• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geochemical constraints on the tectonic setting of the Sonakhan Greenstone Belt,Bastar Craton,Central India

    2018-07-04 11:28:22DeshmukhHariDiwanManuPrasanth
    Acta Geochimica 2018年3期

    S.D.Deshmukh?K.R.Hari?P.Diwan?M.P.Manu Prasanth

    1 Introduction

    The nature of petrogenetic and geodynamic processbehind the generation of Archean continental crust still remains one of the most challenging problems in Earth Science(Hawkesworth et al.2010;Foley et al.2002;Rapp et al.2003;Xiao and Santosh 2014;Zhai 2014).Occurrence of Greenstone-Gneiss association is a common feature of Archean cratons(Naqvi2005).Theterm Greenstone Belt is generally used to describe elongated to variably-shaped terrain of variable length and width,consisting of spatially and temporally related materials from(1)Archean to Proterozoic intrusive and extrusive ultramafic,(2)mafic to felsic rocks commonly associated with variable amounts and types of metasedimentary rocks,and(3)intruded by granitoid plutons.85%of the ophiolite occurrences in the greenstone sequences can be classified as the subductionrelated tectonic environment.Subduction unrelated greenstone occurrencesare mainly developed during ocean basin evolution,and are related to continental rifting,seafloor spreading drift-rift tectonics and plume magmatism(Furnes et al.2014,2015).

    The Peninsular Indian Shield,which is made up of low to high-grade metamorphic terrain,has an age range of 3.6–2.6 Ga.These terrain attained tectonic stability for prolonged periods,and they constitute continental crust designated as cratons(Naqvi and Rogers 1987;Balasubramanyan 2006;Ramakrishnan and Vaidyanadhan 2008).Stabilization of a craton occurs when intruded by plutons,and as a result,the whole-rock isotopic systems become closed so platform sedimentation takes place on the newly formed basement(Rogers and Santosh 2003).The Bastar Craton,which is located in the eastern part of Peninsular India,is bordered by the Satpura mobile belt in the north,the Pranhita–Godavari rift in the south,the Deccan Traps in thewest,the Eastern ghatsmobilebelt in theeast and the Mahanadi rift in the north east(Ramchandra et al.2001;Ramakrishnan and Vaidyanadhan 2008).

    The prominent Greenstone Belts of Peninsular India can be classified into the Keewatin-type and the Dharwar type(Radhakrishna 1976).The Keewatin-type(which includes Hutti-Maski,Sandur,Ramgiri and Kolar belts)can be comparable with other Archaean Greenstone Belts of the world;the Dharwar-type(which includes Bababudan,Chitradurga–Gadag,and Dharwar–Shimoga belts),on the other hand,are akin to the Proterozoic belts of a basinal and geosynclinal type(Radhakrishna and Ramakrishnan 1988,1990).The Sonakhan Greenstone Belt(SGB),located in the Northeastern part of Bastar Craton belongsto the Keewatin type.SGB coversan area of about 1200 km2and represents a late Archaean volcano-sedimentary sequence with mafic and felsic metavolcanic rocks along with Banded Iron Formation,comprised of sedimentary sequences of conglomerate,greywacke,argilliteand ferruginouschert(Arjuni Formation)(Deshmukh et al.2006,2008;Ramchandra et al.2001;Yedekar et al.1990;2003).In the present work,major and trace element geochemical characteristics of metabasalts from SGB are evaluated to elucidate the tectonic setting of the terrain.

    2 General geology of the Sonakhan Greenstone Belt

    The SGB,with NW–SE trend,is almost perpendicular to the NE-SW trending Central Indian Tectonic Zone CITZ(Fig.1).Based on the Rb–Sr data on meta rhyolites of SGB,Ghosh et al.(1995)proposed that the Sonkhan greenstone terrain formed around 2.5 Ga.However no detailed geochemical and isotopic studies are available from this terrain.The Baghmara Formation in the Sonakhan Greenstone terrane is a suite mainly composed of mafic metabasalts with subordinate rhyolite and tuffaceous materials.The mafic metavolcanic rocks of Baghmara Formation are represented by pillowed and massive/schistose metabasalts.Ray et al.(2000)and Ray and Rai(2004)reported potential gold mineralization from the SGB.Venkatesh(2001)carried out ore mineralogical studies in this terrane and proposed a mesothermal origin for gold mineralization.Deshmukh et al.(2008)reported komatiitic affinity for the metabasaltsof the SGB and correlated SGB with the Hutti Greenstone Belt of the Dharwar Craton.

    3 Petrography

    The mineral assemblages exhibited in the metabasalts are as follows:

    In metabasalt,the overall abundance of plagioclase phenocrysts ranges from 5%to 15%.The other phenocryst phasesinclude clinopyroxene and amphibole(Fig.2a).The groundmass consists of plagioclase, clinopyroxene,amphibole,magnetite and sporadic apatite.In some sections,flow texture is also perceptible(Fig.2b).Secondary phases in some of the samples include chlorite,epidote,and calcite.

    4 Geochemistry

    The geochemical analysis was carried out in order to determine the major oxides concentration by X-Ray Fluorescence spectrometry (XRF)Philips-1400 (Holland)instrument.Rare earth elements(REE),high field strength elements(HFSE),large ion lithophile elements(LILE)and transition metals(Ni,Co,Cr,V,and Sc)were analyzed using the ICP-MS technique by ELAN DRC II(Perkin Elmer Sciex Instrument,USA)at the National Geophysical Research Institute,Hyderabad,India.

    Deshmukh et al.(2008)reported the major element geochemistry of the mafic rocks of SGB and argued a komatiite affinity for these rocks.In the present paper,we are presenting the trace element data of the same samples presented in Deshmukh et al.(2008).For the convenience of the readers,we are incorporating major element data from Deshmukh et al.(2008)(Table 1)along with the new trace element data.

    Traditionally,magmatic rocks are classified on the basis of the Total Alkali-Silica(TAS)diagram either by Le Bas et al.(1986)or by Le Bas and Streckeisen(1991).However,the metamorphism and hydrothermal reactions in the greenstone terrain increases the mobility of Na and K.Therefore,classification of igneous rocks in greenstone terrain on the basis of TAS diagram may not be appropriate.Hence,in order to give aproper nomenclature of the rocks,in the present work,we are using Zr/Ti–Nb/Y diagram(Floyd and Winchester 1975).When the samples were plotted in the Zr/Ti–Nb/Y diagram,it was found that all the plots fall in ‘‘basaltic field’’(Fig.3).

