• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geochronological and geochemical constraints on the Cuonadong leucogranite,eastern Himalaya

    2018-07-04 11:28:08JiajiaXieHuaningQiuXiujuanBaiWanfengZhangQiangWangXiaopingXia
    Acta Geochimica 2018年3期

    Jiajia Xie?Huaning Qiu?Xiujuan Bai?Wanfeng Zhang?Qiang Wang?Xiaoping Xia

    1 Introduction

    Widespread leucogranites are a distinct feature of the Himalayan orogen formed by the collision between the Indian and Asian continents(Yin and Harrison 2000).These leucogranites are largely confined to two sub-parallel belts:The High Himalayan leucogranites(HHLs)and the North Himalayan granites(NHGs)(Fig.1a)(Harrison et al.1998).The HHL belt contains a discontinuous chain of sills,dikes and laccolithic bodies that intruded in the hanging-wall of the Main Central Trust(MCT)in the Greater Himalayan Crystalline Complex(GHC).The HHLs generally emplaced from 25 to 12 Ma(Guo and Wilson 2012).The NHG belt is composed of ellipticalshaped plutons that largely expose metamorphic cores of the North Himalayan domes in the Tethyan Himalayan Sequence(THS).The ages of most NHGs are 28 to 8 Ma(King et al.2011;Liu et al.2014),and several granites have formation ages ranging from 45 to 35 Ma(Aikman et al.2008;Zeng et al.2011;Liu et al.2016).Published ages for the Himalayan leucogranites are based on zircon,monazite,or xenotime U–Th–Pb dating;or muscovite or biotite40Ar/39Ar dating.It is worth noting that a majority of the NHG exposed in the core of gneiss domes is within the central THS,such as granites in the Malashan,Lhagoi Kangri,Sakya,Kampa,Kangmar,and Yala-Xiangbo gneiss domes.This special context of emplacement has caught the attention of many geoscientists focusing on the granites in the North Himalayan Gneiss Domes(NHGDs)to figure out the magmatic and tectonic processes involved in the genesis of these granites(Scharer et al.1986;Zhang et al.2004;Kawakami et al.2007;Lee and Whitehouse 2007;Murphy 2007;Aikman et al.2008;King et al.2011;Pullen et al.2011;Zeng et al.2011;Guo and Wilson 2012;Gao and Zeng 2014).

    Fig.1 Simplified geologic map:a The Himalayan orogenic belt;b study area in the eastern Tethyan Himalaya

    Field investigations have determined an undeformed intrusion of leucogranite exposed in the Cuonadong gneiss dome of the eastern Himalaya(Fig.1b).Compared with general NHGDs,the Cuonadong gneiss dome is exposed further south,adjacent to the South Tibetan Detachment System(STDS).In this study,we present new data of in situ Secondary Ion Mass Spectrometry(SIMS)zircon U–Pb ages,40Ar/39Ar agesby laser stepwise heating,chemical compositions of major and trace elements,and Sr–Nd isotopes to investigate the formation age,source region,and mechanisms of the Cuonadong leucogranite.

    2 Geologic setting and petrography

    The Cuonadong gneiss dome is adjacent to STDS in the eastern Himalaya,cut by two normal faults with N–S and NNW trends(Fig.1b).The dome is located at the southern part of the Zhaxikang ore concentration area.Regionally,there are two groups of faults:oriented approximately E–W and N–S(Fu et al.2017).The dome has developed Barrovian-type metamorphism with grade increasing toward the granite core,like other NHGDs.The core of the dome consists of granitic gneiss and leucogranites cut off by many pegmatite veins.Zircons from the strongly deformed gneiss yield Early Paleozoic U–Pb ages of~ 500 Ma(Zhang et al.2017).The leucogranites display the characteristic of multistage intrusions,and Lin et al.(2016)reported that the early-stage muscovite granite crystallized around 21 Ma.The dome is mantled by strongly deformed quartz schist and marble.The THS in the study area is dominated by Triassic-Cretaceous sedimentary rocks such as siltstone,sandstone,and some slate.One of the prominent and well-studied NHGDs,called Yala-Xiangbo or Yardoi(Aikman et al.2008;Zeng et al.2011,2015;Hou et al.2012),is situated 40 km north of the Cuonadong gneiss dome(Fig.1b).The Yala-Xiangbo granitoids formed around 44–41 Ma(Zeng et al.2015)and thenearby Dala granitoids around 44 Ma(Aikman et al.2008)by partial melting of amphibolite under crust-thickening conditions(Zeng et al.2015).In the southern section adjacent to the STDS,zircon U–Pb agesindicate the Tsona leucogranite crystallized at 18.8±1.2 Ma(Aikman et al.2012) and the Cuona leucogranite formed at 17.7±0.3 Ma(Wang et al.2016).Such granitic magmas are considered to be extension-driven and caused by decompression melting;upward migration of such melts may initiate extension on a large scale(Aoya et al.2005).

    The essentially undeformed leucogranite in this study is exposed in the western Cuonadong gneiss dome(Fig.1b)and has a rather uniform mineralogical composition of quartz,plagioclase,K-feldspar,muscovite,biotite,and garnet grains(<5%)(Fig.2).The light-brown garnet grains show euhedral and crack-free characteristics with grain size of 50–100 μm,suggesting that they are primarily of magmatic origin.Accessory minerals(zircon,apatite,and monazite)are rare.

    3 Analysis methods

    In this study,several leucogranite samples from the Cuonadong gneiss dome were examined.Sample locations are presented in Fig.1b.SIMSzircon U–Pb dating,major and trace element analyses,and Sr–Nd isotope analyses were carried out at the State Key Laboratory of Isotope Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences.The40Ar/39Ar laser stepwise heating experiments were performed on a multicollector ARGUS VI noble gas mass spectrometer at the Key Laboratory of Tectonics and Petroleum Resources(China University of Geosciences,Wuhan),Ministry of Education(Bai et al.2018).

    Fig.2 Photomicrographs showing textures and mineral assemblages of Cuonadong leucogranite samples from the Cuonadong gneiss dome,composed of quartz,plagioclase,K-feldspar,muscovite,biotite,and garnet(less than 5%).Bt:biotite;Grt:garnet;Kfs:K-feldspar;Ms:muscovite;Pl:plagioclase;Qz:quartz;Tur:tourmaline.Minerals abbreviations after Whitney and Evans(2010)

    3.1 SIMS zircon U–Pb isotope analyses

    Zircons were separated using conventional heavy liquid and magnetic separation techniques.Then intact zircon grains were handpicked,mounted in epoxy resin,and polished to equatorial sections.Before analysis,optical and cathodoluminescence(CL)imaging were used to determine the target domains of individual zircon for isotope spot analyses and to avoid the internal structures of zircon such as inclusions,cracks,and other imperfections.CL images were taken with a JEOL JXA-8100 Superprobe set at 10 kV with WD=13.6 mm.Measurements of U,Th,and Pb isotopes were performed on a SIMS Cameca IMS-1280 HR ion microprobe,following the analytical procedures described by Li et al.(2009).The zircon standard Qinghu(159± 0.2 Ma,2σ)was used as a suitable working reference material of U–Pb age for the microbeam analysis of unknown zircon samples.The ellipsoidal spot is about 20× 30μm in size on zircons.Uncertainties on single analysis are reported at the 1σlevel.

    3.2 Mica 40Ar/39Ar stepwise heating experiments

    Rock samples were crushed to 180–250 μm in a stainlesssteel mortar and single muscovite grains were separated by hand picking under a binocular microscope.Muscovite grains were then cleaned in an ultrasonic bath with deionized water for 15 min.Sample and monitor standard ZBH-2506(biotite with age of 132.7±0.5 Ma)were irradiated in the China Mianyang Research Reactor for 48 h.Samples were step-heated using a continuous wave CO2laser instrument(50 W)and argon isotopes were measured using a multicollector ARGUS VI noble gas mass spectrometer(Bai et al.2018).The40Ar/39Ar dating results were calculated and plotted using the ArArCALC software by Koppers(2002).Correction factors for interfering argon isotopes derived from irradiated CaF2and K2SO4are:(39Ar/37Ar)Ca=6.175×10-4,(36Ar/37Ar)Ca-=2.348×10-3and(40Ar/39Ar)K=2.323×10-3,(38-Ar/39Ar)K=9.419×10-3. Detailed Instrument introduction and analytical procedures are described in(Bai et al.2018).Errors of40Ar/39Ar ages in this study are quoted at 2σ.

