• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Major Miocene geological events in southern Tibet and eastern Asia induced by the subduction of the Ninetyeast Ridge

    2018-07-04 11:28:12XinleiSunWeidongSunYongbinHuWeiDingTrevorIrelandMeizhenZhanJiqiangLiuMingxingLingXingDingZhaofengZhangWeimingFan
    Acta Geochimica 2018年3期

    Xinlei Sun?Wei-dong Sun?Yong-bin Hu?Wei Ding?Trevor Ireland?Mei-zhen Zhan?Ji-qiang Liu?Ming-xing Ling?Xing Ding?Zhao-feng Zhang?Wei-ming Fan

    1 Introduction

    The interaction between the Indian and Eurasian plates is an ongoing example of continent–continent collision and continental subduction,the details of which are of critical importance to better understand the formation of the Himalaya and Tibetan Plateau,and plate tectonics in general.

    The Tibetan Plateau is the highest and largest orogenic belt on Earth’s surface,standing ~ 5000 m above sea level with an area of~3 million km2.It appears to have mainly formed through crustal shortening and thickening after collision of the Indian and Eurasian continents commenced at~34 to 55 Ma(Tapponnier et al.2001;Aitchison et al.2007;Royden et al.2008;Meng et al.2012;Ding et al.2017).In contrast to the dramatic crustal shortening in western and central Tibet immediately following the collision,eastern Tibet is characterized by the escape of large fragments of lithosphere that started at 40–35 Ma(Tapponnier et al.2001;Royden et al.2008).Meanwhile,major geologic events occurred around the Tibetan Plateau:southward extrusion of the Indochina Peninsula(Tapponnier et al.1982),large-scale dextral movement of the Red River–Ailaoshan shear zone(Leloup et al.1995),rapid trench retreat along much of the west Pacific,Philippine,and Indonesian oceanic subduction boundaries as indicated by widespread Early Cenozoic extension(Hall and Morley 2004),Eocene–Oligocene extension in the South and East China Seas(Taylor and Hayes 1980;Sibuet et al.2004),and formation of other extensional basins along the continental margins of Asia(Maruyama et al.2009).These have been attributed to geometric accommodation associated with oblique collision/subduction(Tapponnier et al.2001)and partially to trench retreat in the western Pacific and Indonesian arcs(Royden et al.2008).

    Major tectonic changes occurred in the Miocene.The tectonic regime of the Tibetan Plateau changed to rapid uplift and crustal thickening in southern Tibet~20 Ma(Harrison et al.1992)and the Plateau likely reached its current height at~15 Ma(Spicer et al.2003),initiating the present-day Asian monsoons(Licht et al.2014).The escape of lithospheric fragments to the east of the Plateau and trench retreats along the eastern margin of Eurasia appear to stop at about the same time,implying close connections between these events(Royden et al.2008).Meanwhile,Cenozoic porphyry copper mineralization has been documented in the Gangdese belt,southern Tibet(Hou et al.2009;Xiao et al.2012).The geochemistry of these porphyry deposits provides clues to the mechanism that controlled/coordinated these major collision-associated tectonic events.Here we show that all these events were associated with the subduction of the Ninetyeast Ridge.

    2 Results

    The Gangdese porphyry-copper-deposit belt is the largest of its type in China,being~400 km in length and~100 km in width.It is in the southeastern Tibetan Plateau,next to the eastern Himalayan syntaxis(Figs.1 and 2).Adakitic porphyries associated with ores formed at 23–15 Ma(Hou et al.2009;Xiao et al.2012),about 10–35 Ma younger than the collision between the Indian and Eurasian continents(Aitchison et al.2007;Meng et al.2012).Based mainly on these ages,the deposits were assumed to be typical post-collisional orogenic copper porphyries(Hou et al.2009).Consequently,the formation of these ore-forming adakites was attributed to partial melting of underplated mafic lower crust or relicts of previously subducted oceanic slabs induced either by slab break off or mantle thinning in an extensional setting(Hou et al.2004,2009,2015).

    Geochemically,post-collisional ore deposits are usually sulfur-poor and gold-rich(Richards 2009).In contrast,the Gangdese porphyries are sulfur-rich and gold-poor,and are associated with highly oxidized adakite with abundant magnetite-hematite and anhydrite(Hu et al.2015;Sun et al.2015).For example,the Qulong porphyry,the largest copper deposit in China,has anhydrite contents ranging from 5 vol%to 90 vol%in veins,and 1 vol%to 5 vol%in altered rocks(Xiao et al.2012).Such high sulfur contents are seen mostly in arc environments,not in post-collisional settings(Richards 2009).

    Remarkably,there was a major transition in the geochemistry of the adakites in the Gangdese at~23 Ma.Adakite was originally defined as being associated with partial melting of subducted oceanic slabs,with close spatial relationship with young(<25 Ma),hot subducting oceanic plates(Defant and Drummond 1990).Later studies have suggested that some adakitic rocks may have formed through partial melting of thickened/delaminated lower continental crust(Chung et al.2003;Gao et al.2004;Wang et al.2005;He et al.2011).These two types of adakite may be differentiated using geochemical characteristics(Liu et al.2010;Sun et al.2012).Cenozoic adakites formed at 30–9 Ma in the Gangdese belt and are taken as post-collisional intrusions based on their ages relative to the collision.Adakitesyounger than~23 Ma are of slab melting origin(Fig.3)and are associated with porphyry deposits.In contrast,slightly older adakites plot in the field defined by partial melting of continental crust.These adakites are barren and are attributed to foundering of thickened lower crust(Chung et al.2009).Such transition implies major tectonic changes in the Gangdese.The most straightforward explanation is the commencement of the subduction of the Ninetyeast Ridge.

