• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Re–Os dating of molybdenite and in-situ Pb isotopes of sulfides from the Lamo Zn–Cu deposit in the Dachang tin-polymetallic ore field,Guangxi,China

    2018-07-04 11:28:12HaiZhaoWenchaoSuPengXieNengpingShenJialiCaiMingLuoJieLiZhianBao
    Acta Geochimica 2018年3期

    Hai Zhao?Wenchao Su?Peng Xie?Nengping Shen?Jiali Cai?Ming Luo?Jie Li?Zhian Bao

    1 Introduction

    The Dachang tin-polymetallic district,Guangxi,China,is one of the largest tin ore fields in the world and contains approximately 1.5 Mt Sn,6.8 Mt Zn,1.8 Mt Pb,1.4 Mt Sb,0.4 Mt Cu,and other metals(Huang et al.2012).Economic deposits in the district include the Lamo proximal skarn Zn–Cu deposit,the Tongkeng-Changpo and Gaofeng tinbase metal deposits,and the Huile and Dafulou black shale-hosted cassiterite-sulfide deposits.They occur as stratiforms,veins,and stockworks that are hosted in the Mid-Upper Devonian carbonate-rich sediments adjacent to the underlying Cretaceous Longxianggai granite.

    In the past decades,there were a large number of studies on the geology,mineralogy,geochemistry,isotopes,chronology,and fluid inclusions for the Dachang ore district(Chen et al.1985,1993;Han and Hutchinson 1989a,b;Fu et al.1991,1993;Zhao et al.2002,2007;Pa?ava et al.2003;Cai et al.2004,2005,2006a,b;Fan et al.2004;Wang et al.2004,2015;Li et al.2008;Liang et al.2011a,b;Xu et al.2011),but the origin of the deposits remains controversial.Most studies concluded that all of depositsin the Dachang district were formed in a magmatic hydrothermal system related to the Longxianggai granite(Chen et al.1993;Fu et al.1991,1993;Cai et al.2005,2007;Liet al.2008),based on similar age ranges for mineralization(91–96 Ma)and for the granite(91–97 Ma)(Wang et al.2004,2015;Caiet al.2006a,b,2011a,b;Guo et al.2017).Others argued that some ores,especially the stratiform ores,were the results of submarine exhalations during the Devonian(Cai and Zhang 1983;Han and Hutchinson 1989a,b,1997;Jiang et al.1999;Zhao et al.2007).These debates may be attributed to the lack of convincing chronological data,especially the lack of direct dating on sulfides,as this data were determined by different isotopic dating methods.

    Re–Osisotopesystem is widely used for direct dating of sulfides for the deposits because some sulfides contain detectable Re and Os concentrations.Many studies have shown that molybdenite(MoS2)is the most suitable sulfide for the direct dating of mineralization,owing to its high concentration of Re(up to hundreds or thousands of parts per million)but lack of common Os(Luck and Allegre 1982;Selby and Creaser 2001;Stein et al.2001).Recent mining reveals that molybdenite occurs locally in the skarns associated with Zn–Cu mineralization at the Lamo deposit in the Dachang ore field.This provides a good opportunity to directly date Zn–Cu mineralization.In this paper,we are the first to report a precise age for Zn–Cu mineralization in the Dachang district,using the molybdenite Re–Os dating method.Combined with in-situ Pb isotope of sulfides from the Lamo deposit and feldspars in the biotite granite and granitic porphyry dikes in the district,the sources of metals for the Lamo deposit are also discussed.

    2 Geological setting

    The Dachang tin-polymetallic ore field(Fig.1)is located in the central part of the Danchifold belt,at the intersection between the Jiangnan geoanticline and the Tiengui geosyncline(Cai et al.2007).Sedimentary rocks in this area consist of Devonian siltstone,black shale,lenticular and reef limestone,Carboniferous limestone and siltstone,and Permian sandstone.These rocks are exposed along the axis of the NW-trending Longxianggai anticline and are cut by the Longxiangai reverse fault on the west flank,where the Longxianggai granite intruded.A series of the NE-trending normal faults cut the anticline and the reverse fault.In addition,there is a small anticline that developed in the southwestern part of the district.The axis of the Dachang anticline is parallel to the main fold and is cut by the Dachang reverse fault,where the granite porphyry dikes intruded.

    The Longxianggai granite is the main intrusive body in the Dachang area.It crops out at the center part of the Dachang ore field,with an areaof 0.5 km2,near theaxisof the Longxianggai anticline(Fig.1).It contains quartz(36%),K-feldspar(38%),plagioclase(22%),muscovite(3%),and biotite(1%),with accessory ilmenite,zircon and monazite(Fu et al.1991).The granite and its porphyritic phase have been dated by the SHRIMPzircon U–Pb dating at 93±1 and 91±1 Ma,respectively(Cai et al.2006a).However,Liang et al.(2011a,b)reported slightly older ages for the granite,ranging from 94±1 to 97±3 Ma,and these ages were measured by the LA-MC-ICP-MS zircon U–Pb dating method.

    Mineralization in the Dachang ore field exhibitsobvious metal zoning,both vertical and horizontal,around the Longxiangai granite pluton.The Lamo Zn–Cu skarn deposit occurs in the contact areas between the Upper Devonian limestone and the granite,whereas the cassiterite-sulfide ores are mainly distributed distal to the granite,such as the Changpo-Tongkeng and Gaofeng deposits in the western part,and the Dafulou,Huile and Kangma deposits in the eastern part.

    3 Geology of deposit

    The Lamo Zn–Cu deposit(Fig.2)is a typical skarn deposit in the Dachang ore field and has many characteristics of proximal calcic skarns(Kwak 1987).It contains approximately 0.6 Mt Zn with an average grade of 4%Zn,0.034 Mt Cu with an average grade of 0.6%Cu,and other metals(Ye and Pan 1994).The geology of the deposit was described in detail by Fu et al.(1991).

    Sedimentary rocks in the Lamo district consist of marl and shale of the Middle Devonian Luofu Formation,siliceous rocks of the Upper Devonian Liujiang Formation,lenticular and banded limestone of the Upper Devonian Wuzhishan Formation,and marl,mudstoneand shaleof the Lower Carboniferous Luzhai Formation.Zn–Cu ores are hosted in the contact zone between the lenticular and banded limestone of the Upper Devonian Wuzhishan Formation and the granite.The limestone within 1–1.5 km of the granite contact had been metamorphosed to marble,hornfels,and metamorphic skarns(Fu et al.1991).

    The orebodies at the Lamo occur as chimney,mantos,and pods(Fu et al.1991).Ore minerals mainly consist of sphalerite,arsenopyrite,pyrrhotite,galena,chalcopyrite,and minor molybdenite and scheelite.Based on field observation, crosscutting relations and mineral assemblages,four mineral stagesfor the Lamo deposit have been identified(Fig.3).