    Chondrite-normalized REE pattern of all the rocks are similar(Fig.4)and have a typical flat REE [(La/Lu)n=1–1.5]pattern,which is a characteristic feature of komatiite related rocks.Condie(1989)proposed that the flat REE pattern is a characteristic feature of Archean Greenstone Belts with a komatiitic affinity(TH-1type).Incompatible trace element abundances(Table 1)in comparison to the Primitive mantle suggests that most of the SGB metabasalts are characterised by selective enrichment of Large Ion Lithophile Elements(LILE),such as Rb,Ba,and Sr,and relative depletion of High Field Strength Elements(HFSE)such as Nb,P,Ti,Y,and Yb.The primitive mantle normalized multi-element spider diagram is characterized by pronounced negative Nb and Zr anomalies(Fig.5).The presence of negative Nb anomaly indicates a subduction-related genesis (Pearce 1982). Positive anomalies of Pb and Ta were also observed.Sajona et al.(1996)proposed that the island arc basalts have low Nb content(<2 ppm).The low Nb content in the SGB metabasalts(0.236–2.092 ppm)further substantiates subduction magmatism.

    Fig.1 Regional geological map of Sonakhan Greenstone Terrane(after Das et al.1990)

    Fig.2 Photomicrographs of meta basalts of Sonakhan Greenstone Belt

    5 Discussions

    5.1 Elemental mobility

    Elemental mobility during post-magmatic alteration and metamorphism is a point of concern in the Archaean volcanic rocks(Polat et al.2002).It has been concluded by various workers(Ludden et al.1982;Rajamaniet al.1985;Xie et al.1993;Arndt 1994;Kr?ner et al.2013;Polat 2013)that the effects of alteration on HFSE,Ti,Cr,Ni,and REE(except Eu)are relatively insignificant(Pearce and Peate 1995).The element Zr is often used as an alteration index of metamorphosed volcanic rocks(Pearce 2014;Rollinson 1999).The mobility of LILE such as Rb,K,Sr and Ba is well documented in Archaean volcanic rocks(Arndt and Goldstein 1989;Arndt 1994).

    A general consensus exists that field,petrographic and geochemical criteria may be applied for the evaluation of alteration sensitivity(mobility or immobility of elements)in volcanic rocks that have experienced submarine hydrothermal alteration and metamorphism.These criteria include the preservation of primary volcanic features such as pillows,uniform inter-element ratios and smooth REE patterns(excepting Ce and Eu)etc.However,submarine alteration and metamorphism might have affected the geochemistry of original volcanic rocksto avariableextent as seen in the thin sections.Therefore,the mobility of elements has to be evaluated prior to their application in petrogenetic modeling.

    During hydrothermal processes,some major elements such as Ti,Al,and P are generally immobile,whereas others like Na and Ca are almost always mobile(MacGeehan and MacLean 1980;Mottl 1983).At greenschist facies metamorphic conditions,Si,Ti,Al,Mn,and Premain unchanged,whereas Fe,Mg,Na,and K may be mobilized(Pearce 1982;Rollinson 1993).Usefulnessof major element data is therefore often conditional on unknown factors of metamorphism.Therefore,in the present case,in order to evaluate the effect of metamorphism and hydrothermal alteration,we have to focus on the behavior of the trace elements.The mobility of trace elements in metamorphism can be generalized into two groups.(1)Low field strength(LFS)elements(Cs,Sr,K,Rb,and Ba)are generally mobilized,whereas(2)high field strength(HFS)elements(REE,Sc,Y,Th,Zr,Hf,Ti,Nb,Ta,and P)are relatively immobile(Pearce,1982).Further,Co,Ni,V,and Cr are also considered immobile(Rollinson 1993).The linear trendsare shown with Zr and Hf,because when plotted against Y,they indicate their immobile nature and thuscan be used for petrogenetic modeling(Fig.6a,b).

    5.2 Magma generation and modification

    The tholeiite sequences with komatiitic affinity in the Archaean Greenstone Belts(TH-1 of Condie 1989)generally exhibit a flat REE pattern.Condie and Harrison(1976)studied the Maric Formation in the Midlands Greenstone Belt of Rhodesia and carried out petrogenetic modeling of TH-1,proposing that it is produced by 30%partial melting of a lherzolite source with olivine,clinopyroxene,orthopyroxene and spinel as residual minerals.Arth and Hanson(1975)proposed that TH-1 tholeiite from northwestern Minnesota was derived by 10–25%partial melting of the mantle.The REE patterns of metabasalts of Baghmara Formation closely resemble those of TH-1 from Minnesota,thus pointing towards a similar mantle-melting pattern.When SGB samples were plotted in the La/Yb versus Dy/Yb diagram,they fall in the stability field of spinel peridotite(Fig.7).Modeling of the samples of SGB was carried out using non-modal batch melting process(Baker et al.1997)with La/Yb ratio.The modeling was carried out considering the sample withlowest REE values(SK-6),and the results revealed these rocks were generated by~20%partial melting of a spinel lherzolite(Fig.8).

    Table 1 Major and trace element concentrations of mafic metavolcanics of Sonakhan Greenstone Belt(major element values arefrom Deshmukh et al.2008)

    Fig.3 Zr/Ti versus Nb/Y diagram of mafic meta volcanics from the Sonakhan Greenstone Belt(Pearce 2008)

    Fig.4 Chondrite normalized REE diagram of meta basalts from the Sonakhan Greenstone Belt(Normalizing factors are from Boynton 1984)

    Fig.5 Primitive mantle normalized multi element diagram of meta basalts from the Sonakhan Greenstone Belt(Normalizing factors are from McDonough and Sun 1995)

    Fig.6 a Hf versus Y and b Zr versus Y diagrams indicating a linear geochemical trend for the meta basalts of SGB

    Fig.7 Dy/Yb versus La/Yb plot for the meta basalts from SGB indicating their generation at shallower depths in spinel-peridotite stability field(Jung et al.2006)

    Fig.8 La/Yb versus Yb diagram showing model melting curves for non-model fractional melting of garnet and spinel lherzolite facies(Baker et al.1997).Numbers on the curves represent the percentage of melting of model mantle

    Variousdifferentiation processes have to be evaluated in detail for finding out the reason for magma modification.In the present case,fractional crystallization,which is the most important magma modification process,has been evaluated with the help of trace elements.In the La/Sm-La diagram,data points plot along a nearly horizontal line(Fig.9),indicating that fractional crystallization(Allegre and Minster 1978)has played a vital role in the modification of magma.Thepositiverelationship between Ni and Mg#(Fig.10a)indicates fractional crystallization of olivine minerals(Wilson 1989).Sc iscompatible in pyroxene but not in olivine(Rollinson 1993),and the positive correlation of Sc with Mg#indicate pyroxene fractionation(Fig.10b).