    The ore-forming adakites are distributed near the eastern Himalayan syntaxis.Moreover,~90%of the Cu reserves are located in the east end of the belt,along a north–south axis about 100 km long,next to the eastern Himalayan syntaxis,with the two largest porphyry copper deposits in the belt,the Qulong and Jiama(>10 million tonnes of Cu metal reserveseach)occurring here.These major porphyry copper deposits in the Gangdesebelt havemuch higherεHf,εNd,and oxygen fugacity than other contemporaneous adakitic porphyriesin thebelt(Fig.4).Their higherεHfand εNdvalues have been attributed to partial melting of either juvenile crust derived from the mantle(Hou et al.2009)or relicts of previously subducted Jurassic oceanic crust(Hou et al.2015)during post-collisional extension in the Tibetan Orogen.However,this is not supported by Sr/Y–La/Yb data(Fig.3),which do not show the high La/Yb expected for continental adakite.Instead,it may be better explained by slab melting.Continental crust has consistently lower Cu content than oceanic crust,so slab melts are far more favorable for Cu depositsthan continental crust melts(Sun et al.2011,2012).

    More importantly,the oxygen fugacities of these adakites are very high,consistent with subduction-related magmas(Ballhaus 1993;Kelley and Cottrell 2009)but much higher than post-collisional magmas.The oxygen fugacity of adakites from Qulong,for example,reached the hematite-magnetite oxygen buffer,which is about four orders of magnitude higher than the fayalite-magnetite-quartz buffer(Sun et al.2013).Given that sulfate solubility in magma is up to about 1%,whereas that of sulfide is around 1000 parts per million(Jugo 2009),the extremely high sulfur contents in these adakites suggest that the high oxygen fugacity was a primary feature.

    Fig.1 Schematic of the Tibetan Plateau,showing the eastern Himalayan syntaxis,the Gangdese porphyry copper deposits,and subduction direction of the Ninetyeast Ridge.Most of the copper reserves are concentrated in the east end of the belt,close to the eastern Himalayan syntaxis

    Normal mantle has quite uniform oxygen fugacity near the fayalite-magnetite-quartz oxygen buffer,as indicated by mid-ocean ridge basalts and abyssal peridotites(Stagno et al.2013).Convergent margin magmas have systematically higher oxygen fugacities compared to intraplate settings(Ballhaus 1993;Parkinson and Arculus 1999;Kelley and Cottrell 2009),which is likely due to subduction-released fluids(Sun et al.2007).Relicts of previously subducted Jurassic oceanic crust(Hou et al.2015)presumably should have been dehydrated long ago.Partial melting of such oceanic crust cannot form magmas with high oxygen fugacity either.In fact,even mafic arc magmas have oxygen fugacity close to that of mid-ocean ridge basalts(Lee et al.2010),likely due to the lack of additional fluids.Moreover,the Gangdese batholith(slightly earlier than the porphyries)was also much more reducing as indicated by tin deposits that predate the porphyries(Hou and Cook 2009).Therefore,it is unlikely that highly oxidizing magmas could form through direct partial melting of mafic lower crust or previously subducted Jurassic oceanic crust in the Miocene in the Gangdese belt.

    The coupling between high oxygen fugacity,higherεHfandεNd,and large Cu reserves can best be explained by ridge subduction,with the Ninetyeast Ridge as the likely player.At 6000 km long,~300 km wide,and several hundred to more than 2000 m higher than the surrounding Indian Ocean floor,the Ninetyeast Ridge is the largest aseismic ridgein theworld.Spatially,the Ninetyeast Ridge is co-terminal with the eastern Himalayan syntaxis of the Tibetan Plateau(Fig.1),suggesting that a significant fraction of the Ninetyeast Ridge may have already been subducted.The subduction of such a large ridge inevitably results in major deformation of the overriding plate,and correspondingly deeper earthquakes with higher magnitude.

    Fig.2 Distribution of the Gangdese porphyry copper-molybdenum deposits.The Gangdese deposit belt is generally known as roughly east–west extending.About 90%of the reserves,however,are concentrated along anorth–south trending belt in the east end,with two super largedeposits,the Jiama and Qulong

    Fig.3 A Sr/Y versus La/Yb diagram for Cenozoic Gangdese adakites associated with the Gangdese porphyry copper deposit.Adakitesfrom circum-Pacific and the Dabie Mountains represent slab and continental crust melts,respectively(Liu et al.2010;Sun et al.2012).Adakites older than 23 Ma are barren and plot in the Dabie field.Ore-forming adakites are younger than 23 Ma and show closer affinities to the circum-Pacific adakites,indicating major components from slab melts,essential to copper mineralization(Sun et al.2011).Some of the adakites from porphyry deposits also plot in the Dabie field likely because of the thick continental crust in the Plateau.The transition is coincident with major tectonic changes in the Tibetan Plateau

    The Ninetyeast Ridge is currently at~ 25°N,moving and subducting northeastward at a speed of~37 mm/year(Subrahmanyam et al.2008).Based on plate reconstruction,the drifting direction and rate have not changed significantly during the last 23 Ma(van Hinsbergen et al.2011).Therefore,the Ninetyeast Ridge has drifted more than 300 km eastward and 650 km northward during the last 23 Ma,i.e.,subduction was likely occurring directly beneath the Gangdese porphyry copper belt at 23 Ma.

    Fig.4 Variations ofεHf in zircon from the Gangdese porphyry belt from west to east.The two largest porphyry deposits,the Qulong and Jiama,have the highestεHf,which is consistent with higher proportions of ‘‘mantle’’derived components

    Fig.5 Earthquake distribution in Tibet and nearby regions.Data are from the National Earthquake Information Center catalog and include all events from 1964 to 2010 of magnitude greater than 4.6.Earthquakes are divided into groups according to depth.Also the positions of the cross sections(red lines)are shown in Fig.6.White lines are major faults and blocks in China.Earthquakes deeper than 120 km are concentrated in the eastern and western Himalayan syntaxes.Those in the eastern Himalayan syntaxis are attributed to the subduction of the Ninetyeast Ridge

    Earthquakes deeper than 120 km in the eastern Tibetan Plateau are concentrated along the northward extension of the Ninetyeast Ridge,pointing towards the eastern Himalayan syntaxis(Fig.5).Consistently,using seismic ambient noise(Sun et al.2010),two high-shear-velocity anomalies have been identified near the eastern Himalayan syntaxis:a shallower one in the south at 40–70 km depth and a deeper(>70 km)one of>50-km thickness with irregular shape.The deeper high anomaly extends from 22°N to 32°N,several hundred kilometers to the north of the Gangdese porphyry deposit belt(Fig.6).These high velocity anomaly regions are interpreted here as the subducted Ninetyeast Ridge.Similarly,previous studies find high P-wavevelocity anomalies:anarrow shallow one,and a wider and deeper one in the Burma subduction,to the south of the eastern Himalayan syntaxis(Li et al.2008).Our results show that the anomalies extend to the Gangdese.These,together with the northeastward drifting direction of the Indian Plate indicate that the Ninetyeast Ridge was,and is still,subducting beneath the eastern Tibetan Plateau.