    3.3 Major and trace element analyses

    Whole rock samples,excluding the weathered materials,were crushed into small pieces in a stainless-steel mortar with a stainless-steel pestle,then finely powdered in an agate mortar to<74μm for bulk rock major,trace,and rare earth element(REE)analyses.Major element analysis was performed on X-ray fluorescence(XRF;Rigaku ZSX100e).Analytical uncertainties are mostly between 1 and 5%.Trace elements,including REEs,were analyzed by inductively coupled plasma mass spectrometry(ICP-MS;Thermo iCAPQc).Precision and accuracy of trace element analyses were mostly within 5%.

    3.4 Sr and Nd isotopic analyses

    Sr and Nd isotopic analyses were performed on 150 mg powdered samples and element separation was undertaken by conventional ion-exchange techniques in an ultra-clean chemical laboratory.Sr and Nd isotope compositions were determined by multi-collector ICP-MS(Thermo Scientific Neptune).The87Sr/86Sr ratio of NBS-987 standard and143Nd/144Nd ratio of the Shin Etsu JNDi-1 standard were used to monitor the detector efficiency drift of the instrument and produced ratios of 0.710262± 9(1σ)and 0.512105± 5 (1σ), respectively. All measured143Nd/144Nd and86Sr/88Sr ratios were fractionation corrected to146Nd/144Nd=0.7219 and86Sr/88Sr=0.1194,respectively.The initial Sr and Nd isotopic compositions were calculated at 16 Ma based on the SIMS U–Pb age.

    4 Results

    4.1 Geochronology

    4.1.1 SIMSzircon U–Pb dating

    To constrain the emplacement age of the Cuonadong leucogranite,we carried out in situ high-resolution ion microprobe(SIMS)U–Pb spot analyses of zircon.U,Th,and Pb concentrations and isotopic ratios of zircon sample CN1353 are shown in Table 1.

    The zircons of sample CN1353 from the Cuonadong leucogranite had euhedral to subhedral morphologies,with an average crystal length of 100μm and length to width ratios of about 2:1–3:1.Almost all zircons displayed corerim textures,with rims showing igneous oscillatory zoning on CL images(Fig.3a).Some zircons were characterized by a sponge-like texture in the rims; these were avoided for analysis.Nine spots were analyzed on the oscillatory zoned rims of zircons to constrain the timing of this magmatic event.These spots yield apparent206Pb/238U ages ranging from 36.4±0.6 to 15.4±0.3 Ma(Fig.3b)with especially low Th/U ratios from 0.01 to 0.09(Table 1).Four spots(Rim-1,-3,-7,and-8)with ages of 34.1 to 21.0 Ma were characterized by relatively lower U contents(2183–3388 ppm),in contrast with other rim spots with ages of 18.0 to 15.4 Ma and much higher U contents(6106–12358 ppm).The exception was Rim-9(36.4 Ma,8264 ppm U),indicating that the rims may have formed in different magmatic stages.U content increased withmagma evolution.In other words,high U content and low Th/U ratios are characteristic of the Cuonadong leucogranite.The oldest and youngest rim points(Rim-9,36.4 Ma and Rim-6,15.4 Ma)clearly deviated from the concordia curve (Fig.3b), showing Pb loss.The concordant ages of rim spots ranged from 34.1 to 16.0 Ma,providing age constraints on initial magma and emplacement of the Cuonadong leucogranite.Ten analyses on zircon cores yielded a wide range of206Pb/238U ages from 1251 to 279 Ma,with an age group of 500 to 450 Ma

    (n=5)(Table 1 and Fig.3b).These core spots are characterized by higher Th/U ratios(0.16–1.26)than zircon rims(0.01–0.09).The differences between Th/U ratios in the zircon rims and cores indicate that they formed in different geologic environments.

    Table 1 SIMSU–Pb isotope data of zircons from the Cuonadong leucogranite

    Fig.3 a Representative cathodoluminescence images of sample CN1353 showing the textures and spots of zircon,and the corresponding 206Pb/238U ages(1σ).b U–Pb concordia diagrams of sample CN1353.Error ellipses are shown for 1σ level of uncertainty

    4.1.2 Muscovite 40Ar/39Ar laser stepwise heating

    A muscovite sample,CN1341,from the Cuonadong leucogranite was analyzed by40Ar/39Ar laser stepwise heating and the corresponding ages are shown in Table 2 and Fig.4.

    The muscovite crystals in Cuonadong leucogranite usually have euhedral shapes with clean crystal terminations,indicating that they are magmatic phase(Barbarin 1996).Muscovite crystals in this study were fresh and did not suffer from hydrothermal alternation(Fig.2).As shown in Fig.4,sample CN1341 yielded a flat40Ar/39Ar age spectrum with a plateau age of 13.93±0.16 Ma(cumulative39ArKreleased=99.41%).The argon isotopic data well-define an isochron corresponding to an age of 14.00±0.23 Ma, with initial40Ar/36Ar ratio of 280.6±34.7.We were unable to separate a biotite sample for40Ar/39Ar dating from the rock due to biotite’s scarcity and inter growth with muscovite(Fig.2).

    4.2 Geochemistry characteristics

    4.2.1 Major elements

    Analysis data of the whole-rock major(wt%)and trace(ppm)elements for the Cuonadong leucogranite are listed in Table 3.Samples had uniform compositions of major elements,characterized by a relatively restricted range of high SiO2(71.01%–74.62%)and high alkali(Na2-O+K2O>8%),belonging to the high-K calc-alkaline series.However,CaO,TiO2,MnO,and Fe2O3T contents were relatively low.Therefore,all samples returned very low MgO/(FeO+MgO)values ranging from 16.69 to 26.31,suggesting they were generated from relatively evolved melts.Aluminum saturation index(ASI)of the samples ranged from 1.20 to 1.26,indicating the leucogranites are strongly peraluminous.

    4.2.2 Trace elements and rare earth elements

    Like for the major elements,the leucogranite samples displayed a consistent pattern of trace elements,with enrichment in large-ion lithophile elements and depletion in high field-strength elements in their primitive mantlenormalized trace element patterns(Fig.5a).Samples were enriched in Cs,Rb,K,Pb,U,and light REEs,but depleted in Nb,Ta,Ti,Zr,Ba,Sr,heavy REEs(HREEs),and Y.Although Ba and Sr are large-ion lithophiles,theirconcentrations were significantly low.Rb/Sr ratios were very high(3–17),and exhibited a trend of increasing Rb/Sr with decreasing Ba(Fig.8).A chondrite-normalized REE diagram(Fig.5b)shows that all leucogranite samples were enriched in light REEs,but depleted in HREEs,with(La/Yb)Nratios ranging from 7.6 to 43.4.Two samples showed weak Eu anomalies or no Eu anomaly while other samples had obvious negative Eu anomalies.Sample CN1354 did not contain any garnet(a mineral with a strong capacity for HREEs),resulting in serious HREE depletion(Fig.5b)in comparison to garnet-bearing samples.Most Himalayan leucogranites show negative Eu anomalies,but some others have been reported to lack Eu anomalies(Gao and Zeng 2009;Wu et al.2015;Zeng and Gao 2017),warranting further investigated.

    Table 2 Muscovite 40Ar/39Ar dating results by laser stepwise heating from the Cuonadong leucogranite

    Fig.4 Age spectrum(a)and inverse isochron(b)of muscovite sample CN1341 from the Cuonadong leucogranite by 40Ar/39Ar laser stepwise heating

    4.2.3 Sr–Nd isotope

    Whole-rock Sr and Nd isotopic data for the Cuonadong leucogranite are reported in Table 4.A value t=16 Ma was assigned to calculate initial Sr and Nd isotopic compositions.Initial87Sr/86Sr ratios ranged from 0.71630 to 0.73469,and initial Nd isotopic ratios from 0.51198 to 0.51202,with a range ofεSr(t)from+627 to+899 and εNd(t)from-11.6 to-12.5,strongly indicating that the Cuonadong leucogranite had a crustal source for Tertiary melting(Zhang et al.2004).