    To evaluate the role of fractional crystallization,Rayleigh’s fractional crystallization model was used.The sample SK-6 exhibits the minimum values for REE(ΣREE=21.85 ppm),and it was considered as representative of the least fractionated magma in the whole assemblage.In contrast,the sample SK-51 with highest REE(ΣREE=51.92 ppm)was considered as the final product of fractional crystallization.It is evident from the variation diagrams and chondrite normalized diagrams that olivine,clinopyroxene,and plagioclase were the governing phases in the fractional crystallization.As these rocks are of tholeiite nature,it can be assumed that olivine governed the crystal fractionation to a lesser degree than clinopyroxene and plagioclase.For fractional crystallization modeling,the fractionating minerals considered were plagioclase,clinopyroxene olivine,magnetite,and ilmenite.Modeling with REE revealed that the most evolved samples represented the product of fractional crystallization of SK-6 with 35%plagioclase,35%clinopyroxene,20%olivine,5%magnetite and 5%ilmenite as fractionating minerals with 40%residual liquid(Fig.11).

    5.3 Geodynamic setting of SGB

    Fig.9 La/Sm versus La Plots of SGB in a nearly horizontal line,indicating importance of fractional crystallization

    Fig.10 Mg#values of SGB samples plotted against a Ni and b Sc

    Fig.11 REE modeling results for fractional crystallization

    During subduction,Ti becomes depleted in the source,whereas V is enriched in the source magma.As the oxidation increases due to subduction-derived fluids,vanadium becomes more incompatible than in the lower oxidation state.Thus,higher Ti/V ratio indicates a subduction influenced source region(Shervais1982).From Ti-V diagram(Fig.12)it wasobserved that all samplesexcept two were characterized by island arc setting.Scattering of thesamplesmay be dueto thevaried metasomatic effect or other post-magmatic alterations.

    Fig.12 V versus Ti tectonic discrimination diagram(Shervais1982)of mafic metavolcanics of Sonakhan Greenstone Belt

    Fig.13 Plot of Th/Yb versus Nb/Yb for metabasaltic rocksof SGB.The mantle array includes constructive plate boundary magmas(NMORB normal mid-ocean ridge basalts,E-MORB enriched mid ocean ridge basalts)and within-plate alkaline basalts(OIB ocean island basalts).AUCC is Archean upper continental crust.Fields for convergent margin basalts include the tholeiitic(TH),calc-alkaline(CA),and shoshonitic(SHO)magmaseries.The vectors S,C,W,and f refer to subduction zone component,crustal contamination,within plate fractionation,and fractional crystallization respectively(after Pearce2008).Forearc,arc,and backarc fieldsareof recent convergent margins fields are from Metcalf and Shervais(2008)

    The classification scheme proposed by Pearce(2008)was followed in the next step.According to Pearce(2008),if the mantle arrays were modified by subduction-derived fluids,it would be enriched in Th.As a result,the Th/Yb ratio would be higher in subduction-related components than that of the mantle array.The basaltic rocks in the present area,when plotted in the Th/Yb versus Nb/Yb diagram(Fig.13),fall in the volcanic arc array with arcfore arc signatures.For further confirmation on the subduction-related genesis of SGB,we carried out the geochemical screening method proposed by Condie(1989).The average values of basaltic rocks from the terrane were compared with four screens,and it wasfound that therocks were characterized by subduction-related genesis(Table 2).The elemental ratios of Nb/La(0.455467),Ti/Y(252.3778),in first order of SCREEN 1 and Ti/V(20.56667),TiO2(0.778889),Ta(0.525667)and Nb(1.350889)values in the second order of SCREEN 1 clearly exhibited the arc basalt tectonic setting for the SGB.Hf/Th(0.953691)and Ce/Nb(5.53783)ratios indicated N-MORB in SCREEN 2.From SCREEN 3 the values of Th/Yb(0.283615),Th/Nb(0.45622),Nb/La(0.455467)exhibited arc basalt characteristics.In SCREEN 4,Zr/Y(0.924893)and Ta/Yb(0.030336)exhibited IAB-CABI character.IAB tectonic framework of the metabasalts from SGB was confirmed with Th/Yb(0.283615)and Ti/Zr(322.0413)ratios from SCREEN 5.Figure 14 depicts a flow chart illustrating different screening methods marked with the behavior of SGB metabasalts on each screen.The chemical composition of subduction zone magmas generated in theconvergent boundarieswasmainly controlled by two sources:the mantle wedge and the slab components(i.e.,fluids and/or melts generated from the subducting slab)(Tatsumi et al.1986;Morris et al.1990;Hawkesworth et al.1993;Pearce and Peate 1995;Pearce 2008).

    Table 2 Geochemical screening of meta basalts of SGB(after Condie 1989)

    Fig.14 Flow chart depicting tectonic classification of mafic metavolcanics from Sonakhan Greenstone Belt(Condie 1989)

    Deshmukh et al.(2017)proposed a subduction-related genesis for the felsic metavolcanic rocks of Bagmara formation of SGB.Prominent negative Nb anomaly in the multi-element spider diagram,along with other elemental fingerprints,clearly indicated subduction magmatism(Keleman et al.2004;Pearce,2008;Perfit et al.1980;Tatsumiet al.1986;Pearceand Stern2006;Hawkesworth et al.1993;Pearce and Peate 1995).In an arc-related environment,the subducted slab underwent dehydration during the initial stageof subduction.The subducting slab dehydrated,and the subduction-derived fluids caused themetasomatism of the mantle wedge.However,the differences in the melting process in a subduction-related environment were primarily due to the difference in PH2O(Manning 2004;Mibe et al.2011;Anderson et al.1980)Thehigher PH2Oin an arc-related environment incorporated LILE and LREE into the melt phase and as a result,the residual mantle became enriched in HFSE.Depletion of HFSE with reference to the LILE and LREE/HFSE ratios and Nb,Zr anomalies,which were perceptible in the mafic rocks of SGB,were characteristic features of Island arc magmas(Fig.5)(Pearce2008;Manning 2004;Wilson and Davidson 1984).The enrichment in LILE indicated that the SGB metabasalts were derived as a result of metasomatism of the depleted mantle wedge beneath the Bastar Craton.The Archean geothermal gradient,size and dynamics of plates collectively played a significant role in the generation of these basaltic rocks.Various studies at Archean greenstone terrane imply that the Neoarchean convergent margins,wedge melting,arc magmatism and slab dehydration were the prominent mechanisms involved in the generation of arc basaltic magma(Wyman 2003;Kerrich et al.1998,Wyman and Kerrich 2009;Lafleche et al.1992).

    AcknowledgementsSDD expresses his sincere thanks to Dr.S.K.Rajput,Principal,Govt.V.Y.T.PG Autonomous College,Durg.The authors are also thankful to Dr.Sandeep Vansutre and Dr.Shailesh Agrawal for their help in the preparation of the manuscript.Financial support from UGC to S.D.Deshmukh is gratefully acknowledged.

