2001)Sources and geochemical constraints of polycyclic aromatic hydrocarbons(PAHs)in sediments and mussels of two Northern Irish Sealoughs.Mar Pollut Bull 42(11):107–108

    Halsall CJ(2004)Investigating the occurrence of persistent organic pollutants(POPs)in the arctic:their atmospheric behaviour and interaction with the seasonal snow pack.Environ Pollut 28(1–2):163–168

    Han YM,Wei C,Bandowe BAM,Wilcke W,Cao JJ,Xu BQ,Gao SP,Tie XX,Li GH,Jin ZD,An ZS(2015)Elemental carbon and polycyclic aromatic compounds in a 150-year sediment core from Lake Qinghai,Tibetan Plateau,China:influence of regional and local sources and transport pathways.Environ Sci Technol 49(7):4176–4183

    Herbert BMJ,Halsall CJ,Villa S,Jones KC,Kallenborn R(2005)Rapid changes in PCB and OC pesticide concentration in arctic snow.Environ Sci Technol 39(9):2998–3005

    Hewett CN,Harrison RM(1985)Tropospheric concentrations of the hydroxyl radical–a review.Atmos Environ 19:545–554

    Jaffrezo JL,Masclet P,Clain MP,Wortham H,Beyne S,Cachier H(1993)Transfer function of polycyclic aromatic hydrocarbons from the atmosphere to the polar ice.I:determination of atmospheric concentrations at dye 3,Greenland.Atmos Environ 27(17):2781–2785

    Jaffrezo JL,Clain MP,Masclet P(1994)Polycyclic aromatic hydrocarbons in the polar ice of Greenland,geochemical use of these atmospheric tracers.Atmos Environ 28(6):1139–1145

    Kang JH,Son MH,Hur SD,Hong SM,Motoyama H,Fukui K,Chang YS(2012)Deposition of organochlorine pesticides into the surface snow of East Antarctica. Sci Total Environ 433(1):290–295

    Lee ML,Prado GP,Howard JB,Hites RA(1977)Source identification of urban airborne polycyclic aromatic hydrocarbons by chromatographic mass spectrometry and high resolution mass spectrometry.Biomed Mass Spectrom 4(3):182–185

    Li QL,Wang NL,Wu XB,Pu JC,He JQ,Zhang CW(2010)Distribution characteristics and sources of PAHs in snow from the Qinghai-Tibet Plateau.Sci Sin Terrae 40(10):1399–1409

    Li CY,Yu CQ,Li MH,Yin G(2014)Modelling the atmospheric transport distance of polycyclic aromatic hydrocarbons based on the photochemical breakdown.Int J Environ Eng Nat Resour 5:240–246

    Simoneit BR,Cass GR,Hildemann LM,Rogge WF,Mazurek MA(1993)Sources of fine organic aerosol.2.Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks.Environ Sci Technol 27(4):636–651

    Villa S,Negrelli C,Maggi V,Finizio A,Vighi M(2006)Analysisof a firn core for assessing POPseasonal accumulation on an Alpine glacier.Ecotoxicol Environ Saf 63(1):17–24

    Wang XP,Yao SD,Cong ZY,Yan XL,Kang SC,Zhang Y(2006)The content and altitudinal gradient distribution of polycyclic aromatic hydrocarbons in soil and vegetation in the Everest region.Chin Sci Bull 51(21):2517–2524

    Wang F,Zhu T,Xu BQ,Kang SC(2007)Organochlorine pesticides in new-fallen snow from East Rongbuk Glacier.Mt.Everest.Sci China(Ser D Earth Sci)37(5):670–675

    Wang XP,Yao TD,Wang PL,Wei Y,Tian LD(2008)The recent deposition of persistent organic pollutants and mercury to the Dasuopu glacier,Mt.Xixiabangma,central Himalayas.Sci Total Environ 394(1):134–143

    Wei C,Bandowe BAM,Han YM,Cao JJ,Zhan CL,Wilcke W(2015)Polycyclic aromatic hydrocarbons(PAHs)and their derivatives(alkyl-PAHs,oxygenated-PAHs,nitrated-PAHs and azaarenes)in urban road dusts from Xi’an,Central China.Chemosphere 134:512–520