    Fig.6 Cross sections of shear velocity(positions are shown in Fig.5).Also shown on top is the topography along the eastern Himalayan syntaxis.AA’is along great circle from(31°N,90°E)to(23°N,100°E).A ~ 30-km thick high velocity anomaly region is clearly shown at about 40–70 km at the eastern end of AA’.Another high velocity region>50-km thick with an irregular shape extends from 22°N to 32°N or even further.These anomalies are likely the subducted Ninetyeast Ridge.Notethe Gangdeseporphyry deposit belt is located at~ 29°N,and the deeper anomaly goes beyond 32°N

    3 Discussion and conclusion

    The asymmetric distributions of Cu reserves and chemical characteristics of the Gangdese porphyry belt are partially due to different erosion styles/rates induced by subduction of the Ninetyeast Ridge.Porphyry Cu deposits formed at paleodepths of<4 km(Sillitoe 2010),and are likely controlled by the solubility of ore-bearing fluids in magmas.The widespread preservation of porphyry deposits in the Gangdese porphyry belt indicates denudation of<4 km since their formation at 23–15 Ma.In contrast,the lack of Miocene porphyry further east is likely due to intensive erosion(i.e.,erosion to depths of>40 km)as indicated by the wide exposure of granulite(Zhang et al.2010).

    The oldest ore-forming adakite formed at~23 Ma.Partial melting of subducted oceanic crust occurs at depths>100 km and the drifting rate of the Indian Ocean was~30 mm/year in the Miocene,so it would take~3 Ma for the ridge to be subducted deep enough to form adakite,i.e.the initiation of ridge subduction is~3 Maearlier than the oldest adakite.Therefore,the subduction of the Ninetyeast Ridge must haves tarted at~26 Ma,promoting the uplift of the Tibetan Plateau and major consequent changes in tectonic and climatic regimes.

    Based on these observations,we propose that initiation of subduction of the Ninetyeast Ridge changed the geometry and rheology of the eastern Tibetan Plateau significantly at~23 Ma.Subsequently,subduction of the ridge restrained the asthenosphere and blocked the eastward escape of mantle and continental fragments.Meanwhile,crustal shortening induced by collision was mainly accommodated by uplift,and thus promoted the raising of the Tibetan Plateau.Partial melting of the subducted Ninetyeast Ridge produced adakites with high oxygen fugacity,and high Cu and sulfur contents—the Gangdese porphyry Cu deposit belt.Meanwhile,uplift of the Tibetan Plateau triggered the onset of the modern Asian monsoonal system between 22 and 25 Ma(Clift et al.2008;Licht et al.2014;Prell and Kutzbach 1992)and east–west crustal extension generated ultrapotassium volcanic rocks at~23 Ma(Liu et al.2014).

    The Miocene east–west crustal extensions in southern Tibet has previously been interpreted as gravitational collapse resulting from the extreme elevation(Coleman and Hodges 1995;Williams et al.2001).Remarkably,such extension is associated with the cessation of the southeastward fragmentation,i.e.,the Plateau grew high enough,but most of this motion did not extend beyond the plateau.These conclusions strongly support that both the rapid uplift and oroclinal structure of the eastern Himalayan syntaxis are due to the roughly perpendicular subduction of the Ninetyeast Ridge.Such a geometry dramatically changed the boundary conditions in the eastern Tibetan Plateau,which controls the large-scale lateral variations of the tectonic regime within Tibet(Copley et al.2011),i.e.eastward motion within the Plateau due to gravitational collapse.

    AcknowledgementsThis study was supported by NSFC 91328204 to W.D.S.and Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB18020102)to W.D.S.and X.L.S.

    Aitchison JC,Ali JR,Davis AM(2007)When and where did India and Asia collide?J Geophys Res.https://doi.org/10.1029/2006JB004706

    Ballhaus C(1993)Oxidation states of the lithospheric and asthenospheric upper mantle.Contrib Mineral Petrol 114:331–348

    Chung SL,Liu DY,Ji JQ,Chu MF,Lee HY,Wen DJ,Lo CH,Lee TY,Qian Q,Zhang Q(2003)Adakites from continental collision zones:melting of thickened lower crust beneath southern Tibet.Geology 31:1021–1024

    Chung SL,Chu MF,Ji JQ,O’Reilly SY,Pearson NJ,Liu DY,Lee TY,Lo CH(2009)The natureand timing of crustal thickening in Southern Tibet:Geochemical and zircon Hf isotopic constraints from postcollisional adakites.Tectonophysics 477:36–48

    Clift PD,Hodges KV,Heslop D,Hannigan R,Van Long H,Calves G(2008)Correlation of Himalayan exhumation rates and Asian monsoon intensity.Nat Geosci 1:875–880

    Coleman M,Hodges K(1995)Evidence for Tibetan Plateau uplift before 14-Myr ago from a new minimum age for east-west extension.Nature 374:49–52

    Copley A,Avouac JP,Wernicke BP(2011)Evidence for mechanical coupling and strong Indian lower crust beneath southern Tibet.Nature 472:79–81

    Defant MJ,Drummond MS(1990)Derivation of some modern arc magmas by melting of young subducted lithosphere.Nature 347:662–665

    Ding L,Spicer RA,Yang J,Xu Q,Cai F,Li S,Lai Q,Wang H,Spicer TEV,Yue Y,Shukla A,Srivastava G,Khan MA,Bera S,Mehrotra R(2017)Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon.Geology 45:215–218