    5 Discussion

    5.1 Emplacement and cooling ages of the Cuonadong leucogranite

    Our new SIMS U–Pb dates from the new-growth zircon rims yielded widely scattered206Pb/238U ages spanning several million years from 34.1 to 16.0 Ma(Table 1 and Fig.3).Such a broad distribution of zircon rim U–Pb ages has three possible causes:(1)high-U content in zircon resultsin Pb loss by radiogenic damage(White and Ireland 2012);(2)zircons containing high[U+Th]can yield positive correlations between[U]or[U+Th]and the apparent ages(Aikman et al.2012);(3)the overgrowth rims of zircon grains record a long history of crust-derived granitic melts(Rubatto et al.2013).In this study,most data points of high-U content(2183–12,358 ppm)analysisspots on zircon rims are on the concordia curve(Fig.3b),not showing Pb loss(two spots from Rim-9 and Rim-6 being the exceptions).Due to potential effects on zircon,the accessory mineral monazite,which is free from the high-U effect(Wu et al.2015),is applied to dating the Himalayan leucogranites.However,such scattered ages of Himalayan leucogranites has not only been found in zircon U–Pb dates(Aoya et al.2005;Kellett et al.2009;Aikman et al.2012),but also in monazite U–Th–Pb dates(Aikman et al.2012;Lederer et al.2013;Rubatto et al.2013).Thus,the scattered ages of zircon rims probably reflect a prolonged period of crustal melting.In addition,the U and Th contents varying with the growth of zircon rims indicates slow magma evolution.Previous studies have proposed slow accretion of crustal-derived leucogranite magmas with no mantle supply(Annen et al.2006)and granitic melt production over several million years(Harris et al.2000;Booth et al.2009).Recently,Hopkinson et al.(2017)provided evidence supporting the theory that Himalayan leucogranites formed by pure crustal melts without mantle contributions.

    Zircon saturation temperatures(TZr)(Watson and Harrison 1983;Miller et al.2003)can be applied to estimate initial magma temperatures at the source.In this study,TZrof the Cuonadong leucogranite were calculated as 662–711 °C(mean 688 °C)(Table 3).TZrcalculated frombulk rock compositions provide a minimum estimate of temperature if the magma was undersaturated,but a maximum if it was saturated(Miller et al.2003).Since abundant inherited zircon grains have been found in the Cuonadong leucogranite,its maximum initial magma temperature was about 710°C at the source,similar to other North Himalayan leucogranites(Zhang et al.2004;Gao and Zeng 2014)and indicating the temperatures of these magmas were low(~ 700 °C).Because the closure temperature(Tc)of the zircon U–Pb system(about 900 °C)(Cherniak and Watson 2001)is significantly higher than the temperatures of leucogranite magmas,the inherited zircons have been widely preserved in almost all Himalayan leucogranites and thus the zircon rims grew throughout the magmatic process,recording a large spread in U–Pb ages.Based on the youngest concordant U–Pb age of zircon rims,the emplacement of the Cuonadong leucogranite probably occurred at 16 Ma.

    Table 3 Whole-rock major and trace element compositions of leucogranites from the Cuonadong gneiss dome

    Fig.5 a Primitive mantle normalized multi-element patterns.b Chondrite-normalized rare earth element patterns.Primitive mantle and chondrite normalization values are from Sun and McDonough(1989)

    Table 4 Sr and Nd isotope data of the Cuonadong leucogranite

    40Ar diffusion in muscovite was revised by Harrison et al.(2009),showing that retention of Ar in muscovite is substantially greater than previously assumed.Recent studies have further constrained muscovite closure temperaturesat:410–470 °C(van Rooyen et al.2016),460 °C(Fournier et al.2017),and 490°C(Schultz et al.2017).In this study,muscovite40Ar/39Ar laser stepwise heating yielded a flat age spectrum(Fig.4a),indicating that the muscovite of the Cuonadong leucogranite has remained a closed K–Ar system and has not been thermally disturbed sincecrystallization(McDougall and Harrison 1999).Thus,the muscovite40Ar/39Ar age indicates the Cuonadong leucogranite cooled below 450°C at 14 Ma.

    Rapid cooling of the Cuonadong leucogranite is supported by the minor difference between the U–Pb age of 16 Ma and the muscovite40Ar/39Ar age of 14 Ma.Based on the average zircon saturation temperature of 688°C(Table 3)at 16.0±0.3 Ma and the muscovite Ar closure temperature of 450°C at 13.9± 0.16 Ma,a rapid cooling rate of 119°C/Ma was determined for leucogranite emplacement and cooling(Fig.6).An exhumation rate of 3 km/Maat 16–14 Maisbased on ageothermal gradient of 40°C/km(Nelson et al.1996),and is consistent with the exhumation rate of 3–4 km/Ma during the same period for the Qomolangma detachment of Himalaya(Schultz et al.2017).Therefore,the geochronological dates of the Cuonadong leucogranite imply rapid exhumation of the eastern Himalaya at 16–14 Ma.This is consistent with Aikman et al.(2012),who found that the nearby Dala granitoids experienced rapid exhumation at 15 Ma.

    Fig.6 Calculated temperature–time path for the Cuonadong leucogranite.The closure temperature(T c)of the zircon U–Pb system is greater than 900°C(Cherniak and Watson 2001),and that of the muscovite K–Ar system 450 °C(see ‘‘Discussion’’).The calculated zircon saturation temperatures(T Zr)of the leucogranite are from 662 to 711 °C(Table 3),which emplaced at 16 Ma and cooled to 450 °C at 14 Ma with a rapid cooling rate of 119°C/Ma

    5.2 The source region

    Elementary and isotopic analyses characterized the Cuonadong leucogranite as high SiO2(>71%)and strongly peraluminous(ASI>1.2),with high initial87Sr/86Sr(0.72–0.73)and negative εNd(t)values(-11.6 to-12.5).These characteristics are similar to other Miocene Himalayan leucogranites,indicating that they were derived from the crust(Scharer et al.1986;Lefort et al.1987;Guo and Wilson 2012).Previous studies have demonstrated that NHGs originated from:(1)the GHC(Zhang et al.2004;King et al.2011);(2)a mixture between the Lesser Himalayan Sequence(LHS)and GHC(Murphy 2007;Pullen et al.2011;Guo and Wilson 2012);or(3)metasedimentary units of gneiss domes in the Tethyan Himalaya(Aikman et al.2008;King et al.2011).The THS is another possible source region of the NHG due to the isotopic characteristics and spatial relationship of the THS and NHG.However,experimental studies have shown that anatexis occurred at depths of 15–20 km(Pati?o Douce and Harris 1998).Due to the low metamorphic grade of sedimentary rocks of the Tethyan Himalaya,leucogranites cannot have been generated from such a region unless the THSwasburied deeply at crustal levels,ascenario that has not yet been identified(Zhang et al.2004).

    Sr and Nd isotopic analyses in bulk rock samples can identify possible source regions of melts.Combined with published Sr and Nd isotope data(all ratios re-corrected to 16 Ma)of the GHC and LHS,the Cuonadong leucogranite is isotopically similar to metasedimentary rocks of the GHC(Fig.7),although the initial Sr isotopic values are slightly lower(0.7163–0.7347).Nevertheless,the LHS is characterized by larger variations in Sr isotopes and lower εNdvalues,precluding it as the source of the Cuonadong leucogranite.In addition,based on the lithotectonic unitsof the eastern Himalaya(Bhutan),Richards et al.(2006)reported significantly distinct Nd model ages of metapelites between the GHC (1700–2200 Ma) and LHS(2500–2600 Ma).In comparison,the Nd model agesof the Cuonadong leucogranite of 1787–1858 Ma(Table 4)are identical to GHC metapelites,further indicating that the Cuonadong leucogranitewasgenerated from the GHC.The distinct isotopic differences of the eastern Himalaya are comparable with the equivalent units from the central Himalaya(Richards et al.2006),indicating that different parts of the Himalayan orogen probably have experienced varied geological histories,and thus have significantly distinct characteristics(Yin 2006;Aikman et al.2012).Therefore,the hypothesis that Himalayan leucogranites in diverse locations derived from different source regions is probably tenable.For example,the leucogranites in the Xiao Gurlaarea and the Gurla Mandhata metamorphic core complex of the western Himalaya are considered to be derived from anatexis of the GHC and LHSrocks(Murphy 2007;Pullen et al.2011).