    Yu CQ,He X,Cao YL,Zhou H,Liu B,Li CY(2014)Short-term distribution and sourceapportionment of PAHsin thesnow from Hailuogou.Gongga Mt.Geochim 43(4):358–364

    Yunker MB,Macdonald RW,Vingarzan R,Mitchell RH,Goyette D,Sylvestre S(2002)PAHs in the Fraser River basin:a critical appraisal of PAH ratios as indicators of PAH source and composition.Org Geochem 33(4):489–515

    午夜福利影视在线免费观看| 精品一区二区三区av网在线观看| 后天国语完整版免费观看| 视频区欧美日本亚洲| av有码第一页| 国产91精品成人一区二区三区| 国产一卡二卡三卡精品| 欧美老熟妇乱子伦牲交| 午夜免费观看网址| 欧美黑人精品巨大| 日本黄色视频三级网站网址 | 国产精品影院久久| 香蕉久久夜色| 欧美大码av| 欧美人与性动交α欧美精品济南到| 欧美精品一区二区免费开放| 欧美乱妇无乱码| 亚洲色图 男人天堂 中文字幕| 国产黄色免费在线视频| 满18在线观看网站| 欧美日韩亚洲综合一区二区三区_| ponron亚洲| 日韩欧美在线二视频 | 黄色视频不卡| 欧美精品亚洲一区二区| 亚洲成a人片在线一区二区| 99re6热这里在线精品视频| 亚洲精品美女久久久久99蜜臀| 日韩欧美三级三区| 亚洲,欧美精品.| 亚洲精品粉嫩美女一区| 日韩视频一区二区在线观看| 在线看a的网站| 亚洲中文av在线| 亚洲精品美女久久av网站| 亚洲av成人av| 国产成人精品在线电影| 黄色视频,在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 精品免费久久久久久久清纯 | 韩国av一区二区三区四区| 欧美国产精品va在线观看不卡| av电影中文网址| 亚洲va日本ⅴa欧美va伊人久久| 国产在视频线精品| 国产成+人综合+亚洲专区| 欧美 亚洲 国产 日韩一| 九色亚洲精品在线播放| 亚洲熟女毛片儿| 不卡一级毛片| 成人av一区二区三区在线看| 欧美 日韩 精品 国产| 中文字幕制服av| 人人妻,人人澡人人爽秒播| 国产男靠女视频免费网站| 天天影视国产精品| 亚洲国产看品久久| 91成人精品电影| www日本在线高清视频| 亚洲国产精品合色在线| 成人永久免费在线观看视频| 最近最新中文字幕大全电影3 | 男女床上黄色一级片免费看| 久久精品aⅴ一区二区三区四区| 1024香蕉在线观看| 精品人妻熟女毛片av久久网站| 亚洲久久久国产精品| 亚洲精品美女久久久久99蜜臀| 亚洲性夜色夜夜综合| 最近最新中文字幕大全免费视频| 性色av乱码一区二区三区2| 狠狠狠狠99中文字幕| 一级,二级,三级黄色视频| a在线观看视频网站| 两性夫妻黄色片| 久久这里只有精品19| 国产单亲对白刺激| 国产精品久久久久久精品古装| 欧美 亚洲 国产 日韩一| 又黄又爽又免费观看的视频| 国产视频一区二区在线看| 日韩免费高清中文字幕av| 亚洲成人手机| 免费日韩欧美在线观看| 变态另类成人亚洲欧美熟女 | 午夜精品久久久久久毛片777| 在线观看免费午夜福利视频| 国产国语露脸激情在线看| 国产精品美女特级片免费视频播放器 | 亚洲精品在线美女| 精品电影一区二区在线| 韩国精品一区二区三区| 天天影视国产精品| 1024香蕉在线观看| 欧美激情 高清一区二区三区| 成年人免费黄色播放视频| 日韩视频一区二区在线观看| 