    Gao S,Rudnick RL,Yuan HL,Liu XM,Liu YS,Xu WL,Ling WL,Ayers J,Wang XC,Wang QH(2004)Recycling lower continental crust in the North China craton.Nature 432:892–897

    Hall R,Morley CK(2004)Sundaland basins.In:Clift P,Wang P,Kuhnt W,Hayes D(eds)Continent-ocean interactions within east Asian marginal seas.American Geophysical Union,pp 55–85

    Harrison TM,Copeland P,Kidd WSF,Yin A(1992)Raising Tibet.Science 255:1663–1670

    He YS,Li SG,Hoefs J,Huang F,Liu SA,Hou ZH(2011)Postcollisional granitoids from the Dabie orogen:new evidence for partial melting of a thickened continental crust.Geochim Cosmochim Acta 75:3815–3838

    Hou ZQ,Cook NJ(2009)Metallogenesis of the Tibetan collisional orogen:a review and introduction to the special issue.Ore Geol Rev 36:2–24

    Hou ZQ,Gao YF,Qu XM,Rui ZY,Mo XX(2004)Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet.Earth Planet Sci Lett 220:139–155

    Hou ZQ,Yang ZM,Qu XM,Meng XJ,Li ZQ,Beaudoin G,Rui ZY,Gao YF,Zaw K(2009)The Miocene Gangdeseporphyry copper belt generated during post-collisional extension in the Tibetan Orogen.Ore Geol Rev 36:25–51

    Hou ZQ,Yang ZM,Lu YJ,Kemp A,Zheng YC,Li QY,Tang JX,Yang ZS,Duan LF(2015)A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones.Geology.https://doi.org/10.1130/G36362.36361

    Hu Y-B,Liu J-Q,Ling M-X,Ding W,Liu Y,Zartman RE,Ma X-F,Liu D-Y,Zhang C-C,Sun S-J,Zhang L-P,Wu K,Sun W-D(2015)The formation of Qulong adakites and their relationship with porphyry copper deposit:geochemical constraints.Lithos.https://doi.org/10.1016/j.lithos.2014.1012.1025

    Jugo PJ(2009)Sulfur content at sulfide saturation in oxidized magmas.Geology 37:415–418

    Kelley KA,Cottrell E(2009)Water and the oxidation state of subduction zone magmas.Science 325:605–607

    Lee CTA,Luffi P,Le Roux V,Dasgupta R,Albarede F,Leeman WP(2010)The redox state of arc mantle using Zn/Fe systematics.Nature 468:681–685

    Leloup PH,Lacassin R,Tapponnier P,Scharer U,Zhong DL,Liu XH,Zhang LS,Ji SC,Trinh PT(1995)The Ailao Shan-Red River shear zone(Yunnan,China),tertiary transform boundary of Indochina.Tectonophysics 251:3–84

    Li C,Van der Hilst RD,Meltzer AS,Engdahl ER(2008)Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma.Earth Planet Sci Lett 274:157–168

    Licht A,van Cappelle M,Abels HA,Ladant JB,Trabucho-Alexandre J,France-Lanord C,Donnadieu Y,Vandenberghe J,Rigaudier T,Lecuyer C,Terry D,Adriaens R,Boura A,Guo Z,Soe AN,Quade J,Dupont-Nivet G,Jaeger JJ(2014)Asian monsoons in a late Eocene greenhouse world.Nature 513:501

    Liu SA,Li SG,He Y,Huang F(2010)Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China:implications for petrogenesis and Cu–Au mineralization.Geochim Cosmochim Acta 74:7160–7178

    Liu D,Zhao ZD,Zhu DC,Niu YL,DePaolo DJ,Harrison TM,Mo XX,Dong GC,Zhou S,Sun CG,Zhang ZC,Liu JL(2014)Postcollisional potassic and ultrapotassic rocksin southern Tibet:mantle and crustal originsin response to India-Asia collision and convergence.Geochim Cosmochim Acta 143:207–231

    Maruyama S,Hasegawa A,Santosh M,Kogiso T,Omori S,Nakamura H,Kawai K,Zhao D(2009)The dynamics of big mantle wedge,magma factory,and metamorphic-metasomatic factory in subduction zones.Gondwana Res 16:414–430

    Meng J,Wang CS,Zhao XX,Coe R,Li YL,Finn D(2012)India-Asia collision was at 24 degrees N and 50 Ma:palaeomagnetic proof from southernmost Asia.Sci Rep-Uk 2:925

    Parkinson IJ,Arculus RJ(1999)The redox state of subduction zones:insights from arc-peridotites.Chem Geol 160:409–423

    Prell WL,Kutzbach JE(1992)Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution.Nature 360:647–652

    Richards JP(2009)Postsubduction porphyry Cu-Au and epithermal Au deposits:products of remelting of subduction-modified lithosphere.Geology 37:247–250

    Royden LH,Burchfiel BC,van der Hilst RD(2008)The geological evolution of the Tibetan plateau.Science 321:1054–1058

    Sibuet JC,Hsu SK,Debayle E(2004)Geodynamic context of the Taiwan Orogen.In:Clift P,Kuhnt W,Wang P,Hayes H(eds)Continent-ocean interactions within east Asian marginal seas.American Geophysical Union,pp 127–158

    Sillitoe RH(2010)Porphyry copper systems.Econ Geol 105:3–41

    Spicer RA,Harris NBW,Widdowson M,Herman AB,Guo SX,Valdes PJ,Wolfe JA,Kelley SP(2003)Constant elevation of southern Tibet over the past 15 million years.Nature 421:622–624

    Stagno V,Ojwang DO,McCammon CA,Frost DJ(2013)The oxidation state of the mantle and the extraction of carbon from Earth’s interior.Nature 493:84–88

    Subrahmanyam C,Gireesh R,Chand S,Raju KAK,Rao DG(2008)Geophysical characteristics of the Ninetyeast Ridge—Andaman island arc/trench convergent zone.Earth Planet Sci Lett 266:29–45

    Sun XM,Tang Q,Sun WD,Xu L,Zhai W,Liang JL,Liang YH,Shen K,Zhang ZM,Zhou B,Wang FY(2007)Monazite,iron oxide and barite exsolutions in apatite aggre gates from CCSD drillhole eclogites and their geological implications.Geochim Cosmochim Acta 71:2896–2905