    Allegre CJ,Minster JF(1978)Quantitative models of trace element behavior in magmatic processes.Earth Planet Sci Lett 38(1):1–25

    Anderson RN,Stephen ED,Schwarz WM(1980)Dehydration,asthenospheric convection and seismicity in subduction zones.JGeol 88:445–451

    Arndt NT (1994)Archean komatiites.Dev Precambrian Geol 11:11–44

    Arndt NT,Goldstein SL(1989)An open boundary between lower continental crust and mantle:its role in crust formation and crustal recycling.Tectonophysics 161(3):201–212

    Arth JG,Hanson GN(1975)Geochemistry and origin of the early Precambrian crust of northeastern Minnesota.Geochim Cosmochim Acta 39(3):325–362

    Baker JA,Menzies MA,Thirlwall MF,MacPherso CG(1997)Petrogenesis of Quaternary intraplate volcanism,Sana’a,Yemen:implications for plume–lithosphere interaction and polybaric melt hybridization.JPetrol 38(10):1359–1390

    Balasubramanyan MN(2006)Geology and tectonics of India:an overview.International Association of Gondwana Research,Kochi,Japan,p 206

    Boynton WV(1984)Cosmochemistry of the rare earth elements;meteorite studies.In:Henderson P(ed)Rare earth element geochemistry.Elsevier Sci.Publ.Co.,Amsterdam,pp 63–114

    Condie KC(1989)Geochemical changes in basalts and andesites across the Archean Proterozoic boundary:identification and significance.Lithos 23:1–18

    Condie KC,Harrison NM(1976)Geochemistry of the archean Bulawayan group,Midlands Greenstone Belt,Rhodesia.Precambrian Res 3(3):253–271

    Das N,Royburman K,Vatsa US,Mahurkar VY(1990)Sonakhan Schist Belt,a Precambrian granite—greenstone complex.Geol Surv India Spec Publ 28:118–132

    Deshmukh SD,Hari KR,Diwan P(2006)Pillow Lavas of Baghmara Formation(Sonakhan Greenstone Belt),Central India:geochemical constraints from major elements.Gond Geol Mag 21(1):37–42

    Deshmukh SD,Hari KR,Diwan P,Basavarajappa HT(2008)Spinifex textured metabasalt from Sonakhan Greenstone Belt,Central India.Indian Miner 42:71–83

    Deshmukh SD,Hari KR,Diwan P,Manu Prasanth MP(2017)Geochemistry and petrogenesis of felsic meta-volcanic rocks of Baghmara Formation,Sonakhan Greenstone Belt,Central India.JGeosci Res 2(1):69–74

    Floyd PA,Winchester JA(1975)Magma type and tectonic setting discrimination using immobile elements.Earth Planet Sci Lett 27:211–218

    Foley S,Tiepolo M,Vannucci R(2002)Growth and early continental crust controlled by melting of amphibolite in subduction zones.Nature 417:837–840

    Furnes H,De Wit M,Dilek Y(2014)Four billion years of ophiolites reveal secular trends in oceanic crust formation.Geosci Front 5(4):571–603

    Furnes H,Dilek Y,De Wit M(2015)Precambrian greenstone sequences represent different ophiolite types.Gondwana Res 27(2):649–685

    Ghosh S,Rajajaiya V,Ashiya ID(1995)Rb-Sr dating of components from the Sonakhan Granite-Greenstonebelt,Raipur District.MP Rec Geolo Surv India 128:11–13

    Hawkesworth CJ,Gallagher K,Hergt JM(1993)Mantle and slab contributions in arc magmas.Annu Rev Earth Planet Sci 21:175–204

    Hawkesworth CJ,Dhuime B,Pietranik AB,Cawood PA,Kemp AI,Storey CD (2010)The generation and evolution of the continental crust.JGeol Soc 167:229–248

    Jung C,Jung S,Hoffer E,Berndt J(2006)Petrogenesis of Tertiary mafic alkaline magmas in the Hocheifel,Germany.J Petrol 47(8):1637–1671

    Keleman PB,Hanghoj K,Greene AR(2004)One view of the geochemistry of subduction-related magmatic arcs with an emphasis on primitive andesite and lower crust.In:Holland HD,Turekian KK(eds)Treatise on geochemistry 3.Elsevier,Amsterdam,pp 593–659

    Kerrich R,Wyman DA,Fan J,Bleeker W(1998)Boninite series:low Ti-tholeiite associations from the 2.7 Ga Abitibi Greenstone Belt.Earth Planet Sci Lett 164:303–316

    Kr?ner A,Hoffmann JE,Xie H,Wu F,Münker C,Hegner E,Wong J,Wan Y,Liu D(2013)Generation of early Archaean felsic greenstonevolcanic rocksthroughcrustal meltingin the Kaapvaal craton,southern Africa.Earth Planet Sci Lett 381:188–197

    Lafleche MR,Dupuy C,Dostal J(1992)Tholeiitic volcanic rocks of the late Archaean Blake River group,southern Abitibi Greenstone Belt:origin and geodynamic implications.Can JEarth Sci 29:1448–1458

    Le Bas MJ,Streckeisen AL(1991)The IUGSsystematics of igneous rocks.JGeol Soc Lond 148:825–833

    Le Bas MJ,Lemaitre RW,Streckeisen A,Zanettin B(1986)A chemical classification of volcanic-rocksbased on thetotal alkali silica diagram.JPetrol 27(3):745–750

    Ludden J,Gélinas L,Trudel P(1982)Archean metavolcanics from the Rouyn-Noranda district,Abitibi Greenstone Belt,Quebec.2.Mobility of trace elements and petrogenetic constraints.Can J Earth Sci 19(12):2276–2287

    MacGeehan PJ,MacLean WH(1980)An Archaean sub-seafloor geothermal system,calc-alkali’trends,and massive sulphide genesis.Nature 286:767–771

    Manning CE(2004)The chemistry of subduction-zone fluids.Earth Planet Sci Lett 223:1–16

    McDonough WF,Sun SS(1995)Composition of the earth.Chem Geol 120:223–253.doi:10.1016/0009-2541(94)00140-4

    Metcalf RV,Shervais JW(2008)Suprasubduction-zone ophiolites:Is there really an ophiolite conundrum?Geol Soc Am Spec Pap 438:191–222

    Mibe K,Kawamoto T,Matsugake KN,Fei Y,Ono S(2011)Slab melting versus slab dehydration in subduction-zone magmatism.PNAS.doi:10.1073/pnas.1010968108/-/DCSupplemental

    Morris JD,Leeman WP,Tera F(1990)The subducted component in island arc lavas:constraints from Be isotopes and B-Be systematics.Nature 344:31–36

    Mottl MJ(1983)Metabasalts,axial hot springs,and the structure of hydrothermal systems at mid-ocean ridges.Geol Soc Am Bull 94(2):161–180