亚洲黑人精品在线| 欧美人与性动交α欧美精品济南到| 欧美丝袜亚洲另类 | 亚洲精品粉嫩美女一区| 极品教师在线免费播放| 久久99一区二区三区| 这个男人来自地球电影免费观看| 国产精品偷伦视频观看了| 日本一区二区免费在线视频| 极品人妻少妇av视频| 美女扒开内裤让男人捅视频| 91大片在线观看| 久久久久久久久免费视频了| 免费一级毛片在线播放高清视频 | 久久天躁狠狠躁夜夜2o2o| 欧美乱妇无乱码| 久久久久视频综合| 午夜成年电影在线免费观看| 50天的宝宝边吃奶边哭怎么回事| 国产成人精品久久二区二区免费| 国产精品国产高清国产av | 男女免费视频国产| 一边摸一边抽搐一进一小说 | 变态另类成人亚洲欧美熟女 | 大片电影免费在线观看免费| 国产片内射在线| 精品久久久久久久久久免费视频 | 美女 人体艺术 gogo| 女人精品久久久久毛片| 国产精品永久免费网站| 91精品国产国语对白视频| 色婷婷久久久亚洲欧美| 欧美亚洲日本最大视频资源| 国产淫语在线视频| 91成人精品电影| 老熟女久久久| 久久久国产欧美日韩av| 99国产精品免费福利视频| 亚洲av第一区精品v没综合| a级毛片在线看网站| 国产色视频综合| 99久久精品国产亚洲精品| 在线播放国产精品三级| 午夜日韩欧美国产| 亚洲欧美激情在线| 精品人妻1区二区| 深夜精品福利| 亚洲av电影在线进入| 十八禁人妻一区二区| 首页视频小说图片口味搜索| 9色porny在线观看| 王馨瑶露胸无遮挡在线观看| 一边摸一边做爽爽视频免费| 亚洲国产精品sss在线观看 | 国产精品久久久久久精品古装| 免费黄频网站在线观看国产| 老汉色av国产亚洲站长工具| 中文字幕人妻丝袜制服| 亚洲一区二区三区欧美精品| 免费在线观看亚洲国产| √禁漫天堂资源中文www| 成人精品一区二区免费| 国产乱人伦免费视频| 不卡一级毛片| 亚洲片人在线观看| 久久久水蜜桃国产精品网| 亚洲五月天丁香| 久久这里只有精品19| 夫妻午夜视频| 丝袜美足系列| 国产又色又爽无遮挡免费看| 亚洲成av片中文字幕在线观看| 51午夜福利影视在线观看| 久久性视频一级片| 人人妻人人澡人人看| 黄色丝袜av网址大全| 王馨瑶露胸无遮挡在线观看| 在线观看66精品国产| av天堂在线播放| 久久中文看片网| 亚洲欧美一区二区三区黑人| 两性夫妻黄色片| 老司机午夜福利在线观看视频| 亚洲 欧美一区二区三区| 国产精品亚洲一级av第二区| 亚洲欧美色中文字幕在线| 亚洲久久久国产精品| 麻豆av在线久日| e午夜精品久久久久久久| 国产亚洲欧美精品永久| 丰满迷人的少妇在线观看| 国产成+人综合+亚洲专区| 身体一侧抽搐| 宅男免费午夜| 大型av网站在线播放| 很黄的视频免费| 高潮久久久久久久久久久不卡| 午夜激情av网站| 免费黄频网站在线观看国产| 亚洲av成人av| 午夜福利在线观看吧| 亚洲人成伊人成综合网2020| 亚洲情色 制服丝袜| 高清欧美精品videossex| 精品少妇一区二区三区视频日本电影| 日韩 欧美 亚洲 中文字幕| 黄色视频,在线免费观看| 久久久精品国产亚洲av高清涩受| 欧美久久黑人一区二区| 99国产精品一区二区三区| 三上悠亚av全集在线观看| 他把我摸到了高潮在线观看| 中文字幕人妻丝袜制服| aaaaa片日本免费| 免费av中文字幕在线| 美女福利国产在线| 色婷婷久久久亚洲欧美| 老熟女久久久| 啦啦啦 在线观看视频| cao死你这个sao货| 成熟少妇高潮喷水视频| 午夜91福利影院| 18禁观看日本| 久久久久精品人妻al黑| 色精品久久人妻99蜜桃| 如日韩欧美国产精品一区二区三区| 国产区一区二久久| 精品国内亚洲2022精品成人 | 国产欧美日韩一区二区三区在线| 国产xxxxx性猛交| 精品国产一区二区三区久久久樱花| 