    Sun XL,Song XD,Zheng SH,Ritzwoller MH(2010)Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography.Earthq Sci 23:449–463

    Sun WD,Zhang H,Ling MX,Ding X,Chung SL,Zhou JB,Yang XY,Fan WM(2011)The genetic association of adakites and Cu-Au ore deposits.Int Geol Rev 53:691–703

    Sun WD,Ling MX,Chung SL,Ding X,Yang XY,Liang HY,Fan WM,Goldfarb R,Yin QZ(2012)Geochemical constraints on adakites of different origins and copper mineralization.J Geol 120:105–120

    Sun WD,Liang HY,Ling MX,Zhan MZ,Ding X,Zhang H,Yang XY,Li YL,Ireland T,Wei QR,Fan WM(2013)The link between reduced porphyry copper deposits and oxidized magmas.Geochim Cosmochim Acta 103:263–275

    Sun WD,Huang RF,Li H,Hu YB,Zhang CC,Sun SJ,Zhang LP,Ding X,Li CY,Zartman RE,Ling MX(2015)Porphyry deposits and oxidized magmas.Ore Geol Rev 65:97–131

    Tapponnier P,Peltzer G,Ledain AY,Armijo R,Cobbold P(1982)Propagating extrusion tectonics in Asia—New insights from simple experiments with plasticine.Geology 10:611–616

    Tapponnier P,Xu ZQ,Roger F,Meyer B,Arnaud N,Wittlinger G,Yang JS(2001)Geology—oblique stepwise rise and growth of the Tibet Plateau.Science 294:1671–1677

    Taylor B,Hayes DE(1980)The tectonic evolution of the South China Basin.In:Hayes DE(ed)Thetectonic and geologic evolution of Southeast Asian seas and islands,part 1.American Geophysical Union,Geophysical Monograph,Washington,pp 89–104

    van Hinsbergen DJJ,Steinberger B,Doubrovine PV,Gassmoller R(2011)Acceleration and deceleration of India-Asia convergence since the Cretaceous:roles of mantle plumes and continental collision.JGeophys Res.https://doi.org/10.1029/2010JB008051

    Wang Q,McDermott F,Xu JF,Bellon H,Zhu YT(2005)Cenozoic K-rich adakitic volcanic rocksin the Hohxil area,northern Tibet:lower-crustal melting in an intracontinental setting.Geology 33:465–468

    Williams H,Turner S,Kelley S,Harris N(2001)Age and composition of dikes in Southern Tibet:new constraints on the timing of east-west extension and its relationship to postcollisional volcanism.Geology 29:339–342

    Xiao B,Qin KZ,Li GM,Li JX,Xia DX,Chen L,Zhao JX(2012)Highly oxidized magma and fluid evolution of Miocene Qulong giant porphyry Cu-Mo deposit,southern Tibet,China.Resour Geol.https://doi.org/10.1111/j.1751-3928.2011.00177.x

    Zhang ZM,Zhao GC,Santosh M,Wang JL,Dong X,Liou JG(2010)Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis,south Tibet:petrology,zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia.JMetamorph Geol 28:719–733