    Fig.1 Geological map of the Dachang ore field(modified from Chen et al.1993)

    Fig.2 Geological map(a)and cross-section map(b)of the Lamo Zn–Cu deposit(modified from Chen et al.1993)

    Stage I and II are skarn assemblages,which occur only near the granite contact.Stage I is a dry skarn stage and consists of garnet,vesuvianite,and wollastonite,with minor diopside.The garnet is usually light brown in color(Fig.4a–e)and composed 60%to 70%grossular and 30%to 40%andradite(Fu et al.1991,1993).Vesuvianite is typically subhedral and intergrown with garnet and wollastonite.Fluid inclusion studies indicated that this stagehas high homogenization temperature from 582 to 645°C,with salinities of 7 wt%–9 wt%NaCl equiv(Fu et al.1993).

    Fig.3 Paragenetic sequence of minerals for the Lamo Zn–Cu deposit

    Stage II is a wet skarn stage and contains epidote,amphibole,fluorite,and quartz.These minerals commonly replaced the garnet,diopside,and vesuvianite of the Stage I.Sulfide mineralization began to develop in this stage and occur as stratiform(Fig.4d,e)or be disseminated in the skarns(Fig.4b).Sulfide minerals include sphalerite,arsenopyrite,pyrrhotite,minor molybdenite,bismuthinite and chalcopyrite,which fill or replace the garnet and diopside(Fig.4c,f).Fluid inclusion studies showed that this stage was formed at temperatures from 359 to 396°C,with salinities of 13 wt%–47 wt%NaCl equiv(Fu et al.1993).

    Stages III and IV are considered the ore sulfide stages that occur as massive ores(Fig.4g)in the outermost zone adjacent to marble.Stage III contains various sulfides and hydroxyl-bearing silicates,including biotite,sericite,chlorite,sphalerite,arsenopyrite,galena,pyrite,pyrrhotite,and minor chalcopyrite(Fig.4h).Stage IV isdominated by quartz,carbonates,chlorite,sphalerite,galena,pyrite,minor chalcopyrite and bournonite.

    4 Sampling and analytical methods

    The ten samplesanalyzed in this study were collected from the Lamo deposit and the Dachang orefield.Seven samples werecollected from the underground tunnels(680 m level)at the Shamuchong part of the Lamo deposit(Fig.2).They occurred within the skarn zones closeto thegranite.Re–Os dating samples(LM-601,LM-603,LM-604,LM-605,LM-606,and LM-607)were collected from the same molybdenite veinlet(Fig.4a).They contain garnet,diopside,molybdenite,minor bismuthinite and scheelite(Fig.4b,c).One ore sample(LM613)selected for in-situ Pb isotopes analyses was from the same skarn zone that hosted the molybdenite veinlet at the Lamo deposit(Fig.2b).It is dominated by sphalerite,arsenopyrite,galena,pyrite,minor chalcopyrite and bournonite(Fig.4g,h).To compare with the Pb isotopes of sulfides,two granite samples(LM530 and LM590)were collected from the 530 m and 590 m level of tunnels at the Lamo deposit(Fig.2),respectively.One granite porphyry sample(GF407)was collected from the-200 m level of tunnelsat the Gaofeng deposit in the Dachang ore field.

    Fig.4 Examplesof oresfrom the Lamo deposit and feldspars of the granite in the Dachang ore field.a Molybdenite occurs as veinlets in skarn.b A hand specimen showing disseminated molybdenite associated with garnet and epidote.c SEM back-scattered electron(BSE)image showing molybdenite intergrown with scheelite,bismuthinite,diopside and garnet.d,e Stratiform sulfide ore containing sphalerite and arsenopyrite occurred in the skarn.f Arsenopyrite and sphalerite fill or replaced garnet(BSE).g Massive sulfide ores in the Lamo deposit.h Pyrite,arsenopyrite,and sphaleritein themassiveoresreplaced by galenaand bournonite.i Graniteporphyry and its K-feldspar j from the Gaofeng tinpolymetallic ore deposit.k Biotite granite and its plagioclase l from the Longxianggai pluton.Kf K-feldspar;Pl plagioclase;Mo molybdenite;Grt garnet;Ep epidote;Di diopside;Py pyrite;Apy arsenopyrite;Sp sphalerite;Ccp chalcopyrite;Bis bismuthinite;Sh scheelite;Bnn bournonite;Gn galena

    For Re–Osdating,molybdenite was separated by a steel needle and then handpicked under a binocular microscope.Re–Os isotope analyses were performed at the State Key Laboratory of Isotope Geochemistry,Guangzhou Institute Geochemistry,Chinese Academy of Sciences.The analytical procedure for the determination of Re concentrations and Os isotope ratios was described as follows:The185Re spike,natural Os standard solutions and molybdenite samples(0.025–0.1 g)were weighed and digested with the concentrated HNO3for 24 h at 240°C in sealed Carius tubes.Os distilled as OsO4from the supernatant was trapped using pure water and thus could be directly analyzed by ICP-MS.Re was determined by ICPM Safter separation and purification using anion exchange resin(AG1X8).Details of the analytical procedures are described in the references(Shirey and Walker 1995;Sun et al.2010;Li et al.2015).

    The correction of Re isotopic ratios in the sample-spike mixtures was based on the factors calculated from the average ratios on the bracketed standards relative to the International Union of Pure and Applied Chemistry(IUPAC)ratios(Rosman and Taylor 1998).Mass bias correction for Os was ascertained on-linein each operational procedure.Themass biasfactor for192Os/187Oswasobtained by normalization to192Os/188Os=3.08271.A range of 2%for the correction factors has been observed based on the results from the initial to final standard runs.Model ages were calculated using t=[ln(1+187Os/187Re)]/λ,where λ (187Re)=1.666 ×10-11a-1(Smoliar et al.1996).Re–Os isochron age was calculated using ISOPLOT 3.0(Ludwig 2003).Absolute uncertainties are given at 2σlevel(standard deviation).The molybdenite reference material of GBW04436 was repeatedly measured along with the samples.The Re–Osage of this reference material was 140.4±2.3 Ma(2 s,n=4).The result is consistent with certified values and the values previously reported by Du et al.(2004)and Liet al.(2010).

    For in-situ Pb isotopes analyses,the samples were polished into thin sections and their surfaces were cleaned with ethanol,high-purity water and 2%HNO3prior to analysis.In-situ Pb isotopes micro analyses of sulfides and feldspars were measured at the State Key Laboratory of Continental Dynamics,Northwest University,China.The analytical method has been previously described in detail by Chen et al.(2014),Yuan et al.(2015),and Bao et al.(2017).