久久久久久久久久久久大奶| 成年女人毛片免费观看观看9 | 亚洲五月色婷婷综合| 久久久国产欧美日韩av| 亚洲精品粉嫩美女一区| 成人手机av| 中出人妻视频一区二区| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美精品综合一区二区三区| 色在线成人网| 美女高潮到喷水免费观看| 国产精品偷伦视频观看了| svipshipincom国产片| 在线观看舔阴道视频| av电影中文网址| 国产欧美日韩一区二区三区在线| 天堂动漫精品| 免费看十八禁软件| 色综合欧美亚洲国产小说| 色综合婷婷激情| 老司机靠b影院| 欧美黑人欧美精品刺激| 青草久久国产| 国产人伦9x9x在线观看| 水蜜桃什么品种好| 亚洲美女黄片视频| 国产精品自产拍在线观看55亚洲 | 亚洲专区国产一区二区| 国产一区有黄有色的免费视频| 国内毛片毛片毛片毛片毛片| 国产成人一区二区三区免费视频网站| 精品少妇久久久久久888优播| 欧美日韩精品网址| 男女午夜视频在线观看| 日本黄色日本黄色录像| 成人黄色视频免费在线看| 黄色怎么调成土黄色| 精品国产亚洲在线| 日本精品一区二区三区蜜桃| 高清毛片免费观看视频网站 | 色精品久久人妻99蜜桃| √禁漫天堂资源中文www| 757午夜福利合集在线观看| 精品国产一区二区三区四区第35| 欧美激情高清一区二区三区| 在线观看免费午夜福利视频| 国产99久久九九免费精品| 亚洲精品在线美女| 欧美老熟妇乱子伦牲交| 国产av又大| 亚洲色图综合在线观看| 老司机靠b影院| 国产精品.久久久| 午夜精品久久久久久毛片777| 久久久久精品国产欧美久久久| 咕卡用的链子| 好男人电影高清在线观看| 黑丝袜美女国产一区| 欧美日本中文国产一区发布| 最新的欧美精品一区二区| 多毛熟女@视频| 亚洲国产精品合色在线| 国产亚洲精品第一综合不卡| 老司机影院毛片| 欧美丝袜亚洲另类 | 久久天躁狠狠躁夜夜2o2o| 精品第一国产精品| 超碰97精品在线观看| www.999成人在线观看| 国产熟女午夜一区二区三区| 免费在线观看日本一区| 自线自在国产av| 免费观看人在逋| 精品午夜福利视频在线观看一区| 亚洲国产精品合色在线| 午夜福利一区二区在线看| 久久精品成人免费网站| 久久午夜综合久久蜜桃| 亚洲精品国产区一区二| 欧美日本中文国产一区发布| 久久这里只有精品19| 国产在视频线精品| 亚洲成人免费av在线播放| 男女下面插进去视频免费观看| 成人三级做爰电影| 老熟妇乱子伦视频在线观看| 久久精品aⅴ一区二区三区四区| 久久久久国内视频| 久久ye,这里只有精品| 国产99白浆流出| 久久久水蜜桃国产精品网| 久9热在线精品视频| 香蕉久久夜色| 午夜福利欧美成人| 国产成人精品无人区| 最近最新中文字幕大全电影3 | 热99国产精品久久久久久7| 人妻 亚洲 视频| 久久精品成人免费网站| 淫妇啪啪啪对白视频| 欧美激情久久久久久爽电影 | 国产单亲对白刺激| 国产免费男女视频| 国产精品久久久人人做人人爽| 国产精品 国内视频| 怎么达到女性高潮| 亚洲专区中文字幕在线| 成在线人永久免费视频| 老司机午夜福利在线观看视频| 亚洲一区二区三区不卡视频| 国产xxxxx性猛交| 欧美日韩成人在线一区二区| 国产精品电影一区二区三区 | 69精品国产乱码久久久| 伦理电影免费视频| 成人特级黄色片久久久久久久| 男女床上黄色一级片免费看| 日本一区二区免费在线视频| 久久精品亚洲精品国产色婷小说| 午夜福利乱码中文字幕| 亚洲熟女精品中文字幕| 啦啦啦在线免费观看视频4| 老熟女久久久| 久久中文字幕人妻熟女| av网站在线播放免费| 黑人巨大精品欧美一区二区mp4| 亚洲国产精品sss在线观看 | 91麻豆精品激情在线观看国产 | 久久久久视频综合| 