    免费不卡的大黄色大毛片视频在线观看 | 午夜免费男女啪啪视频观看| 国产精品一及| 黄色配什么色好看| 99热这里只有精品一区| 深爱激情五月婷婷| 日韩伦理黄色片| 91狼人影院| 亚洲综合精品二区| 美女国产视频在线观看| 女人久久www免费人成看片| 色视频www国产| 免费看美女性在线毛片视频| 亚洲国产精品sss在线观看| 熟妇人妻久久中文字幕3abv| 99热这里只有精品一区| 久久97久久精品| 最近最新中文字幕免费大全7| 成年女人看的毛片在线观看| 成人高潮视频无遮挡免费网站| 午夜久久久久精精品| 亚洲国产av新网站| 午夜福利高清视频| 午夜免费男女啪啪视频观看| 成年av动漫网址| 男人和女人高潮做爰伦理| av国产久精品久网站免费入址| 好男人视频免费观看在线| 一区二区三区乱码不卡18| 青青草视频在线视频观看| 久久精品久久久久久噜噜老黄| 欧美xxⅹ黑人| 少妇高潮的动态图| 亚洲国产日韩欧美精品在线观看| 亚洲精品乱码久久久v下载方式| 日日摸夜夜添夜夜爱| 天天躁夜夜躁狠狠久久av| 伊人久久国产一区二区| 最后的刺客免费高清国语| 国产精品一及| 亚洲乱码一区二区免费版| 99re6热这里在线精品视频| 国产精品蜜桃在线观看| 春色校园在线视频观看| 高清av免费在线| 国产精品无大码| 大话2 男鬼变身卡| 亚洲成人av在线免费| av在线亚洲专区| 直男gayav资源| 在线免费十八禁| 一个人观看的视频www高清免费观看| av又黄又爽大尺度在线免费看| 国产午夜精品久久久久久一区二区三区| 国内精品美女久久久久久| 一个人看视频在线观看www免费| 国产精品久久久久久久久免| 国精品久久久久久国模美| 午夜激情久久久久久久| 免费播放大片免费观看视频在线观看| ponron亚洲| 成人亚洲精品一区在线观看 | 亚洲成人一二三区av| 国产成人aa在线观看| 国语对白做爰xxxⅹ性视频网站| 搡老乐熟女国产| xxx大片免费视频| 国产精品福利在线免费观看| 边亲边吃奶的免费视频| 中国美白少妇内射xxxbb| 国产免费又黄又爽又色| 内地一区二区视频在线| 国产精品一区www在线观看| 毛片一级片免费看久久久久| 免费不卡的大黄色大毛片视频在线观看 | 免费看a级黄色片| 国产伦理片在线播放av一区| 啦啦啦韩国在线观看视频| 干丝袜人妻中文字幕| 51国产日韩欧美| 午夜福利在线观看吧| 免费看美女性在线毛片视频| a级毛片免费高清观看在线播放| 日韩大片免费观看网站| www.色视频.com| 精品人妻视频免费看| 国产爱豆传媒在线观看| 免费看不卡的av| 亚洲av不卡在线观看| 一夜夜www| 色吧在线观看| av播播在线观看一区| 国产高潮美女av| 黄色日韩在线| 日本熟妇午夜| 日韩国内少妇激情av| 欧美高清成人免费视频www| 国产淫语在线视频| 国产大屁股一区二区在线视频| 高清在线视频一区二区三区| 欧美日韩亚洲高清精品| 久久99热6这里只有精品| 老司机影院成人| 最近手机中文字幕大全| 美女cb高潮喷水在线观看| 久久99热这里只频精品6学生| 成人特级av手机在线观看| 亚洲综合色惰| 只有这里有精品99| 永久免费av网站大全| 国产精品一区二区在线观看99 | 伦精品一区二区三区| 国产精品不卡视频一区二区| 亚洲欧美日韩东京热| 欧美变态另类bdsm刘玥| 啦啦啦韩国在线观看视频| 又爽又黄a免费视频| 国产在线一区二区三区精| 蜜桃亚洲精品一区二区三区| 韩国av在线不卡| 国产美女午夜福利| 禁无遮挡网站| 视频中文字幕在线观看| 激情五月婷婷亚洲| 天堂√8在线中文| 九色成人免费人妻av| 国产一区二区亚洲精品在线观看| 国产欧美另类精品又又久久亚洲欧美| 搡女人真爽免费视频火全软件| 男女边摸边吃奶| 九九爱精品视频在线观看| 成年女人在线观看亚洲视频 | av卡一久久| 蜜臀久久99精品久久宅男| 伦理电影大哥的女人| 午夜视频国产福利| videos熟女内射| 特大巨黑吊av在线直播| 亚洲人与动物交配视频| 日本一二三区视频观看| 激情 狠狠 欧美| 国产成人精品婷婷| 日韩中字成人| 在线观看av片永久免费下载| 国产黄片美女视频| 日本熟妇午夜| 国产亚洲精品av在线| 成年女人在线观看亚洲视频 | 秋霞在线观看毛片| 久久久久网色| 久久国内精品自在自线图片| 亚洲综合精品二区| 男插女下体视频免费在线播放| 啦啦啦中文免费视频观看日本| 日本猛色少妇xxxxx猛交久久| 亚洲av福利一区| 国产男人的电影天堂91| 黑人高潮一二区| 国产精品国产三级国产av玫瑰| 最新中文字幕久久久久| 一级毛片 在线播放| 亚洲精品乱久久久久久| 最近最新中文字幕免费大全7| 亚洲熟妇中文字幕五十中出| 高清av免费在线| 久久精品综合一区二区三区| 成人特级av手机在线观看| 一级a做视频免费观看| 国产亚洲91精品色在线| 午夜激情久久久久久久| 2018国产大陆天天弄谢| 亚洲av免费在线观看| 亚洲一级一片aⅴ在线观看| 亚州av有码| 国产精品三级大全| 有码 亚洲区| 欧美另类一区| 欧美一区二区亚洲| 免费大片黄手机在线观看| 高清视频免费观看一区二区 | 神马国产精品三级电影在线观看| 亚洲精品aⅴ在线观看| 欧美三级亚洲精品| 欧美不卡视频在线免费观看| 女人久久www免费人成看片| 女人久久www免费人成看片| 欧美人与善性xxx| 人妻一区二区av| 搞女人的毛片| 一个人看的www免费观看视频| 国产有黄有色有爽视频| 国产精品国产三级专区第一集| 日韩精品有码人妻一区| 亚洲精品乱久久久久久| 国产黄a三级三级三级人| 2018国产大陆天天弄谢| 欧美另类一区| 国产黄色小视频在线观看| 亚洲国产最新在线播放| 最近手机中文字幕大全| 亚洲四区av| 成人av在线播放网站| 国产黄色视频一区二区在线观看| 麻豆乱淫一区二区| 亚洲精品456在线播放app| 别揉我奶头 嗯啊视频| 