    Highly heterogeneous Sr isotopic compositions are characteristic for almost all Himalayan leucogranites(Deniel et al.1987;Lefort et al.1987;Scaillet et al.1990;Guo and Wilson 2012).The initial87Sr/86Sr ratios of the Cuonadong leucogranite have a relatively wide range(0.7163 to 0.7347),showing largeisotopic variation even at the meter scale,similar to other HHLs(Lefort et al.1987;Scaillet et al.1990)and most NHGs(Guo and Wilson 2012).This characteristic of the Himalayan leucogranites is one of many open questions and many hypotheses are proposed to explain this phenomenon.Previous studies indicate that the initial Sr isotopic variations could come from(1)heterogeneous source and poor mixing of magma batches during magma segregation and transport from its source(Deniel et al.1987;Copeland et al.1990);(2)progressive melting of a single metasedimentary source(Inger and Harris 1993;Knesel and Davidson 2002);(3)fluid interaction during magma evolution(Lefort et al.1987;Prince et al.2001);or(4)contamination of wallrocks during magma ascent and emplacement(Liu et al.2014,2016).Every interpretation above is reasonable under certain circumstances,and most likely morethan one mechanisms influenced the process of leucogranite formation in such complex collisional orogenesis.However,if initial Sr isotopic variations derived from post-magmatic hydrothermal alteration or contamination of wall-rocks,the characteristic of geochemistry and the isotopic compositions of these leucogranites would represent the magma source(Liu et al.2014,2016).

    From the perspective of highly viscous melts(Deniel et al.1987;Scaillet et al.1996)and rapid magma emplacement(Lefort 1981;Copeland et al.1990;Lederer et al.2013)of the Himalayan leucogranites,such isotopic heterogeneities most likely derived from their source region.Our geochronological data further suggest that the emplacement of the Cuonadong leucogranite took place rapidly.In addition,considering that the metasedimentary rocks of the GHC also have heterogeneous initial Sr isotope compositions(Deniel et al.1987),even though leucogranites were not generated from progressive melting of a single metasedimentary source(Knesel and Davidson 2002),such heterogeneities from source rocks of the GHC can be preserved in their products.Thus,the heterogeneous Sr isotopic compositions also support the GHC as the source region of the Cuonadong leucogranite.

    5.3 Melting mechanism

    Previous studies on petrology and geochemistry have demonstrated that the Himalayan leucogranites were generated by partial melting of metasedimentary rocks,driven by fluid-absent mica(muscovite or biotite)breakdown(Harris and Inger 1992;Inger and Harris 1993;Pati?o Douce and Harris 1998;Knesel and Davidson 2002).In recent years,two-mica granites in Sakya and Malashan gneiss domes were determined to be generated from fluidfluxed melting of metasediments(King et al.2011;Gao and Zeng 2014).Harrison et al.(1999)suggested that breakdown of muscovite during dehydration melting preferentially releases Rb over Sr,producing the high Rb/Sr ratios observed for the leucogranites.In contrast,fluid fluxed melting produces melts with lower Rb contents but higher Sr contents than melts derived from fluid-absent melting(Harris and Inger 1992;Prince et al.2001).For example,two-mica granites of the Malashan gneiss dome which formed around 17 Maarecharacterized by higher Sr contents (>146 ppm), but lower Rb contents(<228 ppm).According to detailed research by Gao and Zeng(2014),the Malashan two-mica granites derived from fluid-fluxed melting of metasediments.

    In addition,as suggested by Inger and Harris(1993),muscovite dehydration breakdown would produce a rich residual K-feldspar,with which Ba is highly compatible.Consequently,this mechanism could result in distinct Ba depletion and negative Eu anomalies.Thehigh Rb/Sr ratios observed for the Cuonadong leucogranite ranged from 3.5 to 17.3(Table 3),much higher than the Malashan twomica granites(Rb/Sr<1.3)(Aoya et al.2005;Gao and Zeng 2014).From Ba–Rb/Sr systematics(Fig.8),the Cuonadong leucogranite shows distinct Ba depletion along with the elevated Rb/Sr ratios.Apparently,Malashan twomica granites have abundant Ba and much lower Rb/Sr ratios, distinguishing them from the Cuonadong leucogranite(Fig.8).Therefore,the characteristics of high Rb/Sr(> 3.5),low Sr/Ba(< 0.5)ratios,and negative Eu anomalies of the Cuonadong leucogranite(Table 3)suggest fluid-absent melting of muscovite from a metapelitic source.This is also supported by the studies of Gao et al.(2017).

    Fig.8 Ba–Rb/Sr systematics of the Cuonadong leucogranite based on Inger and Harris(1993).FA:fluid-absent melting;FP:fluidpresent melting.Data of the Malashan granites are from Aoya et al.(2005)and Gao and Zeng(2014)

    6 Conclusions

    The first comprehensive investigations of the leucogranite exposed in the Cuonadong gneiss dome are presented in this study.The major points are summarized here:

    1. The scattered U–Pb ages of zircon rims from 34.1 to 16.0 Ma suggest protracted melting of the mid-crust,or that formation of the crustal-derived magma took a long time.

    2. The muscovite40Ar/39Ar laser stepwise heating analyses yielded an essentially flat age spectrum,exhibiting closed K–Ar system behavior of the Ar release pattern.40Ar/39Ar dating revealed that the Cuonadong leucogranite cooled down to 450°C at 14 Ma.

    3. The youngest U–Pb age of the zircon rims and the muscovite40Ar/39Ar age suggest that the Cuonadong gneiss dome experienced rapid emplacement and exhumation with a cooling rate of 119°C/Ma during 16–14 Ma.

    4. Geochemical characteristics demonstrate that the Cuonadong leucogranite derived from partial melting of metapelite from the GHC under fluid-absent muscovite melting conditions.Rapid cooling of the Cuonadong leucogranite indicates that the eastern Himalaya experienced rapid exhumation around 16–14 Ma.The ductile extension of the STDS in southern Tibet probably ceased by about 14 Ma.

    AcknowledgementsWe are grateful to Yuanbao Wu and Defeng He for their constructive suggestions.Weappreciate the assistance of Lin Ma for field sampling,and Xianglin Tu for trace element analyses.We also thank Yingde Jiang and Ming Xiao for their helpful discussion.This study was supported by the National Natural Science Foundation of China(Nos.41630315,41503053 and 41688103).

    Ahmad T,Harris N,Bickle M,Chapman H,Bunbury J,Prince C(2000)Isotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series,Garhwal Himalaya.Geol Soc Am Bull 112:467–477

    Aikman AB,Harrison TM,Lin D(2008)Evidence for early(>44 Ma)Himalayan crustal thickening,Tethyan Himalaya,southeastern Tibet.Earth Planet Sci Lett 274:14–23

    Aikman AB,Harrison TM,Hermann J(2012)Age and thermal history of Eo-and Neohimalayan granitoids,eastern Himalaya.JAsian Earth Sci 51:85–97

    Annen C,Scaillet B,Sparks RSJ(2006)Thermal constraints on the emplacement rate of a large intrusive complex:the Manaslu Leucogranite,Nepal Himalaya.JPetrol 47:71–95

    Aoya M,Wallis SR,Terada K,Lee J,Kawakami T,Wang Y,Heizler M(2005)North-south extension in the Tibetan crust triggered by granite emplacement.Geology 33:853

    Bai XJ,Qiu HN,Liu WG,Mei LF(2018)Automatic40Ar/39Ar dating techniques using multicollector ARGUS VI noble gas mass spectrometer with self-made peripheral apparatus.J Earth Sci 29:408–415

    Barbarin B(1996)Genesis of the two main types of peraluminous granitoids.Geology 24:295–298

    Booth AL,Chamberlain CP,Kidd WSF,Zeitler PK(2009)Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa.Geol Soc Am Bull 121:385–407

