• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structure of the Cobalt-Based Oxide and Its Catalytic Performance in Oxidation of Toluene*

    2018-07-03 03:14:16HUXiuzhenJIANGChongwenZHUJundongLONGJieSONGQuzhi

    HU Xiuzhen,JIANG Chongwen,ZHU Jundong,LONG Jie,SONG Quzhi

    (Department of Chemical Engineering,College of Chemistry and Chemical Engineering,Central South University,Changsha 410083,China)

    1 Introduction

    Volatile organic compounds (VOCs),emitted from industrial process and biogenic systems,are a great threat to the human health and the atmosphere[1-4].The strategies for elimination and treatment have attracted increasingly attention of many researchers[5-6].Catalytic oxidation of VOCs into harmless CO2and H2O is considered as one of the most environment-friendly and cost-effective strategies in the past few decades[7-9].Supported noble metals (Pt,Pd,and Au catalysts[10-13]) are well-known as their high activities for deep oxidation of VOCs.Thus,they have been widely used in industrial processes for abatement of exhausts.However,the high cost of noble metals has increased the interest in the development cheaper transition metal oxide catalysts with comparable activity of noble metal catalyst.Recently,Co3O4has received a high degree of interest because of significantly higher catalytic performance in oxidation of VOCs[14-16],[17]11 447.T Garcia et al[18]found Ordered Co3O4oxides performed well in the deep oxidation of a series representative VOCs.They demonstrated that the existence of a high concentration of Co2+ion on the surface explained the higher intrinsic activity.HU F Y et al[19]proposed that the excellent catalytic performances of Co3O4were associated with large surface area and high surface oxygen concentration.Jiang S J et al[20]conducted the oxidation of toluene over a series of Co3O4catalysts and found that Co3O4/CNTs (Carbon nano tubes) exhibited the best catalytic activity compared with cobalt oxides on other supported material (Beta Zeolite,ZSM-5,SBA-15),with a complete toluene conversion temperature at 257 ℃.They confirmed that the morphology or crystal plane of Co3O4could remarkably alter their catalytic performance.However,the combination of cobalt oxide with other different oxides often affects the textural,morphological,redox and catalytic activity.The synergistic effects have been found in different composite oxides such as cobalt,copper,manganese and chromium catalysts on which their catalytic activities are significantly promoted[21],[22]1 655,[23-24].Higher bulk oxygen mobility (through Mars-Van Krevelen mechanism) and formation of highly active oxygen species activated by the oxygen vacancies are widely recognized as the factors influencing the catalytic activity of Co3O4and Co3O4-CeO2binary oxides for VOCs catalytic oxidation[25]3 094.

    Although numerous studies point out the successful use of cobalt in the oxidation VOCs,how the structure of the cobalt-based oxide is correlated with its catalytic the oxidation of VOCs is not clear.It is noted that the physical chemical properties and activity of catalysts are directly associated to their preparation method.Sol-gel method was preferred due to the advantages of obtaining mixed oxides with a good control of stoichiometry and nano size.In the present work,mixed oxides of Ce-Co,Mn-Co,and Cu-Co were synthesized through sol-gel method.The catalytic activity of these catalysts was evaluated through the oxidation of toluene,which is a very common VOCs in petrochemical and chemical industries.The attention focused on the maintenance of the catalyst stability was more than 50 hours.The prepared catalysts were characterized by using X-ray diffractometry (XRD),nitrogen adsorption-desorption,scanning electron microscope (SEM),H2temperature programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS).An attempt to elucidate the structural and surface composition with the catalytic activity will be studied.

    2 Experimental

    2.1 Preparation of Catalysts

    Mixed-oxide catalysts were prepared by a citric acid sol-gel method.Briefly,nitrates with different cations were used as precursors (Cu(NO3)2·3H2O,50%(W.%) of Mn(NO3)2·4H2O,Ce(NO3)3·6H2O,Co(NO3)2·6H2O) in stoichiometric ratio of A∶Co=1∶1,which A is Mn,Ce and Cu.In a typical synthesis,6.04 g Cu(NO3)2·3H2O and 7.28 g Co(NO3)2·6H2O solution were added into 50 mL deionized water to obtain a mixed solution (1.0 mol/L metal ion concentration).Then,10.51 g citric acid was added into the nitrate solution.The obtained solution was stirred at 80 ℃ for 4 hours to form a gel.This gel was then dried at 110 ℃ for 10 hours and calcined at 500 ℃ (the heating rate of 5 ℃/min) for 3 hours to ensure the removal of carbonaceous residues and the formation of the mixed oxides labeled as Ce-Co.In addition,the single oxide of Co,the binary mixture of Cu-Co and Mn-Co were prepared by the same procedure.