乱码一卡2卡4卡精品| a级一级毛片免费在线观看| 国产亚洲av片在线观看秒播厂 | 亚洲av中文字字幕乱码综合| 亚洲欧美成人精品一区二区| 欧美激情国产日韩精品一区| 亚洲成人av在线免费| 国产免费福利视频在线观看| 夜夜看夜夜爽夜夜摸| 午夜福利在线观看免费完整高清在| 久久精品人妻少妇| 亚洲精品成人久久久久久| 久久99热这里只有精品18| 亚洲国产精品专区欧美| 又粗又硬又长又爽又黄的视频| 少妇的逼好多水| 国产高清国产精品国产三级 | 亚洲国产精品国产精品| 熟妇人妻不卡中文字幕| 欧美成人精品欧美一级黄| 亚洲国产精品国产精品| 国产色婷婷99| 小蜜桃在线观看免费完整版高清| 国产成人午夜福利电影在线观看| kizo精华| 久久久久国产网址| 人体艺术视频欧美日本| 国产成人精品久久久久久| 亚洲精品亚洲一区二区| 亚洲精品亚洲一区二区| av国产免费在线观看| 亚洲av男天堂| 国产成人精品婷婷| 91在线精品国自产拍蜜月| 少妇裸体淫交视频免费看高清| 少妇裸体淫交视频免费看高清| 国内精品宾馆在线| 99久国产av精品| 国产探花在线观看一区二区| 欧美+日韩+精品| 插逼视频在线观看| 中文字幕av成人在线电影| 少妇丰满av| 国产一区二区亚洲精品在线观看| videossex国产| 久久99热6这里只有精品| 十八禁国产超污无遮挡网站| 亚洲精华国产精华液的使用体验| 精品酒店卫生间| 久久久亚洲精品成人影院| 亚洲欧洲国产日韩| 综合色av麻豆| 少妇猛男粗大的猛烈进出视频 | 噜噜噜噜噜久久久久久91| 天天躁日日操中文字幕| 简卡轻食公司| 别揉我奶头 嗯啊视频| 日韩在线高清观看一区二区三区| h日本视频在线播放| 亚洲精品久久久久久婷婷小说| 亚洲成人中文字幕在线播放| 久久久久久久久久黄片| 国产高清有码在线观看视频| 男人和女人高潮做爰伦理| 国产视频内射| 夜夜爽夜夜爽视频| 久久久久国产网址| 国产黄色免费在线视频| 美女黄网站色视频| 最近中文字幕高清免费大全6| 成年人午夜在线观看视频 | 亚洲av成人精品一区久久| 人人妻人人澡人人爽人人夜夜 | 丝袜喷水一区| av在线老鸭窝| kizo精华| 国产精品不卡视频一区二区| 三级经典国产精品| 久久久久久九九精品二区国产| 国产精品福利在线免费观看| 最新中文字幕久久久久| 日韩av免费高清视频| 免费观看无遮挡的男女| 一区二区三区乱码不卡18| 国产精品熟女久久久久浪| 久久精品夜色国产| 免费黄网站久久成人精品| 最近最新中文字幕大全电影3| 国产午夜精品论理片| 亚洲成色77777| 91午夜精品亚洲一区二区三区| 国内揄拍国产精品人妻在线| 2018国产大陆天天弄谢| 日本爱情动作片www.在线观看| 国产精品熟女久久久久浪| 亚洲美女搞黄在线观看| 美女被艹到高潮喷水动态| 夫妻性生交免费视频一级片| 国产精品无大码| 欧美另类一区| 国产淫片久久久久久久久| 天堂俺去俺来也www色官网 | 久久久久久久久久人人人人人人| 亚洲成人精品中文字幕电影| 综合色av麻豆| av女优亚洲男人天堂| 精品亚洲乱码少妇综合久久| 大香蕉久久网| 亚洲真实伦在线观看| 久久久久久国产a免费观看| 在现免费观看毛片| 国产久久久一区二区三区| 日本熟妇午夜| 亚洲成人精品中文字幕电影| 青春草亚洲视频在线观看| 国产精品久久久久久精品电影小说 | 中文字幕免费在线视频6| 免费看不卡的av| 永久免费av网站大全| 亚洲av免费在线观看| 亚洲va在线va天堂va国产| 国产久久久一区二区三区| 国内精品一区二区在线观看| 汤姆久久久久久久影院中文字幕 | 亚洲国产最新在线播放| 熟妇人妻不卡中文字幕| 久久鲁丝午夜福利片| 免费观看a级毛片全部| 校园人妻丝袜中文字幕| 亚洲精品456在线播放app| 亚洲性久久影院| 国产精品国产三级专区第一集| or卡值多少钱| 干丝袜人妻中文字幕| 熟妇人妻久久中文字幕3abv| 人人妻人人澡欧美一区二区| 国产精品女同一区二区软件| 欧美xxxx性猛交bbbb| 欧美97在线视频| 我的老师免费观看完整版| 精品午夜福利在线看| 2021少妇久久久久久久久久久| av黄色大香蕉| 夫妻性生交免费视频一级片| 26uuu在线亚洲综合色| 欧美zozozo另类| 国产精品久久久久久久久免| 一个人看视频在线观看www免费| 免费高清在线观看视频在线观看| 国产黄a三级三级三级人| 免费黄色在线免费观看| 国产又色又爽无遮挡免| 亚洲精品久久久久久婷婷小说| 综合色av麻豆| 欧美丝袜亚洲另类| 天堂av国产一区二区熟女人妻| 午夜福利高清视频| 久久久久久久午夜电影| 最近的中文字幕免费完整| 国产成人午夜福利电影在线观看| 人人妻人人澡欧美一区二区| 国产亚洲最大av| 天堂俺去俺来也www色官网 | 神马国产精品三级电影在线观看| 国产视频首页在线观看| 天堂俺去俺来也www色官网 | 久久久亚洲精品成人影院| 亚洲精品国产成人久久av| 99热全是精品| 伦精品一区二区三区| 国产亚洲5aaaaa淫片| 欧美一区二区亚洲| 国产一级毛片在线| 91精品一卡2卡3卡4卡| 亚洲欧美精品自产自拍| 国产成人a区在线观看| 好男人在线观看高清免费视频| 国产免费视频播放在线视频 | 国产成人a∨麻豆精品| 欧美另类一区| 能在线免费看毛片的网站| 日韩欧美国产在线观看| 寂寞人妻少妇视频99o| 亚洲最大成人av| 18禁动态无遮挡网站| av天堂中文字幕网| 最近最新中文字幕免费大全7| 噜噜噜噜噜久久久久久91| 麻豆国产97在线/欧美| 欧美成人一区二区免费高清观看| 国产亚洲av片在线观看秒播厂 | 婷婷六月久久综合丁香| 一区二区三区乱码不卡18| 极品少妇高潮喷水抽搐| 永久免费av网站大全| 亚洲最大成人av| 女人被狂操c到高潮| 国产白丝娇喘喷水9色精品| 最近最新中文字幕免费大全7| 中文乱码字字幕精品一区二区三区 | 亚洲在久久综合| 又大又黄又爽视频免费| 性色avwww在线观看| 