    Cherniak DJ,Watson EB(2001)Pb diffusion in zircon.Chem Geol 172:5–24

    Copeland P,Harrison TM,Lefort P(1990)Ageand cooling history of the Manaslu granite:implications for Himalayan tectonics.JVolcanol Geotherm Res 44:33–50

    Deniel C,Vidal P,Fernandez A,Lefort P,Peucat JJ(1987)Isotopic study of the Manaslu granite(Himalaya,Nepal)—inferences on the age and source of Himalayan leukogranites.Contrib Mineral Petrol 96:78–92

    Fournier HW,Lee JKW,Urbani F,Grande S(2017)The tectonothermal evolution of the Venezuelan Caribbean Mountain System:40Ar/39Ar age insights from a Rodinian-related rock,the Cordillera de la Costa and Margarita Island.J S Am Earth Sci 80:149–173

    Fu J,Li G,Wang G,Huang Y,Zhang L,Dong S,Liang W(2017)First field identification of the Cuonadong dome in southern Tibet:implications for EW extension of the North Himalayan gneiss dome.Int JEarth Sci 106:1581–1596

    Gao LE,Zeng LS(2014)Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome,southern Tibet.Geochim Cosmochim Acta 130:136–155

    Gao LE,Gao JH,Zhao LH,Hou KJ,Tang SH(2017)The Miocene leucogranite in the Nariyongcuo Gneiss Dome,southern Tibet:Products from melting metapelite and fractional crystallization.Acta Petrol Sin 33:2395–2411

    Guo ZF,Wilson M(2012)The Himalayan leucogranites:constraints on the nature of their crustal source region and geodynamic setting.Gondwana Res 22:360–376

    Harris NBW,Inger S(1992)Trace-element modeling of pelitederived granites.Contrib Mineral Petrol 110:46–56

    Harris N,Vance D,Ayres M(2000)From sediment to granite:timescales of anatexis in the upper crust.Chem Geol 162:155–167

    Harrison TM,Grove M,Lovera OM,Catlos EJ(1998)A model for the origin of Himalayan anatexis and inverted metamorphism.JGeophys Res[Solid Earth]103:27017–27032

    Harrison TM,Grove M,McKeegan KD,Coath CD,Lovera OM,Le fort P(1999)Origin and episodic emplacement of the Manaslu intrusive complex,central Himalaya.JPetrol 40:3–19

    Harrison TM,Celerier J,Aikman AB,Hermann J,Heizler MT(2009)Diffusion of40Ar in muscovite.Geochim Cosmochim Acta 73:1039–1051

    Hopkinson TN,Harris NBW,Warren CJ,Spencer CJ,Roberts NMW,Horstwood MSA,Parrish RR,EIMF(2017)The identification and significance of pure sediment-derived granites.Earth Planet Sci Lett 467:57–63

    Hou ZQ,Zheng YC,Zeng LS,Gao LE,Huang KX,Li W,Li QY,Fu Q,Liang W,Sun QZ(2012)Eocene-Oligocene granitoids in southern Tibet:constraints on crustal anatexis and tectonic evolution of the Himalayan orogen.Earth Planet Sci Lett 349–350:38–52

    Inger S,Harris N(1993)Geochemical constraints on leucogranite magmatism in the Langtang Valley,Nepal Himalaya.J Petrol 34:345–368

    Kawakami T,Aoya M,Wallis SR,Lee J,Terada K,Wang Y,Heizler M(2007)Contact metamorphism in the Malashan dome,North Himalayan gneissdomes,southern Tibet:an example of shallow extensional tectonics in the Tethys Himalaya.JMetamorph Geol 25:831–853

    Kellett DA,Grujic D,Erdmann S(2009)Miocene structural reorganization of the South Tibetan detachment,eastern Himalaya:Implications for continental collision.Lithosphere 1:259–281

    King J,Harris N,Argles T,Parrish R,Zhang H(2011)Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet.Geol Soc Am Bull 123:218–239

    Knesel KM,Davidson JP(2002)Insights into collisional magmatism from isotopic fingerprints of melting reactions.Science 296:2206–2208

    Koppers AAP(2002)ArArCALC-software for40Ar/39Ar age calculations.Comput Geosci 28:605–619

    Gao LE,Zeng LS(2009)Early Oligocene Na-rich peraluminous leucogranites in the Yardoi gneiss dome,southern Tibet:formation mechanism and tectonic implications.Acta Petrol Sin 25:2289–2302

    Lederer GW,Cottle JM,Jessup MJ,Langille JM,Ahmad T(2013)Timescales of partial melting in the Himalayan middle crust:insight from the Leo Pargil dome,northwest India.Contrib Mineral Petrol 166:1415–1441

    Lee J,Whitehouse MJ(2007)Onset of mid-crustal extensional flow in southern Tibet:evidence from U/Pb zircon ages.Geology 35:45

    Lefort P(1981)Manaslu leucogranite—a collision signature of the Himalaya a model for its genesis and emplacement.JGeophys Res[Solid Earth]86:545–568

    Lefort P,Cuney M,Deniel C,Francelanord C,Sheppard SMF,Upreti BN,Vidal P(1987)Crustal generation of the Himalayan leucogranites.Tectonophysics 134:39–57

    Li XH,Liu Y,Li QL,Guo CH,Chamberlain KR(2009)Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization.Geochem Geophys Geosyst 10:Q04010

    Lin B,Tang J,Zheng W,Leng Q,Lin X,Wang Y,Meng Z,Tang P,Ding S,Xu Y,Yuan M(2016)Geochemical characteristics,age and genesis of Cuonadong leucogranite,Tibet.Acta Petrol Mineral 35:391–406(in Chinese with English abstract)

    Liu ZC,Wu FY,Ji WQ,Wang JG,Liu CZ(2014)Petrogenesisof the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model.Lithos 208:118–136

    Liu ZC,Wu FY,Ding L,Liu XC,Wang JG,Ji WQ(2016)Highly fractionated Late Eocene(~35 Ma)leucogranite in the Xiaru Dome,Tethyan Himalaya,South Tibet.Lithos 240:337–354

    McDougall I,Harrison TM (1999)Geochronology and thermochronology by the40Ar/39Ar method.Oxford University Press,Oxford

    Miller CF,McDowell SM,Mapes RW(2003)Hot and cold granites?Implications of zircon saturation temperatures and preservation of inheritance.Geology 31:529–532

    Murphy MA(2007)Isotopic characteristics of the Gurla Mandhata metamorphic core complex:Implications for the architecture of the Himalayan orogen.Geology 35:983

    Nelson KD,Zhao WJ,Brown LD,Kuo J,Che JK,Liu XW,Klemperer SL,Makovsky Y,Meissner R,Mechie J,Kind R,Wenzel F,Ni J,Nabelek J,Chen LS,Tan HD,Wei WB,Jones AG,Booker J,Unsworth M,Kidd WSF,Hauck M,Alsdorf D,Ross A,Cogan M,Wu CD,Sandvol E,Edwards M(1996)Partially molten middle crust beneath southern Tibet:synthesis of project INDEPTH results.Science 274:1684–1688

    Pati?o Douce AE,Harris N(1998)Experimental constraints on Himalayan anatexis.JPetrol 39:689–710

    Prince C,Harris N,Vance D(2001)Fluid-enhanced melting during prograde metamorphism.JGeol Soc 158:233–241

    Pullen A,Kapp P,DeCelles PG,Gehrels GE,Ding L(2011)Cenozoic anatexis and exhumation of Tethyan sequence rocks in the Xiao Gurla Range,Southwest Tibet.Tectonophysics 501:28–40

    Richards A,Argles T,Harris N,Parrish R,Ahmad T,Darbyshire F,Draganits E(2005)Himalayan architecture constrained by isotopic tracers from clastic sediments.Earth Planet Sci Lett 236:773–796

    Richards A,Parrish R,Harris N,Argles T,Zhang L(2006)Correlation of lithotectonic units across the eastern Himalaya,Bhutan.Geology 34:341–344

    Rubatto D,Chakraborty S,Dasgupta S(2013)Timescales of crustal melting in the Higher Himalayan Crystallines(Sikkim,Eastern Himalaya)inferred from traceelement-constrained monazite and zircon chronology.Contrib Mineral Petrol 165:349–372