    Naqvi SM(2005)Geology and evolution of the Indian plate.Capital Publishing,New Delhi,p 450

    Naqvi SM,Rogers JJW(1987)Precambrian geology of India.Oxford University Press,Oxford,p 223

    Pearce JA(1982)Trace element characteristics of lavas from destructive plate boundaries.In:Thorpe RS(ed)Andesites.Wiley,Chidester,pp 525–548

    Pearce JA(2008)Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust.Lithos 100:14–48

    Pearce JA(2014)Immobile element fingerprinting of ophiolites.Elements 10(2):101–108

    Pearce JA,Peate DW(1995)Tectonic implications of the composition of volcanic arc magmas.Annu Revi Earth Planet Sci 23:251–285

    Pearce JA,Stern RJ(2006)Origin of back-arc basin magmas:trace element and isotope perspectives.Back-arc spreading systems:geological,biological,chemical and physical interactions.Geophys Monogr Ser 166:66–86

    Perfit MR,Gust DA,Bence AE,Arculus RJ,Taylor SR(1980)Chemical characteristics of island-arc basalts:implications for mantle sources.Chem Geol 30(3):227–256

    Polat A(2013)Geochemical variations in Archean volcanic rocks,southwestern Greenland:traces of diversetectonic settings in the early Earth.Geology 41(3):379–380

    Polat A,Hofmann AW,Rosing Minik Thorleif(2002)Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua Greenstone Belt,West Greenland:geochemical evidence for intra-oceanic subduction zone processes in the early Earth.Chem Geol 184(3):231–254

    Radhakrishna BP(1976)Two greenstone groups in Dharwar Craton.Ind Miner 16:12–15

    Radhakrishna BP,Ramakrishnan M(1988)Archaean-Proterozoic boundary in India.JGeol Soc Ind 32:263–278

    Radhakrishna BP,Ramakrishnan M(eds)(1990)Archaean Greenstone Belts of South India.Geological Society of India,Mem.19:497

    Rajamani V,Shivkumar K,Hanson GN,Shirey AS(1985)Geochemistry and petrogenesis of amphibolites,Kolar Schist Belt,South India:evidence for komatiitic magma derived by low percentages of melting of the mantle.JPetrol 26(1):92–123

    Ramakrishnan M,Vaidyanadhan R(2008)Geology of India,vol 1.Geological Society of India,p 994

    Ramchandra HM,Roy A,Mishra VP,Dutta NK(2001)A critical review of the tectonothermal evolution of the Bastar Craton.MS Krishnan Cent Comm Nat Sem Geol Surv Ind Spec Publ 55:161–180

    Rapp R,Shimizu N,Norman MD(2003)Growth of early continental crust by partial melting of eclogite.Nature 425:605–609

    Ray RK,Rai KL(2004)Geological setting and petrogenesis of the auriferous metavolcanic complex of Sonakhan,Raipur district,Chhattisgarh.SAAEG JEcol Geol 1:45–60

    Ray RK,Pandey HK,Rai KL(2000)Geochemistry of Mafic volcanics associated with sulphide mineralization in Sonakhan,Raipur district,Madhya Pradesh.In:Gyani KC,Kataria P(eds)Proc nat Sem on‘Tectonomagmatism,Geochemistry and Metamorphism of Precambrian terrain.’Univ Dept of Geology Udaipur,pp 381–393

    Rogers JJW,Santosh M(2003)Supercontinents in earth history.Gondwana Res 6:357–368

    Rollinson HR(1993)A terrane interpretation of the Archaean Limpopo Belt.Geol Mag 130(06):755–765

    Rollinson H(1999)Petrology and geochemistry of metamorphosed komatiites and basaltsfrom the Sula Mountains Greenstone Belt,Sierra Leone.Contrib Miner Petrol 134(1):86–101

    Sajona FG,Maury RC,Bellon H,Cotten J,Defant M(1996)High field strength element enrichment of Pliocene—Pleistocene Island Arc Basalts,Zamboanga Peninsula,Western Mindanao(Philippines).JPetrol 37(3):693–726

    Shervais JW(1982)Ti–V plots and the petrogenesis of modern and ophiolitic lavas.Earth Planet Sci Lett 32:114–120

    Tatsumi Y,Hamilton DL,Nesbitt RW(1986)Chemical characteristics of fluid phase from the subducted lithosphere:evidence from high-pressure experiments and natural rocks.J Volcanol Geother Res 29:293–309

    Venkatesh AS(2001)Geochemical signatures and auriferous implications in Sonakhan Greenstone Belt,Chhattisgarh.Geol Surv India Spec Publ 55:219–228

    Wilson M(1989)Igneous petrogenesis:a global tectonic approach.Unwyn Hyman,London

    Wilson M,Davidson JP(1984)The relative roles of crust and upper mantle in the generation of oceanic island-arc magmas.Philos Trans R Soc Lond A 310:661–674

    Wyman DA(2003)Upper mantle processes beneath the 2.7 Ga Abitibi belt,Canada:a trace element perspective.Precambrian Res 127:143–165

    Wyman DA,Kerrich R(2009)Plume and arc magmatism in the Abitibi subprovince:implications for the origin of Archean continental lithospheric mantle.Precambrian Res 168:4–22

    Xiao WJ,Santosh M(2014)The western Central Asian Orogenic Belt:a window to accretionary orogenesis and continental growth.Gond Res 25:1429–1444.doi:10.1016/j.gr.2014.01.008

    Xie Q,Kerrich R,Fan J(1993)HFSE/REE fractionations recorded in three komatiite-basalt sequences,Archean Abitibi Greenstone Belt:implications for multiple plume sources and depths.Geochim Cosmochim Acta 57(16):4111–4118

    Yedekar DB,Jain SC,Nair KKK,Dutta KK(1990)Central Indian collision suture.Geol Surv Ind Spec Publ 29:1–43

    Yedekar DB,Karmalkar N,Pawar NJ,Jain SC(2003)Tectonomagmatic evolution of central Indian terrain.Gond Geol Mag Spec 7:67–68

    Zhai MG(2014)Multi-stage crustal growth and cratonization of the North China Craton.Geosci Front.doi:10.1016/j.gsf.2014.01.003