    It used LA-MC-ICP-MS,where the LA system was the 193 nm RESOLution M-50(ASI,Australia),the MC-ICPMSwas the Nu Plasma IIMC-ICP-MSby Nu Instruments(Nu Ins,UK),and the membrane desolvator system was Aridus II Desolvation Nebulizer System(Aridus II,Cetac,USA).Analytical signals could be deducted through the Time Resolved Analysis(TRA)mode.The integration time was approximately 0.2 s,the energy density was 6 J/cm2,and the time of signal acquisition was 50 s.The laser frequency for galena was 3 Hz,with 13μm of spot size,for feldspar,molybdenite and pyrite was 6 Hz,with 100μm of spot size,respectively.Tl standard solution(NIST SRM 997)was introduced by membrane desolvator(50–100 μl/min,PFA trace nebulizer)to calibrate Pb isotopes with the fractionation factor calculated from203Tl/205Tl ratio(2.38890;Thirlwall 2002).Pb standard solution(NIST SRM 981)was used to monitor the accuracy and precision of instrumental analysis through desolvator.NIST SRM 610 reference glass was measured once for every five spots to be served as the external standard and quality control sample to monitor the reliability of Pb isotopic compositions.The results(isotope ratios)of NIST SRM 610 analysis were as follows:208Pb/204Pb=36.968±0.007,207Pb/204Pb=15.512±0.003,206Pb/204Pb=17.051±0.003.The external accuracy of measurement of both206,207,208Pb/204Pb and207,208Pb/206Pb ratios was expected to be better than±0.05%(Chen et al.2014).Considering this analytical method is not applicable for those minerals containing low Pb concentrations(<10 ppm),in this study,feldspars and sulfides(e.g.,molybdenite,pyrite and galena)with high Pb contents were selected for in-situ Pb isotopes microanalyses.

    5 Results and discussions

    5.1 Re–Os age of molybdenite

    The Re–Os isotope data and model ages for six molybdenite samples from the Lamo Zn–Cu deposit are listed in Table 1.Re–Os isochron age is shown in Fig.5.

    The results show that Re and187Os contents of the analyzed molybdenite samples varied from 1199.7 to 3005.0 and 1.1315 to 2.8226 ppb,respectively.Calculated Re–Os model ages of six samples were consistent,ranging from 89.64±0.74 to 90.54±1.33 Ma(Table 1).These samples yield a good Re–Os isochron age of 90.0±1.1 Ma with a MSWD of 0.72(Fig.5a),which is consistent with a weighted average model age of 90.06±0.45 Ma(Fig.5b).This age is much younger than the reported garnet Sm–Nd isochron age of 95± 11 Ma(Liang et al.2011b)and quartz fluid inclusions Rb–Sr isochron age of 99±6 Ma(Li et al.2008)for the Lamo deposit.Although there isno evidence that the molybdenite coexisted with the Zn–Cu sulfides at the Lamo deposit,they are hosted in the same skarn zones(Fig.2b).Therefore,it is reasonable to infer that our molybdenite Re–Os age(90.0±1.1 Ma)may be representative of the timing of Zn–Cu mineralization for the Lamo deposit.

    Previous studies have reported the ages of several adjacent cassiterite-sulfide deposits in the Dachang ore field,using various isotope dating methods.Wang et al.(2004)obtained40Ar-39Ar plateau ages of 94.5±0.3 Ma for quartz and 91.4±2.9 Ma for sanidine from the No.91 orebody in the Changpo-Tongkeng deposit,and of 94.6±0.5 Ma for quartz from the No.100 orebody in the Gaofeng deposit.Cai et al.(2005,2006b)reported the Rb–Sr isochron ages of 93.4±7.9 and 94.1±2.7 Ma for fluid inclusions of quartz from the No.92 orebody of the Changpo-Tongkeng deposit and cassiterite-sulfide-quartz veins of the Kangma deposit,respectively.Recently,cassiterites from several cassiterite-sulfide deposits in the Dachang ore field have been dated using the LA-ICP-MS U–Pb method.Wang et al.(2015)and Guo et al.(2017)reported the cassiterite U–Pb ages of 95.8± 2.6 and 91 to 93 Ma for the No.92 orebody of the Changpo-Tongkeng deposit and the No.100 orebody in the Gaofeng deposit,respectively.These ages,together with our molybdentite Re–Os age,overlap the ages of the granite and its porphyritic phase(91–97 Ma)in the Dachang ore field,suggesting that all of depositsin the Dachang were formed in a magmatic hydrothermal system related to the Longxianggai granite(Fu et al.1991,1993;Chen et al.1993;Cai et al.2005,2007;Li et al.2008).

    Table 1 Re and Os isotope data of molybdenite from the Lamo Zn–Cu deposit in the Dachang ore field

    Fig.5 Re–Os isochron diagram(a)and weighted mean age diagram(b)of molybdenite from the Lamo Zn–Cu deposit

    5.2 In-situ Pb isotopes and source of metals

    LA-MC-ICP-MS in situ Pb isotopic compositions of sulfides from the Lamo Zn–Cu deposit are listed in Table 2.Sulfide minerals analyzed include molybdenite,galena,and pyrite,whereas sphalerite and arsenopyrite cannot be measured becausethey havevery low concentrations of Pb,which is the limit of the LA-MC-ICP-MS analysis.

    A total of 19 spots for sulfides have been measured by LA-MC-ICP-MS.Seven spotson molybdenitehavearange of206Pb/204Pb ratios from 18.532 to 18.565,207Pb/204Pb from 15.715 to 15.746,and208Pb/204Pb from 38.947 to 39.033(Table 2;Fig.6a,b).One spot on molybdenite(LM602-MO-4)has relatively lower Pb isotopic compositions (206Pb/204Pb=18.475,207Pb/204Pb=15.661,208Pb/204Pb=38.818).This difference may be attributed to its lower concentration of Pb that is close to the limit of LA-MC-ICP-MS analysis.Model ages of molybdenite(216–234 Ma)areincompatible(too old)ascompared with their Re–Os age of 90 Ma obtained from thisstudy.Galena has a narrow range of206Pb/204Pb ratios from 18.515 to 18.517,207Pb/204Pb from 15.701 to 15.705,and208Pb/204Pb from 38.945 to 38.993.The206Pb/204Pb ratios of pyrite vary from 18.489 to 18.523,207Pb/204Pb from 15.693 to 15.711,and208Pb/204Pb from 38.917 to 38.991.All of Pb isotope data plot along a steep slope that lies mostly above the average crustal Pb model curve of Zartman and Deo(1981)(Fig.6a)and overlapstherange of previoussulfides and sulfosalts conventionally determined by bulk analyses(Fig.6c,d).

    To compare the Pb isotopic compositions for sulfides,less altered feldspars in the granite and its porphyritic phase(Fig.4i–l)from the Dachang ore field are measured by LA-MC-ICP-MS,which are listed in Table 2.Eleven spots on different feldspar grains in the granite have a larger range of206Pb/204Pb ratios from 18.417 to 18.594,207Pb/204Pb from 15.641 to 15.728,and208Pb/204Pb from 38.791 to 39.073(Table 2).The206Pb/204Pb ratios of feldspars in the granite porphyry dikes vary from 18.467 to 18.546,207Pb/204Pb from 15.672 to 15.743,and208Pb/204Pb from 38.895 to 39.065.These data also plot along a steepslope that lies mostly above the average crustal Pb model curve(Fig.6c,d),which are similar to the in-situ Pb isotopes of sulfides.However,the in-situ Pb isotopes of feldspars are much different than those of the reported whole-rock granites that were conventionally determined by bulk analyses(Fig.6c,d).The reasons are unknown,possibly U loss caused by weathering and hydrothermal alteration of granites(Tosdal et al.1999).The overlapping of in-situ Pb isotopic compositions between sulfides and feldspars from the Dachang ore field suggests that the metals were mainly sourced from Cretaceous granitic magma.