美女国产高潮福利片在线看| 日本精品一区二区三区蜜桃| 亚洲一区高清亚洲精品| 又黄又爽又免费观看的视频| 99热只有精品国产| 久久精品91无色码中文字幕| 99精品久久久久人妻精品| 夫妻午夜视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲九九香蕉| 老司机午夜福利在线观看视频| 一本大道久久a久久精品| 另类亚洲欧美激情| 精品国产一区二区久久| 欧美日韩av久久| 大香蕉久久网| 久久久久国产一级毛片高清牌| 久久国产精品影院| 大陆偷拍与自拍| 国产精品欧美亚洲77777| 黄色 视频免费看| 少妇裸体淫交视频免费看高清 | 国产精品1区2区在线观看. | 欧美日韩成人在线一区二区| 色播在线永久视频| 精品视频人人做人人爽| 制服诱惑二区| 91九色精品人成在线观看| 亚洲国产精品sss在线观看 | 亚洲av第一区精品v没综合| 亚洲综合色网址| 男人舔女人的私密视频| 久久人妻熟女aⅴ| 中文字幕av电影在线播放| 日韩精品免费视频一区二区三区| 国产成人av教育| 亚洲色图av天堂| 19禁男女啪啪无遮挡网站| 久久久国产一区二区| 亚洲伊人色综图| 日韩大码丰满熟妇| 男男h啪啪无遮挡| 国产不卡av网站在线观看| 欧美日韩一级在线毛片| 水蜜桃什么品种好| 19禁男女啪啪无遮挡网站| 国产高清videossex| av线在线观看网站| 最新的欧美精品一区二区| 日本wwww免费看| 欧美日韩精品网址| 国产一区二区三区在线臀色熟女 | 啦啦啦视频在线资源免费观看| 巨乳人妻的诱惑在线观看| 久久人妻熟女aⅴ| 窝窝影院91人妻| 日韩欧美一区二区三区在线观看 | 久久人妻av系列| 国产在线观看jvid| 精品熟女少妇八av免费久了| 岛国在线观看网站| 亚洲中文av在线| 成人18禁高潮啪啪吃奶动态图| 精品亚洲成a人片在线观看| 成人黄色视频免费在线看| 女人爽到高潮嗷嗷叫在线视频| 日韩精品免费视频一区二区三区| 99riav亚洲国产免费| 天天躁日日躁夜夜躁夜夜| 一a级毛片在线观看| 欧美日韩福利视频一区二区| 1024视频免费在线观看| 精品少妇久久久久久888优播| 人妻 亚洲 视频| 日本vs欧美在线观看视频| 王馨瑶露胸无遮挡在线观看| 亚洲男人天堂网一区| 可以免费在线观看a视频的电影网站| 国产精品1区2区在线观看. | 亚洲av第一区精品v没综合| 啦啦啦在线免费观看视频4| 在线观看一区二区三区激情| 国产精品成人在线| 看片在线看免费视频| 日韩成人在线观看一区二区三区| 男人操女人黄网站| 亚洲va日本ⅴa欧美va伊人久久| 日韩熟女老妇一区二区性免费视频| 日本wwww免费看| www日本在线高清视频| 久久久国产精品麻豆| 91字幕亚洲| 亚洲中文日韩欧美视频| 一本大道久久a久久精品| 久热这里只有精品99| 99热国产这里只有精品6| 国产精品免费视频内射| 在线永久观看黄色视频| 国产国语露脸激情在线看| 欧美精品亚洲一区二区| 99精国产麻豆久久婷婷| 亚洲精品国产一区二区精华液| 精品人妻1区二区| 久久精品成人免费网站| 无限看片的www在线观看| 91麻豆精品激情在线观看国产 | 欧美精品一区二区免费开放| 亚洲 欧美一区二区三区| 黄片小视频在线播放| 精品久久久久久电影网| 一本综合久久免费| 在线免费观看的www视频| 欧美一级毛片孕妇| 在线观看66精品国产| 成年动漫av网址| 日韩有码中文字幕| 757午夜福利合集在线观看| 一本一本久久a久久精品综合妖精| 欧美黄色淫秽网站| 亚洲欧美精品综合一区二区三区| 高清视频免费观看一区二区| 两人在一起打扑克的视频| 91九色精品人成在线观看| 美女午夜性视频免费| 亚洲人成电影观看| 精品高清国产在线一区| 日韩 欧美 亚洲 中文字幕| 