    Scaillet B,Francelanord C,Lefort P(1990)Badrinath-Gangotri plutons(Garhwal,India):petrological and geochemical evidence for fractionation processes in a high Himalayan leucogranite.JVolcanol Geotherm Res 44:163–188

    Scaillet B,Holtz F,Pichavant M,Schmidt M(1996)Viscosity of Himalayan leucogranites:Implications for mechanisms of granitic magma ascent.J Geophys Res [Solid Earth]101:27691–27699

    Scharer U,Xu RH,Allegre CJ(1986)U–(Th)–Pb systematics and ages of Himalayan Leucogranites,South Tibet.Earth Planet Sci Lett 77:35–48

    Schultz MH,Hodges KV,Ehlers TA,van Soest M,Wartho J-A(2017)Thermochronologic constraints on the slip history of the South Tibetan detachment system in the Everest region,southern Tibet.Earth Planet Sci Lett 459:105–117

    Sun SS,McDonough WF(1989)Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes.Geol Soc Lond Spec Publ 42:313–345

    van Rooyen D,Carr SD,Gibson D(2016)40Ar/39Ar thermochronology of the Thor-Odin—Pinnacles area,southeastern British Columbia:tectonic implications of cooling and exhumation patterns.Can JEarth Sci 53:993–1009

    Wang XX,Zhang JJ,Yan SY,Liu J(2016)Age and geochemistry of the Cuona leucogranite in southern Tibet and its geological implications.Geol Bull China 35:91–103(in Chinese with English abstract)

    Watson EB,Harrison TM(1983)Zircon saturation revisited—temperature and composition effects in a variety of crustal magma types.Earth Planet Sci Lett 64:295–304

    White LT,Ireland TR(2012)High-uranium matrix effect in zircon and its implications for SHRIMP U–Pb age determinations.Chem Geol 306:78–91

    Whitney DL,Evans BW(2010)Abbreviations for names of rockforming minerals.Am Mineral 95:185–187

    Wu FY,Liu ZC,Liu XC,Ji WQ(2015)Himalayan leucogranite:petrogenesis and implications to orogenesis and plateau uplift.Acta Petrol Sin 31:1–36(in Chinese with English abstract)

    Yin A(2006)Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry,exhumation history,and foreland sedimentation.Earth-Sci Rev 76:1–131

    Yin A,Harrison TM(2000)Geologic evolution of the Himalayan-Tibetan orogen.Annu Rev Earth Planet Sci 28:211–280

    Zeng LS,Gao LE (2017)Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt.Acta Petrol Sin 33:1420–1444

    Zeng LS,Gao LE,Xie KJ,Liu ZJ(2011)Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:melting thickened lower continental crust.Earth Planet Sci Lett 303:251–266

    Zeng LS,Gao LE,Tang SH,Hou KJ,Guo CL,Hu GY(2015)Eocene magmatism in the Tethyan Himalaya,southern Tibet.Geol Soc Lond Spec Publ 412:287–316

    Zhang HF,Harris N,Parrish R,Kelley S,Zhang L,Rogers N,Argles T,King J(2004)Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform.Earth Planet Sci Lett 228:195–212

    Zhang Z,Zhang LK,Li GM,Liang W,Xia XB,Fu JG,Dong SL,Ma GT(2017)The cuonadong gneiss dome of North Himalaya:a new member of gneiss dome and a new proposition for the orecontrolling role of north Himalaya gneiss domes.Acta Geosci Sin 38:754–766(in Chinese with English abstract)