    Table 2 In-situ Pb isotope data of sulfides from the Lamo Zn–Cu deposit and feldspars in the granites from the Dachang ore field

    Fig.6 In-situ Pb isotope compositions of sulfides from the Lamo Zn–Cu deposit and feldspars in the granite and granitic porphyry dike from the Dachang ore field.a 207Pb/204Pb versus 206Pb/204Pb;b 208Pb/204Pb versus 206Pb/204Pb.c,d Comparison of in-situ and bulk Pb isotopes data from the Dachang ore field.The bulk Pb isotopesdata are from Ding et al.(1988),Chen et al.(1993),Han et al.(1997),Gao(1999),Qin et al.(2002),Zhao et al.(2007),Liang et al.(2008),and Cheng and Peng(2014).Lead evolution curves are from Zartman and Doe(1981)

    6 Conclusions

    This study presents a new molybdenite Re–Os age and insitu Pb isotopes of sulfides from the Lamo Zn–Cu deposit in the Dachang ore field.Molybdenite Re–Os dating yields a reliable and accurate isochron age of 90.0±1.1 Ma.Thisnew age is close to the ages of cassiterite(91–96 Ma)and the granite and its porphyritic phase(91–97 Ma)in the Dachang ore field,suggesting that all of deposits in the Dachang were formed in the Cretaceous granite-related magmatic hydrothermal system.

    In-situ Pb isotopes of sulfides from the Lamo deposit have similar ranges of Pb isotopic compositions of the feldspars in the biotite granite and granitic porphyry dikes in the district,suggesting that the metals were mainly sourced from a granitic magma that was derived from melting of the upper crust.

    AcknowledgementsWe gratefully acknowledge the Mining Company of Jilang Indium Industry for access to samples.This work is supported by the National Science Foundation of China(Grants Nos.41672080,41772079,41272113)and Outstanding Talent Foundation of the Institute of Geochemistry,Chinese Academy of Sciences.

    Compliance with ethical standards

    Conflict of interestThere is no conflict of interest.

    Bao ZA,Chen L,Zong CL,Yuan HL,Chen KY,Dai MN(2017)Development of pressed sulfide powder tablets for in-situ sulfur and lead isotope measurement using LA-MC-ICP-MS.Int J Mass Spectrom 421:255–262

    Cai HY,Zhang GL(1983)On submarine volcanism hot spring(exhalative)mineralization of the Dachang tin polymetallic deposit in Guangxi.Bull Inst Miner Resour Geol 1(4):13–21(in Chinese)

    Cai MH,Liang T,Wu DC,Huang HM(2004)Structure characteristics and mineralization controls of the Nandan-Hechi metallogenic belt in Guangxi Province.Geol Prospect 40:5–10(in Chinese with English abstract)

    Cai MH,Liang T,Wu DC(2005)Geological characteristics and ore forming time of the Kangma deposit in the Dachang tin polymetallic ore field,Guangxi.Acta Geol Sin 79:262–268(in Chinese with English abstract)

    Cai MH,He LQ,Liu GQ,Wu DC,Huang HM(2006a)SHRIMP zircon U–Pb dating of the intrusive rocks in the Dachang tinpolymetallic ore field,Guangxiand their geological significance.Geol Rev 52:409–414(in Chinese with English abstract)

    Cai MH,Liang T,Wei KL,Huang HM,Liu GQ(2006b)Rb–Sr dating of the No.92 orebody of the Tongkeng-Changpo deposit in the Dachang tin polymetallic ore field,Guangxi,and its significance.Geol Miner Resour South China 2:35–42(in Chinese with English abstract)

    Cai MH,Mao JW,Liang T,Pirajno F,Huang HL(2007)The origin of the Tongkeng-Changpo tin deposit,Dachang metal district,Guangxi,China:clues from fluid inclusions and He isotope systematics.Miner Depos 24:613–626

    Chen YC,Huang MZ,Xu J,Ai YD,Li XM,Tang SH,Meng LK(1985)Geological features and metallogenetic series of the Dachang cassiterite-sulfide-polymetallic belt.Acta Geol Sin 3:228–240(in Chinese with English abstract)

    Chen YC,Huang MZ,Xu J,Hu YZ,Tang SH,Li YQ,Meng LK(1993)Tin deposits of Dachang.Geological Publishing House,Beijing(in Chinese with English abstract)

    Chen KY,Yuan HL,Bao ZA,Zong CL,Dai MN(2014)Precise and accurate in-situ determination of lead isotope ratios in NIST,USGS,MPI-DING and CGSG glass reference materials using femtosecond laser ablation MC-ICP-MS.Geostand Geoanal Res 38:5–21

    Cheng YS,Peng C(2014)Ore-forming material of Dachang tin deposit in Guangxi,China:lead isotope evidence.Trans Nonferrous Met Soc China 24:3652–3659

    Ding TP,Peng ZC,Ni H,Li YH(1988)Stable isotope studies on several typical mineral deposits in the Nanling region.Beijing Science and Technology Publishing House,Beijing(in Chinese with English abstract)

    Du AD,Wu SQ,Sun DZ,Wang SX,Qu WJ,Markey R,Stein HJ,Morgan JW,Malinovskiy D(2004)Preparation and certification of Re–Osdating referencematerials:molybdenite HLPand JDC.Geostand Geoanal Res 28:41–52

    Fan DL,Zhang T,Ye J,Pa?ava J,Kribek B,Dobes P,Varrin I,Zak K(2004)Geochemistry and origin of tin-polymetallic sulfide deposits hosted by the Devonian black shale series near Dachang,Guangxi,China.Ore Geol Rev 24:103–120

    Fu M,Changkakoti A,Krouse HR,Gray J,Kwak TAP(1991)An oxygen,hydrogen,sulfur,and carbon isotope study of carbonate replacement(skarn)tin deposits of the Dachang tin field,China.Econ Geol 86:1683–1703

    Fu M,Kwak TAP,Mernagh TP(1993)Fluid inclusion studies of zoning in the Dachang tin-polymetallic ore field,People’s Republic of China.Econ Geol 88:283–300

    Gao JY(1999)Pb isotopic evolution and its significance in ore genesis in the Dachang tin-polymetallic ore deposits.Geol Geochem 27(2):38–43(in Chinese with English abstract)

    Guo J,Sun WD,Zhang RQ,Hu YB(2017)Cassiterite U–Pb geochronology and trace element fingerprints of the Gaofeng tin deposit,Dachang district,South China.SEG 2017 Abstract,Beijing,China,p 170

    Han F,Hutchinson RW(1989a)Evidence for exhalative origin for rocks and ores of the Dachang tin polymetallic field:the orebearing formation and hydrothermal exhalative sedimentary rocks.Miner Depos8:25–40(in Chinesewith English abstract)