    久热这里只有精品99| av在线老鸭窝| 欧美精品高潮呻吟av久久| 夜夜爽夜夜爽视频| 成人亚洲欧美一区二区av| 成人黄色视频免费在线看| 日本猛色少妇xxxxx猛交久久| 精品卡一卡二卡四卡免费| 另类精品久久| 精品国产一区二区三区四区第35| 美女脱内裤让男人舔精品视频| 成人黄色视频免费在线看| 制服人妻中文乱码| 麻豆精品久久久久久蜜桃| 久久精品熟女亚洲av麻豆精品| 久久精品人人爽人人爽视色| 久久精品国产自在天天线| 久久午夜综合久久蜜桃| 下体分泌物呈黄色| 秋霞伦理黄片| 人成视频在线观看免费观看| 97在线视频观看| 在线 av 中文字幕| 日韩精品免费视频一区二区三区 | 成人国语在线视频| 在现免费观看毛片| 免费黄频网站在线观看国产| 亚洲欧美精品自产自拍| 成人国语在线视频| 丝袜脚勾引网站| 国产色婷婷99| 亚洲av中文av极速乱| 亚洲欧洲日产国产| 国产精品99久久99久久久不卡 | 99久久人妻综合| av有码第一页| 菩萨蛮人人尽说江南好唐韦庄| 午夜激情久久久久久久| 国国产精品蜜臀av免费| 亚洲国产精品专区欧美| 欧美精品国产亚洲| 国产高清国产精品国产三级| 少妇猛男粗大的猛烈进出视频| 日本欧美国产在线视频| 国产69精品久久久久777片| 国产日韩欧美亚洲二区| 男女无遮挡免费网站观看| 十八禁网站网址无遮挡| 成年美女黄网站色视频大全免费| 黑丝袜美女国产一区| 国产成人精品在线电影| 免费观看av网站的网址| 街头女战士在线观看网站| 国产成人91sexporn| 多毛熟女@视频| 午夜91福利影院| 亚洲精品第二区| 日本av免费视频播放| 精品久久久久久电影网| 亚洲国产精品一区三区| 精品久久久精品久久久| 亚洲欧美一区二区三区国产| 又黄又爽又刺激的免费视频.| 人人妻人人澡人人爽人人夜夜| 男女免费视频国产| 一区二区av电影网| 成人漫画全彩无遮挡| 少妇猛男粗大的猛烈进出视频| 亚洲国产精品成人久久小说| 男人舔女人的私密视频| 日韩视频在线欧美| 捣出白浆h1v1| 国产有黄有色有爽视频| 日本91视频免费播放| 久久人人爽人人片av| 久久久久久人人人人人| 午夜影院在线不卡| 岛国毛片在线播放| 亚洲激情五月婷婷啪啪| 波多野结衣一区麻豆| 中国三级夫妇交换| 观看美女的网站| 大香蕉97超碰在线| 久久精品久久久久久久性| 涩涩av久久男人的天堂| 熟女av电影| 成年美女黄网站色视频大全免费| 成人国产麻豆网| 嫩草影院入口| 精品一区二区三卡| 满18在线观看网站| 美女主播在线视频| 国国产精品蜜臀av免费| 日韩免费高清中文字幕av| 欧美成人精品欧美一级黄| 欧美日本中文国产一区发布| 人人妻人人澡人人看| 欧美日韩国产mv在线观看视频| 91成人精品电影| 亚洲第一区二区三区不卡| 亚洲国产欧美在线一区| 激情视频va一区二区三区| 十八禁网站网址无遮挡| 一本—道久久a久久精品蜜桃钙片| 久久国内精品自在自线图片| 另类亚洲欧美激情| 日本午夜av视频| 国产1区2区3区精品| 丝瓜视频免费看黄片| 99视频精品全部免费 在线| 我的女老师完整版在线观看| 热99国产精品久久久久久7| 巨乳人妻的诱惑在线观看| 成人毛片a级毛片在线播放| 亚洲欧洲精品一区二区精品久久久 | 美国免费a级毛片| 国产亚洲av片在线观看秒播厂| 国产欧美亚洲国产| 亚洲成人av在线免费| 熟妇人妻不卡中文字幕| 免费看av在线观看网站| 亚洲伊人色综图| 亚洲中文av在线| 成人手机av| 如日韩欧美国产精品一区二区三区| 九色成人免费人妻av| 免费观看无遮挡的男女| 精品卡一卡二卡四卡免费| 水蜜桃什么品种好| 国产高清三级在线| 国产成人精品一,二区| 尾随美女入室| 亚洲美女黄色视频免费看| 日本vs欧美在线观看视频| 久久综合国产亚洲精品| 秋霞在线观看毛片| 国产又色又爽无遮挡免| 国产有黄有色有爽视频| 亚洲国产av影院在线观看| 国产综合精华液| 黄色视频在线播放观看不卡| 亚洲国产精品国产精品| 亚洲欧美色中文字幕在线| av卡一久久| 人妻少妇偷人精品九色| 成年av动漫网址| 午夜福利,免费看| 亚洲精品aⅴ在线观看| 亚洲av男天堂| 久久 成人 亚洲| 欧美3d第一页| av视频免费观看在线观看| 国产成人精品无人区| 色婷婷av一区二区三区视频| av在线播放精品| 国产亚洲一区二区精品| 在线观看免费视频网站a站| 免费女性裸体啪啪无遮挡网站| 日韩精品有码人妻一区| 久久青草综合色| 精品99又大又爽又粗少妇毛片| 在线天堂最新版资源| 国产激情久久老熟女| 丰满饥渴人妻一区二区三| 成人国产麻豆网| 丰满少妇做爰视频| 人妻 亚洲 视频| 亚洲精品久久久久久婷婷小说| 国产精品欧美亚洲77777| 2021少妇久久久久久久久久久| 黄色 视频免费看| 少妇的逼水好多| 男的添女的下面高潮视频| 亚洲av福利一区| 最近手机中文字幕大全| av线在线观看网站| 国产精品.久久久| 婷婷色综合大香蕉| 视频中文字幕在线观看| 麻豆精品久久久久久蜜桃| 少妇的逼水好多| 日韩av不卡免费在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 精品少妇内射三级| 久久久久久久大尺度免费视频| 久久亚洲国产成人精品v| a级毛片在线看网站| 亚洲美女视频黄频| 国产欧美日韩综合在线一区二区| 18禁国产床啪视频网站| 免费av不卡在线播放| 最近最新中文字幕免费大全7| 国产精品熟女久久久久浪| 亚洲三级黄色毛片| 一级,二级,三级黄色视频| 国产视频首页在线观看| 人妻系列 视频| 精品视频人人做人人爽| 精品人妻熟女毛片av久久网站| 欧美日韩成人在线一区二区| 亚洲色图综合在线观看| videos熟女内射| 男女下面插进去视频免费观看 | 国产亚洲精品久久久com| videos熟女内射| 