啦啦啦韩国在线观看视频| 日产精品乱码卡一卡2卡三| 99九九线精品视频在线观看视频| 又爽又黄无遮挡网站| 欧美不卡视频在线免费观看| 在线免费观看的www视频| 国产黄色视频一区二区在线观看| 91精品一卡2卡3卡4卡| 五月伊人婷婷丁香| 好男人视频免费观看在线| 国产色爽女视频免费观看| 久久久亚洲精品成人影院| 国产黄片视频在线免费观看| 国产大屁股一区二区在线视频| 天天躁夜夜躁狠狠久久av| 国产免费视频播放在线视频 | eeuss影院久久| 欧美日韩国产mv在线观看视频 | 久久99热这里只有精品18| 99久国产av精品国产电影| 欧美潮喷喷水| 91aial.com中文字幕在线观看| 大片免费播放器 马上看| 老师上课跳d突然被开到最大视频| 欧美精品一区二区大全| 免费看美女性在线毛片视频| 亚洲不卡免费看| 国产爱豆传媒在线观看| 一夜夜www| 亚洲国产精品国产精品| 日韩一本色道免费dvd| 免费观看无遮挡的男女| 大又大粗又爽又黄少妇毛片口| 熟女电影av网| 搡老乐熟女国产| 高清在线视频一区二区三区| 久久热精品热| 91在线精品国自产拍蜜月| 真实男女啪啪啪动态图| 日韩av在线免费看完整版不卡| 日韩av在线大香蕉| 精品久久久噜噜| 中文欧美无线码| 日本一二三区视频观看| 亚洲精华国产精华液的使用体验| 日韩不卡一区二区三区视频在线| 免费黄色在线免费观看| 夫妻性生交免费视频一级片| 国产精品日韩av在线免费观看| 国产精品伦人一区二区| 99视频精品全部免费 在线| 国产黄a三级三级三级人| 中文字幕制服av| 中文天堂在线官网| 日日干狠狠操夜夜爽| 国产探花在线观看一区二区| 国产黄频视频在线观看| 能在线免费看毛片的网站| 亚洲人成网站在线观看播放| 精品国产三级普通话版| 久99久视频精品免费| 国产一区二区三区综合在线观看 | 久久久久久国产a免费观看| 国产v大片淫在线免费观看| 亚洲av日韩在线播放| 女人十人毛片免费观看3o分钟| 久久精品熟女亚洲av麻豆精品 | 少妇裸体淫交视频免费看高清| 高清在线视频一区二区三区| 2021天堂中文幕一二区在线观| 欧美成人一区二区免费高清观看| 亚洲精品一二三| 日韩大片免费观看网站| 婷婷色av中文字幕| 亚洲精品aⅴ在线观看| 国产免费视频播放在线视频 | 在线免费观看的www视频| 亚洲精品456在线播放app| 国产精品一区二区性色av| 欧美激情在线99| 18+在线观看网站| 色综合亚洲欧美另类图片| 最近2019中文字幕mv第一页| .国产精品久久| 99九九线精品视频在线观看视频| 欧美97在线视频| 亚洲欧美成人综合另类久久久| 三级国产精品片| 亚洲欧美精品自产自拍| av卡一久久| 内射极品少妇av片p| 日本猛色少妇xxxxx猛交久久| 中文字幕人妻熟人妻熟丝袜美| 日本色播在线视频| 久久精品国产亚洲网站| 边亲边吃奶的免费视频| 精品久久久精品久久久| 黄色一级大片看看| 国产精品精品国产色婷婷| 在线观看人妻少妇| 五月伊人婷婷丁香| 麻豆乱淫一区二区| 久久久久久九九精品二区国产| 性色avwww在线观看| 黄色一级大片看看| 久久综合国产亚洲精品| 黄色欧美视频在线观看| 婷婷六月久久综合丁香| 久久草成人影院| 国产精品国产三级专区第一集| 亚洲最大成人手机在线| h日本视频在线播放| 一夜夜www| 色5月婷婷丁香| 丰满乱子伦码专区| 国产色婷婷99| 国产 亚洲一区二区三区 | freevideosex欧美| 日本一二三区视频观看| 免费大片黄手机在线观看| av在线天堂中文字幕| 国产激情偷乱视频一区二区| 亚洲自偷自拍三级| 老师上课跳d突然被开到最大视频| 日韩精品有码人妻一区| 免费看日本二区| 国产极品天堂在线| 能在线免费观看的黄片| 国产免费福利视频在线观看| 久久久久九九精品影院| 国产黄片美女视频| 亚洲aⅴ乱码一区二区在线播放| av在线亚洲专区| 久久久精品欧美日韩精品| 日韩欧美一区视频在线观看 | 一级毛片 在线播放| 久久精品国产亚洲av天美| 97人妻精品一区二区三区麻豆| 麻豆乱淫一区二区| 久久热精品热| 日韩 亚洲 欧美在线| 大话2 男鬼变身卡| 亚洲四区av| 免费观看av网站的网址| 一区二区三区乱码不卡18| 国产高清不卡午夜福利| 嫩草影院入口| 国产精品.久久久| 丝袜美腿在线中文| 国产精品一区二区三区四区免费观看| 一个人免费在线观看电影| 久久久久免费精品人妻一区二区| 噜噜噜噜噜久久久久久91| 欧美变态另类bdsm刘玥| 欧美另类一区| 久久久久久久久中文| 我的女老师完整版在线观看| 丝瓜视频免费看黄片| 亚洲欧洲国产日韩| 日本三级黄在线观看| 亚洲美女视频黄频| 欧美高清性xxxxhd video| 精品国产三级普通话版| 中文字幕制服av| 日韩精品有码人妻一区| 九九爱精品视频在线观看| 欧美bdsm另类| 欧美日韩亚洲高清精品| 国产一区二区在线观看日韩| 国产精品蜜桃在线观看| 3wmmmm亚洲av在线观看| 女的被弄到高潮叫床怎么办| 五月伊人婷婷丁香| 狠狠精品人妻久久久久久综合| 亚洲欧洲国产日韩| av线在线观看网站| 亚洲伊人久久精品综合| 尤物成人国产欧美一区二区三区| 久久久久久伊人网av| 国产色爽女视频免费观看| 亚州av有码| 成人一区二区视频在线观看| 2018国产大陆天天弄谢| 成人午夜精彩视频在线观看| 亚洲最大成人av| 亚洲性久久影院| 午夜亚洲福利在线播放| 国产毛片a区久久久久| 六月丁香七月| 亚洲成人av在线免费| 99久久精品国产国产毛片| 国产免费一级a男人的天堂| 午夜激情欧美在线| 国产三级在线视频| 极品教师在线视频| 久久这里只有精品中国| 老女人水多毛片| 国产成人精品婷婷| 中文字幕av在线有码专区| 美女xxoo啪啪120秒动态图| 伊人久久精品亚洲午夜| av卡一久久| 欧美三级亚洲精品| 男人爽女人下面视频在线观看| 天天躁夜夜躁狠狠久久av| 麻豆乱淫一区二区|