    Han F,Hutchinson RW(1989b)Evidence for hydrothermal exhalative sedimentary origin of the Dachang tin-polymetallic deposits-geochemistry of rare earth elements and trace elements of the host rocks.Miner Depos8(3):33(in Chinesewith English abstract)

    Han F,Zhao RS,Shen JZ,Hutchinson RW,Jiang SY(1997)Geology and origin of ores in the Dachang polymetallic tin ore field.Geological Publishing House,Beijing(in Chinese with English abstract)

    Huang WH,Fan SK,Chen CW,Bi ZM(2012)Application of metallogenic regularity to study of skarn zinc-copper deposits in Dachang ore field:a case study of Heishuigou-Dashujiao and Yangjiaojian skarn zinc-copper deposits. Miner Depos 31:535–544(in Chinese with English abstract)

    Jiang SY,Han F,Shen JZ,Palmer MR(1999)Chemical and Rb–Sr,Sm–Nd isotopic systematics of tourmaline from the Dachang Snpolymetallic oredeposit,Guangxi,China.Chem Geol 157:49–67

    Kwak TAP(1987)W-Sn skarn deposits and related metamorphic skarns and granitoids.Elsevier 24:1–451

    Li HQ,Wang DH,Mei YP,Liang T,Cheng ZY,Guo CL,Ying LJ(2008)Lithogenesis and mineralization chronology study on the Lamo zinc–copper polymetallic ore deposit in Dachang orefield,Guangxi.Acta Geol Sin 82:912–919(in Chinese with English abstract)

    Li J,Zhong LF,Tu XL,Liang XR,Xu JF(2010)Determination of rhenium content in molybdenite by ICP-MSafter separation of the major matrix by solvent extraction with N-benzoyl-N-phenylhydroxalamine.Talanta 81:954–958.https://doi.org/10.1016/j.talanta.2010.01.043

    Li J,Zhao PP,Liu JG,Wang XC,Yang Y,Wang GQ,Xu JF(2015)Reassessment of hydrofluoric acid desilicification in the Carius tube digestion technique for Re–Os isotopic determination in geological samples.Geostand Geoanal Res 39(1):17–30

    Liang T,Chen YC,Wang DH,Cai MH(2008)The geological and geochemical characteristics of Dachang tin-polymetallic deposit,Guangxi.Geological Publishing House,Beijing(in Chinese with English abstract)

    Liang T,Wang DH,Hou KJ,Li HQ,Huang HM,Cai MH,Wang DM(2011a)LA-MC-ICP-MS zircon U–Pb dating of Longxianggai pluton in Dachang of Guangxi and its geological significance.Acta Petrol Sin 27:1624–1636(in Chinese with English abstract)

    Liang T,Wang DH,Li HQ,Huang HM,Wang DM,Ping Yu,Cai MH(2011b)REE geochemistry and Sm–Nd isotope age of garnet from the Dachang,Guangxi.J Northwest Univ 41(4):676–681(in Chinese with English abstract)

    Luck JM,Allègre CJ(1982)The study of molybdenites through the187Re–187Os chronometer.Earth Planet Sci Lett 61:291–296

    Ludwig KR(2003)ISOPLOT 3.00:a geochronological toolkit for microsoft excel.Berkeley Geochronology Center,Berkeley

    Pa?ava J,K?íbek B,Dobe?P,Vav?ín I,?ák K,Fan DL,Zhang T,Boiron MC(2003)Tin-polymetallic sulfide deposits in the eastern part of the Dachang tin field(South China)and the role of black shales in their origin.Miner Depos 38:39–66

    Qin DX,Hong T,Tian YL,Chen JW(2002b)Ore geology and technical economy of No 92 orebody of the Dachang tin deposit,Guangxi.Geological Publishing House,Beijing(in Chinese with English abstract)

    Rosman KJR,Taylor PDP(1998)Isotopic compositions of the elements 1997.Pure Appl Chem 70:217–238

    Selby D,Creaser RA(2001)Re–Osgeochronology and systematicsin molybdenite from the Endako porphyry molybdenum deposit,British Columbia,Canada.Econ Geol 96:197–204

    Shirey S,Walker R(1995)Carius tube digestion for low-blank Rhenium–Osmium analysis.Anal Chem 67:2136–2141

    Smoliar MI,Walker RJ,Morgan JW(1996)Re–Osages of group IIA,IIIA,IVA,and IVB iron meteorites.Science 271:1099–1102

    Stein HJ,Markey RJ,Morgan JW,Hannah JL,Scherstén A(2001)The remarkable Re–Os chronometer in molybdenite:how and why it works.Terra Nova 13:479–486

    Sun YL,Xu P,Li J,He K,Chu ZY,Wang Y(2010)A practical method for determination of molybdenite Re–Os age by inductively coupled plasma-mass spectrometry combined with Carius tube-HNO3digestion.Anal Methods 2:575–581

    Thirlwall MF(2002)Multicollector ICP-MS analysis of Pb isotopes using a207pb-204pb double spike demonstrates up to 400 ppm/amu systematic errors in Tl-normalization.Chemical Geology 184(3–4):255–279.https://doi.org/10.1016/S0009-2541(01)003 65-5

    Tosdal RM,Wooden JL,Bouse R(1999)Pb isotopes,ore deposits,and metallogenic terranes.In:Lambert DD,Ruiz J(eds)Application of radiogenic isotopes to ore deposit research and exploration.Reviews Economic Geology 12:1–28

    Wang DH,Chen YC,Chen W,Sang HQ,Li HQ,Lu YF,Chen KL,Lin ZM(2004)Dating the Dachang giant tin-polymetallic deposit in Nandan,Guangxi.Acta Geol Sin 78:132–138(in Chinese with English abstract)

    Wang XY,Huang HW,Chen NS,Huang XQ,Wu XK,Hao S,Li HM(2015)In-situ LA-MC-ICPMS U–Pb geochronology of cassiterite from Changpo-Tongkeng tin-polymetallic deposits,Dachang ore field,Guangxi.Geol Rev 61:892–900(in Chinese with English abstract)

    Xu M,Cai MH,Peng ZA,Zhang SQ,Chen Y,Wang XB(2011)Characteristics of structures and controls on mineralization of Tongkeng tin-polymetallic deposit in Guangxi.Geotecton Metallog 35:587–595(in Chinese with English abstract)

    Ye XS,Pan QY(1994)Discovery history of Dachang tin-polymetalic orefield,Nandan County,Guangxi.Guangxi Geol 7(1):85–94(in Chinese with English abstract)

    Yuan HL,Yin C,Liu X,Chen KY,Bao ZA,Zong CL,Dai MN,Lai SC,Wang R,Jiang SY(2015)High precision in-situ Pb isotopic analysisof sulfide minerals by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry.Sci China Earth Sci 58:1713–1721

    Zartman RE,Doe BR(1981)Plumbotectonics-the model.Tectonophysics 75:135–142

    Zhao KD,Jiang SY,Xiao HQ,Ni P(2002)Origin of ore-forming fluids of the Dachang Sn-polymetallic ore deposit:evidence from helium isotopes.Chin Sci Bull 47(12):1041–1045