成人亚洲欧美一区二区av| 久久久久精品久久久久真实原创| 精品一区二区免费观看| 一区二区三区四区激情视频| 飞空精品影院首页| 男男h啪啪无遮挡| 久久精品夜色国产| 秋霞伦理黄片| 精品国产露脸久久av麻豆| 久久精品久久久久久噜噜老黄| 人人妻人人添人人爽欧美一区卜| 亚洲精品中文字幕在线视频| 人妻一区二区av| 国产一区二区三区av在线| 中文字幕最新亚洲高清| 国产乱来视频区| 精品亚洲乱码少妇综合久久| 欧美 日韩 精品 国产| av有码第一页| 国产精品国产三级国产av玫瑰| 中文乱码字字幕精品一区二区三区| 亚洲精品久久成人aⅴ小说| 亚洲av国产av综合av卡| 国精品久久久久久国模美| 久久精品国产亚洲av天美| 国产一区二区激情短视频 | 午夜精品国产一区二区电影| 欧美激情极品国产一区二区三区 | 欧美成人精品欧美一级黄| 国产欧美亚洲国产| 婷婷色综合大香蕉| 国产成人免费无遮挡视频| 国产深夜福利视频在线观看| 国产高清不卡午夜福利| 国产成人91sexporn| 99九九在线精品视频| 久久精品熟女亚洲av麻豆精品| 国产极品粉嫩免费观看在线| 免费黄色在线免费观看| 一级毛片黄色毛片免费观看视频| 亚洲 欧美一区二区三区| 亚洲精品久久成人aⅴ小说| 国产麻豆69| 最近2019中文字幕mv第一页| 满18在线观看网站| 91精品伊人久久大香线蕉| 国产精品人妻久久久久久| 成人国语在线视频| 熟妇人妻不卡中文字幕| 日本午夜av视频| 九色亚洲精品在线播放| 国产有黄有色有爽视频| 王馨瑶露胸无遮挡在线观看| 岛国毛片在线播放| 精品少妇久久久久久888优播| 精品一品国产午夜福利视频| 亚洲国产av新网站| 中文字幕亚洲精品专区| 波多野结衣一区麻豆| 日韩 亚洲 欧美在线| 国产熟女欧美一区二区| 99九九在线精品视频| 亚洲,欧美,日韩| 国产激情久久老熟女| 成年av动漫网址| 免费高清在线观看日韩| 90打野战视频偷拍视频| 18禁裸乳无遮挡动漫免费视频| 大香蕉97超碰在线| 亚洲国产欧美日韩在线播放| 性高湖久久久久久久久免费观看| av在线观看视频网站免费| 色吧在线观看| 久久久久国产精品人妻一区二区| 亚洲精品美女久久久久99蜜臀 | 久久精品国产a三级三级三级| 日本免费在线观看一区| 亚洲av.av天堂| 国产精品嫩草影院av在线观看| 蜜桃在线观看..| 91国产中文字幕| 两个人看的免费小视频| av黄色大香蕉| 男女免费视频国产| 两个人看的免费小视频| 免费黄网站久久成人精品| 色网站视频免费| 午夜久久久在线观看| 国产精品久久久久久精品古装| 宅男免费午夜| 亚洲激情五月婷婷啪啪| 一二三四中文在线观看免费高清| 久久人人97超碰香蕉20202| 免费女性裸体啪啪无遮挡网站| 国产成人精品婷婷| 亚洲国产精品成人久久小说| 欧美日本中文国产一区发布| 香蕉国产在线看| 亚洲综合色网址| 青春草国产在线视频| 成人亚洲精品一区在线观看| 欧美精品国产亚洲| 国产成人aa在线观看| 欧美激情 高清一区二区三区| 成人黄色视频免费在线看| 王馨瑶露胸无遮挡在线观看| 青春草视频在线免费观看| 欧美日韩成人在线一区二区| 久久 成人 亚洲| 国产免费又黄又爽又色| 国产精品国产三级专区第一集| 黄色毛片三级朝国网站| 在线观看一区二区三区激情| 丝袜人妻中文字幕| 少妇猛男粗大的猛烈进出视频| 亚洲第一av免费看| 只有这里有精品99| 国精品久久久久久国模美| 国产精品久久久av美女十八| 母亲3免费完整高清在线观看 | 精品少妇内射三级| 波野结衣二区三区在线| 嫩草影院入口| 亚洲成人av在线免费| 卡戴珊不雅视频在线播放| 亚洲,欧美,日韩| 久久ye,这里只有精品| 久久婷婷青草| 伊人亚洲综合成人网| 大香蕉久久网| 日韩三级伦理在线观看| 丝袜在线中文字幕| 男女免费视频国产| 国产精品久久久久久av不卡| 国产av一区二区精品久久| 少妇人妻久久综合中文| 在线免费观看不下载黄p国产| 看十八女毛片水多多多| 久久ye,这里只有精品| 91成人精品电影| 香蕉国产在线看| 欧美国产精品va在线观看不卡| 欧美日本中文国产一区发布| 午夜久久久在线观看| 男人舔女人的私密视频| 99re6热这里在线精品视频| 国产极品粉嫩免费观看在线| 少妇人妻精品综合一区二区| 夫妻性生交免费视频一级片| 国产激情久久老熟女| 久久久久久久国产电影| 全区人妻精品视频| 欧美性感艳星| 伊人久久国产一区二区| 午夜日本视频在线| 午夜福利影视在线免费观看| 日韩在线高清观看一区二区三区| 亚洲欧洲国产日韩| 久久精品夜色国产| 美女脱内裤让男人舔精品视频| 欧美精品av麻豆av| 99久久人妻综合| 22中文网久久字幕| 黄色怎么调成土黄色| 91成人精品电影| 亚洲精品视频女| 亚洲高清免费不卡视频| 久久婷婷青草| 国产一区二区激情短视频 | 在线观看人妻少妇| 1024视频免费在线观看| 午夜福利视频精品| 少妇的逼水好多| 日韩中文字幕视频在线看片| 女的被弄到高潮叫床怎么办| 国产永久视频网站| 中文字幕精品免费在线观看视频 | av卡一久久| 免费在线观看完整版高清| 99久久中文字幕三级久久日本| 另类精品久久| 22中文网久久字幕| 99久久精品国产国产毛片| 九草在线视频观看| 亚洲欧洲精品一区二区精品久久久 | 午夜激情av网站| 老司机影院毛片| 有码 亚洲区| 九九爱精品视频在线观看| 成人毛片a级毛片在线播放| 美女xxoo啪啪120秒动态图| 久久精品国产鲁丝片午夜精品| 国产精品偷伦视频观看了| 亚洲成人手机| 赤兔流量卡办理| 国产成人免费观看mmmm| 久久久精品区二区三区| av.