    乱码一卡2卡4卡精品| 插阴视频在线观看视频| 午夜免费鲁丝| 免费不卡的大黄色大毛片视频在线观看| 少妇被粗大猛烈的视频| 汤姆久久久久久久影院中文字幕| 人妻夜夜爽99麻豆av| 免费av不卡在线播放| 国产成人一区二区在线| 精品人妻熟女毛片av久久网站| 亚洲婷婷狠狠爱综合网| 噜噜噜噜噜久久久久久91| 狂野欧美激情性xxxx在线观看| 国产伦精品一区二区三区视频9| 边亲边吃奶的免费视频| 亚洲av二区三区四区| 久热这里只有精品99| 女的被弄到高潮叫床怎么办| 欧美 亚洲 国产 日韩一| 18禁在线播放成人免费| 亚洲国产精品专区欧美| 伊人亚洲综合成人网| 色5月婷婷丁香| 日本欧美视频一区| 国产无遮挡羞羞视频在线观看| 最近手机中文字幕大全| 欧美另类一区| 国产精品偷伦视频观看了| 最近最新中文字幕免费大全7| 亚洲av不卡在线观看| 自线自在国产av| 国产高清三级在线| 十八禁高潮呻吟视频 | 欧美 日韩 精品 国产| 春色校园在线视频观看| 亚洲欧洲精品一区二区精品久久久 | 国产毛片在线视频| 又黄又爽又刺激的免费视频.| 欧美日韩亚洲高清精品| 国产片特级美女逼逼视频| 男女国产视频网站| 丰满人妻一区二区三区视频av| 中国三级夫妇交换| 国产黄色免费在线视频| av福利片在线| 久久久久久久久大av| 少妇丰满av| 亚洲av.av天堂| 成人黄色视频免费在线看| 制服丝袜香蕉在线| 亚洲成人av在线免费| 三级经典国产精品| 亚洲欧美成人精品一区二区| 欧美97在线视频| 免费看av在线观看网站| 极品教师在线视频| 精品亚洲乱码少妇综合久久| 少妇被粗大的猛进出69影院 | 亚洲精品视频女| 久久久午夜欧美精品| 日日啪夜夜撸| 国产极品天堂在线| 街头女战士在线观看网站| 亚洲精品久久久久久婷婷小说| 观看av在线不卡| 国产亚洲5aaaaa淫片| 22中文网久久字幕| 夫妻性生交免费视频一级片| 国产一区二区三区综合在线观看 | 欧美bdsm另类| 欧美日韩在线观看h| 成人国产麻豆网| 亚洲av国产av综合av卡| 国产午夜精品久久久久久一区二区三区| 最新中文字幕久久久久| 视频区图区小说| 国产男女内射视频| 人人妻人人添人人爽欧美一区卜| 免费大片18禁| 久久综合国产亚洲精品| 在线观看国产h片| 亚洲精品乱久久久久久| 亚洲欧美成人综合另类久久久| 蜜臀久久99精品久久宅男| 欧美精品人与动牲交sv欧美| 成人毛片60女人毛片免费| 夜夜看夜夜爽夜夜摸| 精品国产一区二区三区久久久樱花| 亚洲,欧美,日韩| 日韩熟女老妇一区二区性免费视频| 日本黄色日本黄色录像| 少妇的逼水好多| 黑人巨大精品欧美一区二区蜜桃 | 午夜视频国产福利| 我要看日韩黄色一级片| 日韩伦理黄色片| 日韩欧美 国产精品| 黄色日韩在线| 欧美日韩一区二区视频在线观看视频在线| 在线看a的网站| 一区二区三区精品91| 成人国产av品久久久| 九九爱精品视频在线观看| 国产精品一二三区在线看| 欧美+日韩+精品| 欧美97在线视频| 中文字幕人妻熟人妻熟丝袜美| 性色av一级| 建设人人有责人人尽责人人享有的| 曰老女人黄片| 欧美丝袜亚洲另类| 麻豆精品久久久久久蜜桃| 亚洲欧美日韩另类电影网站| 日韩一区二区三区影片| 丝瓜视频免费看黄片| 免费黄频网站在线观看国产| 丝袜喷水一区| 精品视频人人做人人爽| .国产精品久久| 久久久亚洲精品成人影院| 国产av码专区亚洲av| 国产熟女欧美一区二区| 一级毛片黄色毛片免费观看视频| 成年美女黄网站色视频大全免费 | 国产91av在线免费观看| 女性被躁到高潮视频| 黄色毛片三级朝国网站 | 欧美成人午夜免费资源| 18禁动态无遮挡网站| 精品亚洲乱码少妇综合久久| 久久精品熟女亚洲av麻豆精品| 午夜免费观看性视频| av视频免费观看在线观看| 日韩电影二区| www.av在线官网国产| 国产女主播在线喷水免费视频网站| 亚洲精品视频女| 亚洲欧美成人综合另类久久久| 国产极品粉嫩免费观看在线 | 女性生殖器流出的白浆| 男的添女的下面高潮视频| 免费观看a级毛片全部| 亚洲av男天堂| 成人影院久久| 嫩草影院新地址| 麻豆成人午夜福利视频| 建设人人有责人人尽责人人享有的| 中文在线观看免费www的网站| 亚洲人成网站在线观看播放| 人妻制服诱惑在线中文字幕| 国产成人精品福利久久| 我的老师免费观看完整版| 91久久精品电影网| 九九在线视频观看精品| h日本视频在线播放| 亚洲欧美一区二区三区黑人 | 欧美一级a爱片免费观看看| 久久精品熟女亚洲av麻豆精品| 久久国产精品男人的天堂亚洲 | 亚洲精品日韩av片在线观看| 国产熟女午夜一区二区三区 | 国产免费福利视频在线观看| 岛国毛片在线播放| 尾随美女入室| 国产欧美亚洲国产| 永久免费av网站大全| 国产免费一级a男人的天堂| 边亲边吃奶的免费视频| av网站免费在线观看视频| 一区二区三区精品91| 一级片'在线观看视频| 美女福利国产在线| 麻豆乱淫一区二区| 极品教师在线视频| kizo精华| 亚洲av二区三区四区| 大话2 男鬼变身卡| 蜜臀久久99精品久久宅男| 成人国产麻豆网| 大片电影免费在线观看免费| 多毛熟女@视频| 18禁在线播放成人免费| 日韩欧美精品免费久久| 国产中年淑女户外野战色| 亚洲av在线观看美女高潮| 内地一区二区视频在线| 黑人巨大精品欧美一区二区蜜桃 | 成年人免费黄色播放视频 | 亚洲精品色激情综合| 久久综合国产亚洲精品| 老司机影院成人| 色视频www国产| 99久久人妻综合| 一个人看视频在线观看www免费| 亚洲精品乱码久久久久久按摩| 又粗又硬又长又爽又黄的视频| 亚洲内射少妇av| 99九九在线精品视频 | 日韩人妻高清精品专区| 亚洲精品亚洲一区二区| 久久精品国产自在天天线| 黑人高潮一二区| 六月丁香七月| av线在线观看网站| 看免费成人av毛片| 深夜a级毛片| 噜噜噜噜噜久久久久久91| 99久久精品国产国产毛片| av线在线观看网站| 大陆偷拍与自拍| 日韩av在线免费看完整版不卡| av福利片在线| 日本猛色少妇xxxxx猛交久久| 色视频在线一区二区三区| 亚洲高清免费不卡视频| 下体分泌物呈黄色| 亚洲av不卡在线观看| 美女中出高潮动态图| 99国产精品免费福利视频| 欧美日韩一区二区视频在线观看视频在线| 在线观看av片永久免费下载| 成人黄色视频免费在线看| 一本色道久久久久久精品综合| 久久影院123| 丰满少妇做爰视频| 久久人人爽人人片av| 极品少妇高潮喷水抽搐| 日韩成人伦理影院| 全区人妻精品视频| 街头女战士在线观看网站| 各种免费的搞黄视频| 偷拍熟女少妇极品色| 春色校园在线视频观看| 亚洲成人一二三区av| 欧美97在线视频| 欧美激情极品国产一区二区三区 | 18禁在线无遮挡免费观看视频| 少妇人妻精品综合一区二区| 亚洲不卡免费看| 亚洲欧美成人精品一区二区| 色网站视频免费| 观看av在线不卡| 免费av中文字幕在线| av国产久精品久网站免费入址| 麻豆乱淫一区二区| 国产日韩欧美在线精品| 国产探花极品一区二区| 国产免费一级a男人的天堂| 美女主播在线视频| a级毛片免费高清观看在线播放| 18禁在线无遮挡免费观看视频| 一级黄片播放器| 久久久a久久爽久久v久久| 伦精品一区二区三区| 交换朋友夫妻互换小说| 亚洲怡红院男人天堂| 美女xxoo啪啪120秒动态图| 国产亚洲精品久久久com| 亚洲av综合色区一区| 久久毛片免费看一区二区三区| 最近中文字幕2019免费版| 欧美亚洲 丝袜 人妻 在线| 亚洲一级一片aⅴ在线观看| 午夜免费鲁丝| 水蜜桃什么品种好| 十八禁高潮呻吟视频 | 国产亚洲最大av| 亚洲欧美清纯卡通| 18禁动态无遮挡网站| 国产在线男女| 精品熟女少妇av免费看| av福利片在线| 观看美女的网站| 免费黄色在线免费观看| 老女人水多毛片| www.av在线官网国产| 亚洲精品亚洲一区二区| 亚州av有码| av卡一久久| 免费看日本二区| 午夜免费男女啪啪视频观看| 在线看a的网站| 亚洲精品国产色婷婷电影| 三级国产精品片| 日韩视频在线欧美| 夫妻性生交免费视频一级片| 国产 一区精品| a级毛片免费高清观看在线播放| 99久久精品国产国产毛片| 亚洲av在线观看美女高潮| 成年人免费黄色播放视频 | 九色成人免费人妻av| 人妻人人澡人人爽人人| 蜜桃久久精品国产亚洲av| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品乱久久久久久| 免费观看无遮挡的男女| 青春草国产在线视频| 国产伦精品一区二区三区四那| 久久久久久久久久人人人人人人| 成人黄色视频免费在线看| 伦理电影免费视频| 一本一本综合久久| av黄色大香蕉| 国产在线免费精品| 日本与韩国留学比较| 97在线视频观看| 国产淫片久久久久久久久| 