    Zhao KD,Jiang SY,Ni P,Ling HF,Jiang YH(2007)Sulfur,lead and helium isotopic compositions of sulfide minerals from the Dachang Sn-polymetallic oredistrict in South China:implication for ore genesis.Miner Pet 89:251–273

    成人国产一区最新在线观看| 亚洲国产精品成人综合色| 欧美日韩中文字幕国产精品一区二区三区| 丰满的人妻完整版| 一区福利在线观看| 美女午夜性视频免费| 午夜影院日韩av| 亚洲专区中文字幕在线| 身体一侧抽搐| 午夜福利在线观看免费完整高清在 | 精品久久蜜臀av无| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av中文字字幕乱码综合| 成人国产综合亚洲| 日韩中文字幕欧美一区二区| 久久久久久人人人人人| 亚洲专区中文字幕在线| 久久欧美精品欧美久久欧美| 日韩免费av在线播放| 亚洲av成人不卡在线观看播放网| 国产成年人精品一区二区| 欧美成人一区二区免费高清观看 | 色综合亚洲欧美另类图片| 91在线精品国自产拍蜜月 | 国产精品99久久久久久久久| 动漫黄色视频在线观看| av在线蜜桃| 国产精品久久久久久久电影 | 99国产精品99久久久久| 精品熟女少妇八av免费久了| bbb黄色大片| 男插女下体视频免费在线播放| 男女视频在线观看网站免费| 最近视频中文字幕2019在线8| 欧美在线一区亚洲| 好男人在线观看高清免费视频| 真人一进一出gif抽搐免费| 禁无遮挡网站| 久久中文字幕人妻熟女| 51午夜福利影视在线观看| 一边摸一边抽搐一进一小说| 国产淫片久久久久久久久 | 日韩三级视频一区二区三区| 国产成人一区二区三区免费视频网站| 9191精品国产免费久久| 国产精品影院久久| 51午夜福利影视在线观看| 国产成人欧美在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲美女黄片视频| 亚洲av第一区精品v没综合| 性欧美人与动物交配| 一本综合久久免费| 国产又色又爽无遮挡免费看| 这个男人来自地球电影免费观看| 欧美大码av| 国产精品亚洲一级av第二区| 热99在线观看视频| 99riav亚洲国产免费| 欧美极品一区二区三区四区| 亚洲在线自拍视频| 日韩欧美国产在线观看| 国产激情久久老熟女| 男女那种视频在线观看| 美女被艹到高潮喷水动态| www日本在线高清视频| 国产高潮美女av| 午夜免费观看网址| 久久久国产成人免费| 啦啦啦韩国在线观看视频| 国产高潮美女av| 亚洲精品粉嫩美女一区| 狂野欧美白嫩少妇大欣赏| 看片在线看免费视频| 三级国产精品欧美在线观看 | 欧美日韩国产亚洲二区| 日韩欧美精品v在线| 久久久久久久午夜电影| 免费人成视频x8x8入口观看| 90打野战视频偷拍视频| 亚洲熟妇中文字幕五十中出| 黄片小视频在线播放| 女生性感内裤真人,穿戴方法视频| 嫩草影院精品99| 在线观看午夜福利视频| 狂野欧美白嫩少妇大欣赏| 看黄色毛片网站| 99国产极品粉嫩在线观看| 嫩草影院精品99| 欧美丝袜亚洲另类 | 午夜影院日韩av| 国产精品久久久人人做人人爽| 亚洲精品国产精品久久久不卡| 亚洲精品中文字幕一二三四区| 性色avwww在线观看| 三级毛片av免费| 成熟少妇高潮喷水视频| 黑人欧美特级aaaaaa片| 熟妇人妻久久中文字幕3abv| 欧美日韩黄片免| 亚洲片人在线观看| 精品国产乱码久久久久久男人| 欧美成狂野欧美在线观看| 久久午夜综合久久蜜桃| 此物有八面人人有两片| 国产精品爽爽va在线观看网站| 欧美色欧美亚洲另类二区| 色综合婷婷激情| 日韩精品青青久久久久久| 嫩草影院精品99| 免费在线观看亚洲国产| 香蕉久久夜色| 99久久精品热视频| 可以在线观看的亚洲视频| 精品久久久久久久人妻蜜臀av| 嫩草影视91久久| 精品国产乱码久久久久久男人| 成人亚洲精品av一区二区| 麻豆成人av在线观看| 88av欧美| 精品无人区乱码1区二区| 国产精品亚洲美女久久久| 精品欧美国产一区二区三| 两个人看的免费小视频| 国内精品美女久久久久久| 91麻豆精品激情在线观看国产| 天天躁日日操中文字幕| 国产真人三级小视频在线观看| 99久久精品热视频| 日韩av在线大香蕉| 免费看日本二区| 亚洲国产精品合色在线| 91av网一区二区| 欧美成人性av电影在线观看| 色综合欧美亚洲国产小说| 天堂av国产一区二区熟女人妻| 欧美三级亚洲精品| 黄色女人牲交| 岛国在线免费视频观看| 欧美色欧美亚洲另类二区| 国产伦在线观看视频一区| 亚洲国产精品999在线| 久久久久久大精品| 久久久国产成人免费| 午夜久久久久精精品| 亚洲成人免费电影在线观看| 精品国产美女av久久久久小说| 九九热线精品视视频播放| 国产成人精品久久二区二区91| 精品久久久久久久末码| 日韩有码中文字幕| 亚洲人与动物交配视频| 久久草成人影院| 成人精品一区二区免费| 欧美日韩黄片免| 在线永久观看黄色视频| av在线天堂中文字幕| 亚洲男人的天堂狠狠| 欧美日韩综合久久久久久 | 国产亚洲av嫩草精品影院| 国产av麻豆久久久久久久| 村上凉子中文字幕在线| 欧美成狂野欧美在线观看| 亚洲成av人片在线播放无| av国产免费在线观看| 一边摸一边抽搐一进一小说| 国产亚洲精品av在线| 美女午夜性视频免费| 午夜免费激情av| 中文字幕高清在线视频| 亚洲国产精品sss在线观看| 中国美女看黄片| 日日夜夜操网爽| 欧美日本亚洲视频在线播放| 亚洲成av人片免费观看| 超碰成人久久| 在线免费观看的www视频| 国产美女午夜福利| 老司机在亚洲福利影院| 综合色av麻豆| 久久午夜综合久久蜜桃| 亚洲国产精品999在线| 一本久久中文字幕| 免费在线观看视频国产中文字幕亚洲| 国产私拍福利视频在线观看| 在线免费观看不下载黄p国产 | 丝袜人妻中文字幕| 一本综合久久免费| 十八禁网站免费在线| 亚洲成a人片在线一区二区| 免费av不卡在线播放| 