在线天堂| 天堂8中文在线网| 一区二区日韩欧美中文字幕 | 最近手机中文字幕大全| 在线天堂中文资源库| 欧美精品av麻豆av| 亚洲少妇的诱惑av| 日韩av不卡免费在线播放| av卡一久久| 两个人免费观看高清视频| 亚洲欧洲国产日韩| 一级黄片播放器| 汤姆久久久久久久影院中文字幕| 天堂俺去俺来也www色官网| 高清黄色对白视频在线免费看| 曰老女人黄片| 超色免费av| 亚洲av综合色区一区| 亚洲美女黄色视频免费看| 欧美成人午夜精品| 一区在线观看完整版| 自线自在国产av| 色婷婷av一区二区三区视频| 久久狼人影院| 在线观看国产h片| 国产成人一区二区在线| 毛片一级片免费看久久久久| 永久网站在线| 日韩 亚洲 欧美在线| 免费人妻精品一区二区三区视频| 久久久久久久大尺度免费视频| 精品一区二区三区四区五区乱码 | 最新中文字幕久久久久| 一个人免费看片子| 久久久精品94久久精品| 精品少妇黑人巨大在线播放| 嫩草影院入口| 国产女主播在线喷水免费视频网站| 久久久久国产精品人妻一区二区| 一区在线观看完整版| 亚洲图色成人| 又粗又硬又长又爽又黄的视频| 久久久精品免费免费高清| 久久久久人妻精品一区果冻| 精品人妻熟女毛片av久久网站| 热re99久久国产66热| 国产熟女欧美一区二区| 最近2019中文字幕mv第一页| 日本午夜av视频| 国产乱人偷精品视频| 爱豆传媒免费全集在线观看| 在线亚洲精品国产二区图片欧美| 久久99蜜桃精品久久| 18禁观看日本| 亚洲精品乱久久久久久| 亚洲人成网站在线观看播放| 亚洲欧美日韩卡通动漫| 免费女性裸体啪啪无遮挡网站| 国产成人aa在线观看| 91aial.com中文字幕在线观看| 国产爽快片一区二区三区| 国产成人免费观看mmmm| 成人午夜精彩视频在线观看| 国产av国产精品国产| 九九在线视频观看精品| 久久久久国产精品人妻一区二区| 少妇被粗大猛烈的视频| 亚洲国产毛片av蜜桃av| 国产片内射在线| 免费看光身美女| 99九九在线精品视频| 成人毛片a级毛片在线播放| 欧美丝袜亚洲另类| 日本vs欧美在线观看视频| 日韩精品免费视频一区二区三区 | 亚洲欧美成人精品一区二区| 国产免费视频播放在线视频| 成人毛片60女人毛片免费| 久久99热6这里只有精品| 国产欧美日韩综合在线一区二区| 国产成人精品一,二区| av天堂久久9| 久久精品人人爽人人爽视色| 久久久久精品性色| 日本色播在线视频| 少妇精品久久久久久久| 精品第一国产精品| 国产av精品麻豆| 欧美xxxx性猛交bbbb| 中文字幕人妻熟女乱码| 免费少妇av软件| 9色porny在线观看| 美女脱内裤让男人舔精品视频| 国产黄色视频一区二区在线观看| 国产一区二区在线观看日韩| 在线观看一区二区三区激情| 久久人人爽av亚洲精品天堂| 成人亚洲欧美一区二区av| 熟女人妻精品中文字幕| 看非洲黑人一级黄片| 国产又爽黄色视频| 人人澡人人妻人| 国产av码专区亚洲av| 狂野欧美激情性bbbbbb| 99香蕉大伊视频| 精品亚洲乱码少妇综合久久| www.熟女人妻精品国产 | 老司机影院成人| 超色免费av| 十八禁高潮呻吟视频| 免费av中文字幕在线| 女性生殖器流出的白浆| 午夜激情av网站| 国产欧美日韩综合在线一区二区| 精品视频人人做人人爽| 国精品久久久久久国模美| 亚洲av日韩在线播放| 超碰97精品在线观看| 十分钟在线观看高清视频www| 热99久久久久精品小说推荐| 精品卡一卡二卡四卡免费| 日韩av不卡免费在线播放| 精品99又大又爽又粗少妇毛片| 久久久国产一区二区| 捣出白浆h1v1| 国产老妇伦熟女老妇高清| 哪个播放器可以免费观看大片| 国产日韩欧美在线精品| 天美传媒精品一区二区| 制服丝袜香蕉在线| 侵犯人妻中文字幕一二三四区| av福利片在线| 午夜免费观看性视频| 国产1区2区3区精品| 亚洲国产精品一区二区三区在线| 亚洲国产精品成人久久小说| av免费观看日本| 在线观看一区二区三区激情| 亚洲精品久久午夜乱码| 永久免费av网站大全| 欧美成人精品欧美一级黄| 久久人人爽人人爽人人片va| 国产成人精品福利久久| 欧美日韩av久久| 少妇人妻 视频| 两个人免费观看高清视频| 嫩草影院入口| 国产极品天堂在线| 久久久国产欧美日韩av| 午夜免费鲁丝| 久久99一区二区三区| 中文字幕亚洲精品专区| 国国产精品蜜臀av免费| 亚洲人成77777在线视频| 亚洲欧美日韩另类电影网站| 国产精品秋霞免费鲁丝片| 国产精品人妻久久久久久| 性色avwww在线观看| 黄片无遮挡物在线观看| 天天躁夜夜躁狠狠躁躁| 精品久久久久久电影网| 宅男免费午夜| 日本欧美国产在线视频| 日韩伦理黄色片| 亚洲丝袜综合中文字幕| 亚洲内射少妇av| 色94色欧美一区二区| 黄色视频在线播放观看不卡| av播播在线观看一区| 久热久热在线精品观看| 日本猛色少妇xxxxx猛交久久| 国产成人精品在线电影| 国产日韩欧美视频二区| 女人精品久久久久毛片| 亚洲精品美女久久久久99蜜臀 | 欧美人与性动交α欧美精品济南到 | 18禁动态无遮挡网站| 国产精品欧美亚洲77777| 老司机影院毛片| 啦啦啦啦在线视频资源| 亚洲综合色网址| 亚洲成色77777| 青春草国产在线视频| 亚洲国产欧美在线一区| 精品酒店卫生间| 亚洲五月色婷婷综合| 桃花免费在线播放| 亚洲在久久综合| 亚洲国产精品成人久久小说| 精品久久久久久电影网| 亚洲,欧美,日韩| 9热在线视频观看99| 日韩制服骚丝袜av| 久久av网站| av女优亚洲男人天堂| 久久这里只有精品19| 伦精品一区二区三区| 9热在线视频观看99| 久久久久久伊人网av| 十八禁网站网址无遮挡| 亚洲人与动物交配视频| 18禁裸乳无遮挡动漫免费视频| 在线天堂中文资源库| 秋霞在线观看毛片| 久久久久视频综合| 亚洲中文av在线| 人妻系列 视频| av又黄又爽大尺度在线免费看| 精品酒店卫生间| 国产精品一二三区在线看| 2018国产大陆天天弄谢| 99国产综合亚洲精品| 中文字幕亚洲精品专区|