中文字幕人妻熟人妻熟丝袜美| 色网站视频免费| 国产一区二区在线观看av| 少妇猛男粗大的猛烈进出视频| 欧美3d第一页| 熟女av电影| 亚洲av中文av极速乱| 亚洲精品国产av成人精品| 亚洲图色成人| 黄色一级大片看看| 久久国产乱子免费精品| 久久人人爽av亚洲精品天堂| 国产乱来视频区| 在线播放无遮挡| 这个男人来自地球电影免费观看 | 国产精品一区二区在线观看99| 亚洲熟女精品中文字幕| 久久人人爽av亚洲精品天堂| 亚洲精品成人av观看孕妇| 秋霞伦理黄片| 国产成人精品无人区| 亚洲av福利一区| 欧美日韩av久久| 一级毛片aaaaaa免费看小| 国产女主播在线喷水免费视频网站| 国产一区亚洲一区在线观看| 国产亚洲精品久久久com| 丝袜喷水一区| 亚洲第一区二区三区不卡| 我的女老师完整版在线观看| av国产久精品久网站免费入址| 国产深夜福利视频在线观看| 国产精品一区二区三区四区免费观看| 婷婷色综合大香蕉| 久久 成人 亚洲| 亚洲国产精品国产精品| 久久女婷五月综合色啪小说| 菩萨蛮人人尽说江南好唐韦庄| av卡一久久| 91成人精品电影| 国产免费一级a男人的天堂| 国产亚洲91精品色在线| 成年人午夜在线观看视频| 美女中出高潮动态图| 欧美精品一区二区大全| 日韩av免费高清视频| 国产美女午夜福利| 国产在线男女| 亚洲精品久久久久久婷婷小说| 成人18禁高潮啪啪吃奶动态图 | 国产亚洲最大av| 麻豆乱淫一区二区| 久久亚洲国产成人精品v| 街头女战士在线观看网站| 一级毛片久久久久久久久女| 国产一级毛片在线| 九草在线视频观看| 国产伦精品一区二区三区视频9| 精品卡一卡二卡四卡免费| 中文字幕人妻熟人妻熟丝袜美| 欧美xxⅹ黑人| 国产亚洲午夜精品一区二区久久| 亚洲欧美日韩另类电影网站| 欧美+日韩+精品| 国产极品粉嫩免费观看在线 | 少妇人妻久久综合中文| 一本久久精品| 在线观看免费视频网站a站| 91午夜精品亚洲一区二区三区| 久久影院123| 久热久热在线精品观看| 性高湖久久久久久久久免费观看| 九九久久精品国产亚洲av麻豆| 精品久久久精品久久久| 久久久久久久亚洲中文字幕| 我的老师免费观看完整版| 国产视频首页在线观看| 超碰97精品在线观看| 亚洲中文av在线| 一本—道久久a久久精品蜜桃钙片| 亚洲精品日本国产第一区| av视频免费观看在线观看| 亚洲美女黄色视频免费看| 久久国产亚洲av麻豆专区| 乱码一卡2卡4卡精品| 国产女主播在线喷水免费视频网站| 欧美另类一区| 一级av片app| av天堂中文字幕网| 啦啦啦在线观看免费高清www| 亚洲欧美中文字幕日韩二区| a级片在线免费高清观看视频| 一区在线观看完整版| 一本大道久久a久久精品| 免费人成在线观看视频色| 黄片无遮挡物在线观看| 王馨瑶露胸无遮挡在线观看| 欧美97在线视频| 只有这里有精品99| 久久 成人 亚洲| 精品亚洲成国产av| 久久久久久久久久久久大奶| 观看美女的网站| av在线app专区| 亚洲精品亚洲一区二区| 国产av国产精品国产| 国产色爽女视频免费观看| 亚洲精品视频女| 久久国产亚洲av麻豆专区| 国产成人精品一,二区| av在线观看视频网站免费| 欧美日韩国产mv在线观看视频| 大又大粗又爽又黄少妇毛片口| 久久99精品国语久久久| 六月丁香七月| 一级毛片aaaaaa免费看小| 深夜a级毛片| 国模一区二区三区四区视频| 欧美一级a爱片免费观看看| 黄片无遮挡物在线观看| 亚洲av免费高清在线观看| 日韩成人伦理影院| 国产伦精品一区二区三区视频9| 日韩亚洲欧美综合| 一个人看视频在线观看www免费| 日本vs欧美在线观看视频 | 亚洲电影在线观看av| 久久久精品94久久精品| 亚洲av不卡在线观看| 寂寞人妻少妇视频99o| 久久综合国产亚洲精品| 日日啪夜夜爽| 亚洲一区二区三区欧美精品| 久久 成人 亚洲| 亚洲三级黄色毛片| 观看av在线不卡| 男人爽女人下面视频在线观看| 精品人妻熟女毛片av久久网站| 97超视频在线观看视频| 欧美3d第一页| 大话2 男鬼变身卡| 人人妻人人添人人爽欧美一区卜| 丁香六月天网| 日本wwww免费看| 国产老妇伦熟女老妇高清| 国产一区二区三区综合在线观看 | av在线老鸭窝| 中文欧美无线码| 免费观看的影片在线观看| 亚洲无线观看免费| 99久久中文字幕三级久久日本| 黑人巨大精品欧美一区二区蜜桃 | 久久久久网色| 欧美激情极品国产一区二区三区 | 国产欧美日韩精品一区二区| 99热国产这里只有精品6| 人妻少妇偷人精品九色| 国产男女超爽视频在线观看| 91久久精品国产一区二区三区| 亚洲精品久久午夜乱码| 国产黄色视频一区二区在线观看| 色94色欧美一区二区| 久久久久人妻精品一区果冻| 91成人精品电影| 国产一区二区三区av在线| 日本欧美国产在线视频| 十八禁网站网址无遮挡 | 中文字幕人妻熟人妻熟丝袜美| 国产精品偷伦视频观看了| 在现免费观看毛片| 黄色一级大片看看| 免费av中文字幕在线| av黄色大香蕉| 成人黄色视频免费在线看| 精品人妻熟女av久视频| 精品国产一区二区三区久久久樱花| 青青草视频在线视频观看| 久久婷婷青草| 美女国产视频在线观看| 国产无遮挡羞羞视频在线观看| 国产精品一区二区性色av| 精品卡一卡二卡四卡免费| 亚洲性久久影院| 夫妻午夜视频| 91成人精品电影| 欧美日韩精品成人综合77777| 国产精品一区www在线观看| 最近中文字幕2019免费版| 综合色丁香网| 亚洲不卡免费看| 99精国产麻豆久久婷婷| 嫩草影院新地址| 日日啪夜夜爽| 午夜福利网站1000一区二区三区| 嫩草影院入口| 久久久久久久久久成人| 大片电影免费在线观看免费| 欧美成人午夜免费资源| 少妇人妻一区二区三区视频| 亚洲欧美中文字幕日韩二区| 精品国产一区二区三区久久久樱花| 黄色怎么调成土黄色| 一级毛片aaaaaa免费看小| 亚洲av.av天堂| 狠狠精品人妻久久久久久综合| 亚洲精品亚洲一区二区| 国产精品熟女久久久久浪| 黄色日韩在线| 嫩草影院新地址| 免费看不卡的av| 国产亚洲欧美精品永久| 老女人水多毛片| 一区二区av电影网| 极品教师在线视频| 国产亚洲5aaaaa淫片| 人妻少妇偷人精品九色| 肉色欧美久久久久久久蜜桃| 亚洲欧美日韩卡通动漫| 人妻一区二区av| 激情五月婷婷亚洲| 大又大粗又爽又黄少妇毛片口| 色婷婷av一区二区三区视频| 特大巨黑吊av在线直播| 日本av免费视频播放| 国产中年淑女户外野战色| 在线看a的网站| 婷婷色综合www| 黑丝袜美女国产一区| 中文字幕av电影在线播放| 午夜福利,免费看| 久久午夜综合久久蜜桃| a级一级毛片免费在线观看| 在线观看三级黄色| 国产高清三级在线| 少妇人妻久久综合中文| 极品少妇高潮喷水抽搐| 黑人高潮一二区| 秋霞伦理黄片| 国产成人精品婷婷| 欧美变态另类bdsm刘玥| xxx大片免费视频| 国产免费又黄又爽又色| 最近最新中文字幕免费大全7| 黑人巨大精品欧美一区二区蜜桃 | 熟妇人妻不卡中文字幕| 3wmmmm亚洲av在线观看| 91精品国产九色| 日本色播在线视频| 欧美3d第一页| 成人黄色视频免费在线看| 国产精品一二三区在线看| 亚洲精品日韩在线中文字幕| 精品人妻熟女av久视频| 天天操日日干夜夜撸| 国产老妇伦熟女老妇高清| 日本黄大片高清| 老司机影院成人| 高清黄色对白视频在线免费看 | 久久久久久久久久人人人人人人| 美女福利国产在线| 女人久久www免费人成看片| 啦啦啦视频在线资源免费观看| 人妻制服诱惑在线中文字幕| 黄色怎么调成土黄色| 欧美激情国产日韩精品一区| 视频中文字幕在线观看| 亚洲久久久国产精品| 精品少妇久久久久久888优播| 欧美人与善性xxx| 色视频在线一区二区三区| 伊人久久精品亚洲午夜| 日韩成人av中文字幕在线观看| 国产在线视频一区二区| 啦啦啦视频在线资源免费观看| 少妇高潮的动态图| 99久久综合免费| 精品国产一区二区三区久久久樱花| 99九九在线精品视频 | 亚洲婷婷狠狠爱综合网| av天堂中文字幕网| 一区二区三区乱码不卡18| 美女脱内裤让男人舔精品视频| 亚洲精品国产av成人精品| 免费观看av网站的网址| 日韩亚洲欧美综合| 国内少妇人妻偷人精品xxx网站| 久久精品夜色国产| 2022亚洲国产成人精品| 亚洲成人一二三区av| 日本色播在线视频| 久久久久久久大尺度免费视频| 99热国产这里只有精品6| 丝瓜视频免费看黄片| 亚洲av.av天堂| 国产成人精品一,二区| 伦理电影免费视频| 国产一区二区三区综合在线观看 | 女人久久www免费人成看片| 99九九在线精品视频 | 99久久综合免费| 日本免费在线观看一区| 女性被躁到高潮视频| a级毛片在线看网站| 特大巨黑吊av在线直播| 色婷婷av一区二区三区视频| 国产淫语在线视频| 一级毛片电影观看|