亚洲精品国产精品久久久不卡| 久久草成人影院| 精品国产超薄肉色丝袜足j| 噜噜噜噜噜久久久久久91| 日本三级黄在线观看| 国产高清视频在线播放一区| 亚洲精品久久国产高清桃花| 免费在线观看视频国产中文字幕亚洲| 国产一区二区在线av高清观看| 99久久综合精品五月天人人| 午夜福利高清视频| 日韩高清综合在线| 欧美日本视频| 久久中文看片网| 欧美丝袜亚洲另类 | 老司机午夜十八禁免费视频| 久久香蕉精品热| 综合色av麻豆| 亚洲在线观看片| 亚洲欧美日韩无卡精品| 最近在线观看免费完整版| 日韩国内少妇激情av| 亚洲激情在线av| 免费在线观看亚洲国产| 三级国产精品欧美在线观看 | 国产一区二区三区视频了| 91av网站免费观看| 亚洲 欧美一区二区三区| 国产人伦9x9x在线观看| 精品久久久久久,| 亚洲成av人片免费观看| 国产乱人伦免费视频| 综合色av麻豆| 啦啦啦观看免费观看视频高清| www日本黄色视频网| 后天国语完整版免费观看| 超碰成人久久| 亚洲熟妇熟女久久| 久久久久精品国产欧美久久久| av在线蜜桃| 亚洲av日韩精品久久久久久密| 久久久久性生活片| 亚洲最大成人中文| 色吧在线观看| 欧美成人免费av一区二区三区| 午夜视频精品福利| 日韩高清综合在线| 婷婷亚洲欧美| 国内毛片毛片毛片毛片毛片| 波多野结衣巨乳人妻| 久久精品夜夜夜夜夜久久蜜豆| 美女 人体艺术 gogo| 一级黄色大片毛片| 51午夜福利影视在线观看| 啦啦啦观看免费观看视频高清| 99久久久亚洲精品蜜臀av| 美女高潮喷水抽搐中文字幕| 国产亚洲欧美98| 国产午夜福利久久久久久| 男女之事视频高清在线观看| 91九色精品人成在线观看| 97超视频在线观看视频| 两人在一起打扑克的视频| 国产极品精品免费视频能看的| 精品免费久久久久久久清纯| netflix在线观看网站| 他把我摸到了高潮在线观看| 美女扒开内裤让男人捅视频| 国产野战对白在线观看| 又大又爽又粗| 色老头精品视频在线观看| 哪里可以看免费的av片| 国产高清videossex| 色在线成人网| 女警被强在线播放| 国产一级毛片七仙女欲春2| 国产高清有码在线观看视频| 韩国av一区二区三区四区| 成人三级黄色视频| 国产黄色小视频在线观看| 宅男免费午夜| 午夜免费激情av| 免费观看精品视频网站| 三级国产精品欧美在线观看 | 可以在线观看的亚洲视频| 日韩大尺度精品在线看网址| 麻豆久久精品国产亚洲av| 国产一区二区在线av高清观看| 黄色片一级片一级黄色片| 少妇的逼水好多| 久久人人精品亚洲av| 免费观看人在逋| 亚洲avbb在线观看| 激情在线观看视频在线高清| 男人舔女人下体高潮全视频| cao死你这个sao货| www.熟女人妻精品国产| 国语自产精品视频在线第100页| 99久久精品热视频| 欧美xxxx黑人xx丫x性爽| www.熟女人妻精品国产| 一区二区三区激情视频| 99re在线观看精品视频| 久久久久久国产a免费观看| 国产欧美日韩一区二区精品| 高潮久久久久久久久久久不卡| 亚洲一区二区三区色噜噜| 久久精品综合一区二区三区| 亚洲人成网站高清观看| 国产免费av片在线观看野外av| 日本黄色片子视频| www.自偷自拍.com| av女优亚洲男人天堂 | 桃红色精品国产亚洲av| 曰老女人黄片| 亚洲精品中文字幕一二三四区| 99久久99久久久精品蜜桃| 1024香蕉在线观看| 伦理电影免费视频| 国产一区在线观看成人免费| 免费看日本二区| 久久久久久九九精品二区国产| 亚洲aⅴ乱码一区二区在线播放| 亚洲中文日韩欧美视频| a级毛片a级免费在线| 久久久久久久久免费视频了| 黄色女人牲交| 国产精品美女特级片免费视频播放器 | www.999成人在线观看| 成人三级做爰电影| 久久人人精品亚洲av| 亚洲色图 男人天堂 中文字幕| 激情在线观看视频在线高清| 日韩欧美免费精品| 久久久久久久久中文| 在线免费观看的www视频| 国产激情久久老熟女| 午夜福利18| 亚洲成人久久爱视频| 日韩中文字幕欧美一区二区| 十八禁人妻一区二区| 免费av不卡在线播放| 两个人视频免费观看高清| 国产亚洲精品综合一区在线观看| 视频区欧美日本亚洲| 精品一区二区三区av网在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成a人片在线一区二区| 日韩精品青青久久久久久| 国产淫片久久久久久久久 | 精品午夜福利视频在线观看一区| 丁香欧美五月| www国产在线视频色| 久久久久亚洲av毛片大全| 国产成人aa在线观看| 人妻夜夜爽99麻豆av| 一本久久中文字幕| 午夜两性在线视频| 禁无遮挡网站| 三级国产精品欧美在线观看 | 国内少妇人妻偷人精品xxx网站 | 五月伊人婷婷丁香| 色综合欧美亚洲国产小说| 亚洲成人精品中文字幕电影| 免费看日本二区| 日本与韩国留学比较| 在线免费观看不下载黄p国产 | 一卡2卡三卡四卡精品乱码亚洲| 无遮挡黄片免费观看| 久久久久性生活片| 日本五十路高清| 国产成人av教育| 大型黄色视频在线免费观看| 久9热在线精品视频| 亚洲精品在线美女| 午夜精品久久久久久毛片777| 全区人妻精品视频| 国产亚洲精品久久久com| 精品国产亚洲在线| 桃红色精品国产亚洲av| 日韩中文字幕欧美一区二区| 午夜精品在线福利| 午夜视频精品福利| 免费在线观看成人毛片| 好男人电影高清在线观看| 亚洲人成电影免费在线| 神马国产精品三级电影在线观看| 亚洲人与动物交配视频| 亚洲精品国产精品久久久不卡| 免费观看精品视频网站| 久久久久久国产a免费观看| 免费一级毛片在线播放高清视频| 国产精品日韩av在线免费观看| 亚洲av成人精品一区久久| 他把我摸到了高潮在线观看| 久久人妻av系列| 丰满人妻一区二区三区视频av | 丁香六月欧美| 久久香蕉国产精品| 久久精品国产综合久久久| 欧美性猛交黑人性爽| 99精品在免费线老司机午夜| 亚洲片人在线观看| 最近在线观看免费完整版| 亚洲一区二区三区不卡视频| 精品国产三级普通话版| 成年人黄色毛片网站| 国产午夜精品论理片| 精品国产美女av久久久久小说| 久99久视频精品免费| 日本熟妇午夜| 亚洲熟妇熟女久久| svipshipincom国产片| 