亚洲av日韩精品久久久久久密| 中文欧美无线码| 国内久久婷婷六月综合欲色啪| 国产99久久九九免费精品| 无遮挡黄片免费观看| 国产精品九九99| 亚洲av日韩在线播放| 亚洲中文日韩欧美视频| 啦啦啦免费观看视频1| 久久性视频一级片| 日日摸夜夜添夜夜添小说| 99久久人妻综合| 男女免费视频国产| 在线观看日韩欧美| 妹子高潮喷水视频| 91精品三级在线观看| 国产成人免费观看mmmm| 麻豆成人av在线观看| 亚洲人成77777在线视频| 久久久久久亚洲精品国产蜜桃av| 老汉色∧v一级毛片| 免费观看人在逋| 欧美精品av麻豆av| 国产欧美日韩一区二区三区在线| 91av网站免费观看| 午夜久久久在线观看| 欧美 日韩 精品 国产| 精品国产一区二区三区久久久樱花| 两人在一起打扑克的视频| 超碰97精品在线观看| 亚洲中文av在线| 国产精品欧美亚洲77777| 男人舔女人的私密视频| 夜夜爽天天搞| 亚洲午夜理论影院| 一进一出好大好爽视频| 久久这里只有精品19| 国产精品99久久99久久久不卡| 国产亚洲欧美在线一区二区| 中出人妻视频一区二区| 中文字幕制服av| 久久中文字幕一级| 久久精品国产综合久久久| 日韩精品免费视频一区二区三区| 久久香蕉激情| 成年版毛片免费区| 国产av精品麻豆| 高潮久久久久久久久久久不卡| 精品久久久久久,| 亚洲aⅴ乱码一区二区在线播放 | 国产午夜精品久久久久久| 在线av久久热| 老汉色∧v一级毛片| 狠狠狠狠99中文字幕| 久久久久久久久免费视频了| 亚洲片人在线观看| 亚洲综合色网址| 老熟女久久久| 91国产中文字幕| 国产亚洲精品久久久久久毛片 | 日本一区二区免费在线视频| 亚洲专区国产一区二区| 国产一区二区激情短视频| 法律面前人人平等表现在哪些方面| www.自偷自拍.com| 狠狠狠狠99中文字幕| 久久影院123| 人妻 亚洲 视频| 亚洲五月天丁香| 美国免费a级毛片| 国产一区二区激情短视频| 窝窝影院91人妻| 欧美午夜高清在线| 亚洲人成伊人成综合网2020| 国产视频一区二区在线看| 久久99一区二区三区| 男男h啪啪无遮挡| 午夜福利一区二区在线看| 老司机午夜福利在线观看视频| 久久婷婷成人综合色麻豆| 久久亚洲真实| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧美激情综合另类| 亚洲精品中文字幕在线视频| 香蕉丝袜av| 亚洲自偷自拍图片 自拍| 99在线人妻在线中文字幕 | 免费日韩欧美在线观看| 久久亚洲真实| 看黄色毛片网站| 捣出白浆h1v1| 91大片在线观看| 国产又色又爽无遮挡免费看| 免费在线观看亚洲国产| 91字幕亚洲| 人人妻人人澡人人看| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕另类日韩欧美亚洲嫩草| 久久国产精品人妻蜜桃| 亚洲国产看品久久| 99热网站在线观看| ponron亚洲| 18禁美女被吸乳视频| 97人妻天天添夜夜摸| 国产亚洲精品久久久久5区| 怎么达到女性高潮| 亚洲av美国av| √禁漫天堂资源中文www| 妹子高潮喷水视频| 欧美日韩福利视频一区二区| 不卡一级毛片| 男人的好看免费观看在线视频 | 天天添夜夜摸| 免费久久久久久久精品成人欧美视频| 国产又爽黄色视频| 精品欧美一区二区三区在线| 国产av一区二区精品久久| 亚洲第一欧美日韩一区二区三区| 亚洲精品在线观看二区| 免费看十八禁软件| 建设人人有责人人尽责人人享有的| 亚洲五月天丁香| 亚洲色图av天堂| 亚洲五月婷婷丁香| 少妇 在线观看| 久久中文字幕一级| 欧美精品亚洲一区二区| 高清黄色对白视频在线免费看| 脱女人内裤的视频| 亚洲成av片中文字幕在线观看| 国产在线精品亚洲第一网站|