精品电影一区二区在线| 免费搜索国产男女视频| 国产av麻豆久久久久久久| 色噜噜av男人的天堂激情| 操出白浆在线播放| 亚洲欧美精品综合一区二区三区| 嫩草影院精品99| 日韩欧美国产在线观看| 2021天堂中文幕一二区在线观| 一边摸一边抽搐一进一小说| 亚洲国产欧美网| 免费高清视频大片| 欧美国产日韩亚洲一区| 黄色女人牲交| 丰满人妻熟妇乱又伦精品不卡| 香蕉av资源在线| 夜夜躁狠狠躁天天躁| 哪里可以看免费的av片| 少妇的逼水好多| 天天添夜夜摸| 欧美不卡视频在线免费观看| 色精品久久人妻99蜜桃| 欧美日韩黄片免| 好男人在线观看高清免费视频| 精品一区二区三区视频在线观看免费| 三级毛片av免费| 午夜福利18| 特大巨黑吊av在线直播| 国产91精品成人一区二区三区| 精品久久久久久久久久免费视频| 视频区欧美日本亚洲| 久久久久久久久中文| 观看美女的网站| 欧美最黄视频在线播放免费| 又粗又爽又猛毛片免费看| 18美女黄网站色大片免费观看| 日韩欧美在线乱码| 国产欧美日韩精品亚洲av| 精品久久久久久成人av| 婷婷精品国产亚洲av在线| 后天国语完整版免费观看| 变态另类成人亚洲欧美熟女| 国产精品女同一区二区软件 | 神马国产精品三级电影在线观看| 久久久精品欧美日韩精品| 国内毛片毛片毛片毛片毛片| 观看免费一级毛片| 亚洲成人精品中文字幕电影| 很黄的视频免费| 黑人巨大精品欧美一区二区mp4| 亚洲无线在线观看| 国产人伦9x9x在线观看| 久久人人精品亚洲av| 欧美色视频一区免费| 国产精品亚洲一级av第二区| 亚洲欧美一区二区三区黑人| 一级毛片高清免费大全| 岛国视频午夜一区免费看| 日韩欧美在线二视频| 亚洲欧美日韩无卡精品| 免费在线观看成人毛片| 一进一出抽搐gif免费好疼| 欧美成人一区二区免费高清观看 | 深夜精品福利| 国产精品 欧美亚洲| 少妇丰满av| 国产亚洲欧美98| 成人国产一区最新在线观看| 欧美色视频一区免费| 日本五十路高清| 成人亚洲精品av一区二区| 色吧在线观看| 波多野结衣巨乳人妻| 日日干狠狠操夜夜爽| 国产亚洲精品久久久久久毛片| 亚洲人与动物交配视频| 精华霜和精华液先用哪个| 中文字幕最新亚洲高清| 老汉色av国产亚洲站长工具| 久久精品亚洲精品国产色婷小说| 天天躁日日操中文字幕| 午夜视频精品福利| 老司机福利观看| 宅男免费午夜| 亚洲国产日韩欧美精品在线观看 | 国产激情久久老熟女| 亚洲av免费在线观看| 午夜日韩欧美国产| 一个人观看的视频www高清免费观看 | 国产私拍福利视频在线观看| 国产精品野战在线观看| 男女之事视频高清在线观看| 亚洲国产高清在线一区二区三| 久99久视频精品免费| 精华霜和精华液先用哪个| 欧美大码av| 亚洲无线在线观看| 手机成人av网站| 精品一区二区三区视频在线 | 日日干狠狠操夜夜爽| 亚洲国产高清在线一区二区三| 亚洲欧美激情综合另类| 久久精品国产亚洲av香蕉五月| 久久久久久久久免费视频了| 免费看美女性在线毛片视频| 亚洲精品一卡2卡三卡4卡5卡| 精品熟女少妇八av免费久了| 精华霜和精华液先用哪个| 91老司机精品| 午夜亚洲福利在线播放| 精品不卡国产一区二区三区| 国产日本99.免费观看| 九九久久精品国产亚洲av麻豆 | 91麻豆精品激情在线观看国产| 丁香六月欧美| 母亲3免费完整高清在线观看| 我的老师免费观看完整版| 老司机午夜福利在线观看视频| 18禁国产床啪视频网站| 韩国av一区二区三区四区| 这个男人来自地球电影免费观看| 国产三级中文精品| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品粉嫩美女一区| 精品福利观看| 国产精品美女特级片免费视频播放器 | bbb黄色大片| 最新中文字幕久久久久 | 在线免费观看的www视频| 91九色精品人成在线观看| 午夜福利在线观看吧| 好男人电影高清在线观看| 成人亚洲精品av一区二区| 亚洲激情在线av| 国产在线精品亚洲第一网站| 亚洲熟妇中文字幕五十中出| www.熟女人妻精品国产| 婷婷精品国产亚洲av在线| 欧美中文日本在线观看视频| 日韩欧美精品v在线| 亚洲精品456在线播放app | 亚洲九九香蕉| 制服人妻中文乱码| 蜜桃久久精品国产亚洲av| 三级国产精品欧美在线观看 | 麻豆一二三区av精品| 在线永久观看黄色视频| 日韩欧美在线二视频| 热99在线观看视频| 狂野欧美激情性xxxx| 好男人电影高清在线观看| 亚洲人与动物交配视频| 亚洲国产精品合色在线| 日韩欧美三级三区| 高清在线国产一区| 亚洲片人在线观看| 亚洲天堂国产精品一区在线| 1024香蕉在线观看| 亚洲 欧美一区二区三区| 欧美日韩乱码在线| 国产1区2区3区精品| 女生性感内裤真人,穿戴方法视频| 淫妇啪啪啪对白视频| 午夜a级毛片| 亚洲欧美日韩高清在线视频| 99精品欧美一区二区三区四区| 国产综合懂色| 国产亚洲av高清不卡| 亚洲国产精品sss在线观看| 波多野结衣高清无吗| 国产精品av视频在线免费观看| 精品欧美国产一区二区三| 成人高潮视频无遮挡免费网站| 国产精品日韩av在线免费观看| 久久人妻av系列| 他把我摸到了高潮在线观看| 国产97色在线日韩免费| 国产高清视频在线播放一区| 一边摸一边抽搐一进一小说| 免费看光身美女| 亚洲九九香蕉| 久久久久久久久中文| 十八禁网站免费在线| 精品一区二区三区av网在线观看| 精品久久久久久,| 亚洲一区高清亚洲精品| 99国产极品粉嫩在线观看| 亚洲成人久久爱视频| 女同久久另类99精品国产91| 欧美激情在线99| 美女被艹到高潮喷水动态| 国产伦一二天堂av在线观看| 1024香蕉在线观看| 亚洲天堂国产精品一区在线| 日韩成人在线观看一区二区三区| 俺也久久电影网| 国产亚洲av高清不卡| 嫩草影院入口| 日本熟妇午夜| 欧美在线一区亚洲| 9191精品国产免费久久| 久久精品国产清高在天天线| 午夜久久久久精精品| 18禁国产床啪视频网站| 久久伊人香网站| 男女做爰动态图高潮gif福利片| 亚洲人成伊人成综合网2020| 久久精品人妻少妇| 又爽又黄无遮挡网站| 久久精品夜夜夜夜夜久久蜜豆| 国产 一区 欧美 日韩|