    2.2 Catalytic Performance Tests

    Catalytic performance evaluation experiments were performed in a continuous flow quartz fixed-bed reactor (L=52 cm,Di=0.8 cm) at atmospheric pressure.About 500 mg of catalysts (40~60 mesh) was packed at the isothermal zone of the reactor.The reaction temperature was continuously monitored by a thermocouple tied on the reactor and positioned in the middle of the catalyst bed.5.0×10-3toluene with a total flow of 155 mL/min was generated by passing a N2flow through a bottle containing pure toluene chilled in an ethyl alcohol isothermal bath at 5 ℃.Reactive mixture was introduced over the catalysts with heating at a ramp rate of 5 ℃/min from room temperature to 300 ℃.The concentration of toluene was analyzed via a Shimadzu 2010 gas chromatograph equipped with a flame ionization detector (FID).All experimental runs were repeated three times under steady state conditions and the average conversion of toluene was employed.The complete conversion value of toluene (ηtoluene%) was calculated by the following equation:

    where [toluene]inand [toluene]outare the inlet and outlet concentrations of toluene,respectively[26].

    2.3 Characterization of Catalysts

    XRD patterns of the catalysts were recorded on a RigakuMiniFlex 600 X-ray power diffractometer equipped with a Cu Kα radiation (λ=0.154 056 nm,40 kV).The XRD data was then generally collected in the 2θrange of 10°~80° with a step size of 0.01°.The BET surface area and pore size distributions of all samples were obtained with Nitrogen adsorption-desorption method at -196 ℃ through a Micromeritics ASAP2460 instrument.Before the measurement,samples were outgassed at 200 ℃ for 3 hours under primary vacuum to remove water and other atmospheric contaminants.The specific surface area (SSA) of each catalyst was determined according to the Brunaure-Emmett-Teller (BET) methods.The porous volume and the pore size distribution were obtained via the Barrett-Joyner-Halenda (BJH) methods.Temperature-programmed reduction (TPR) measurements were carried out with Auto Chem.II 2920 equipment (Micromeritics,USA),which the samples (200 mg) were packed into a quartz tube and heated in a 5 vol.% H2/Ar reducing gas mixture at 30 mL/min from room temperature to 900 ℃ by a heating rate of 10 ℃/min,and the detector signal was recorded continuously.The SEM images were taken by a Hitachi 1 080 apparatus.The working voltage was 15 kV.The sample powders were mounted on a double-side adhesive tape and observed at different magnification.XPS measurements were carried out on a 300 W Thermo Fisher Scientific apparatus with an Al Kα line radiation source.Each powder sample was pressed into the double-faced adhesive tape and degassed to remove the volatile contaminants.It was then transferred to the analyzing chamber for XPS analysis.Binding energies (BE) values were calibrated relative to the C 1s peak at 284.8 eV.

    3 Results and Discussions

    3.1 Catalytic Activities

    Fig. 1 Toluene Oxidation Through Cu-Co,Mn-Co,Ce-Co Mixed Oxides and Co Oxide

    Fig. 1 shows the catalytic performances of the catalysts in combustion of toluene within the temperature range 140 to 300 ℃.We found that the complete conversion temperature of toluene was lower than 300 ℃ for all the Co based catalysts,which showed better performance with respect to previous reports[27-28].It is worth noting that the binary mixing oxides showed higher activities than pure Co3O4catalyst,suggesting that there exists a certain kind of synergistic effect between Co and other metal oxides.This synergistic effect can significantly improve the catalytic activities for the oxidation of toluene.However,Ce-Co oxide are the most active catalyst in combustion of toluene witht10andt90values of 221 and 238 ℃ from Table 1,respectively.Consequently,the efficiency decreases in the order:Ce-Co>Mn-Co>Cu-Co>Co3O4.In addition,the stability of the Ce-Co oxide was evaluated at 99% of toluene conversion at 240 ℃ for 50 hours in Fig. 2.The conversion of toluene oxidation still maintained at about 99% after 50 hours.Therefore,the Ce-Co mixed oxide catalyst exhibits not only excellent catalytic performance but also good stability.

    Table 1 Reaction Temperature for 10% and

    Fig. 2 Stability Test of Toluene Oxidation Test Through Ce-Co Mixed Oxide

    3.2 XRD Characterization

    ●—Co3O4;▲— Cu0.76Co2.24O4;◆— (Co,Mn)(Co,Mn)2O4;□— CuO;○— CeO2.Fig.3 XRD Patterns of Ce-Co,Mn-Co,Cu-Co Mixed Oxides and Co Oxide

    The crystal structure of each type of catalyst was obtained by comparison with the standard powder diffraction files (PDF) from the International Centre for Diffraction Data (ICDD).The XRD patterns of all the catalysts are shown in Fig. 3.In the XRD pattern of pure cobalt oxides,a series of intensive and sharp diffraction peaks were observed which may ascribed to the cobalt oxide phase (PDF 42-1467).For Ce-Co oxide,the main crystal phases are visible at 2θ=28.6°,33.1°,47.6°,56.4°,which are ascribed to the (111),(200),(220),(311) crystal planes of CeO2(PDF 43-1002),respectively.Weak diffraction peak of,(311),(440),(511),(440) Co3O4(PDF 43-1003) was observed at 2θ=36.8°,45°,59°,65.3°,respectively.The typical diffraction peaks of spinel structure broaden and the intensity also decrease.In the Mn-Co oxides XRD pattern,a typical diffraction peak around 18.3°,29.4°,33.0°,36.5°,44.8°,59.1°,60.8° can be contributed to the (111),(202),(113),(311),(400),(511),(404) crystal plane of spinel structure (Co,Mn)(Co,Mn)2O4(PDF 18-0408),respectively.Diffraction peak of (111),(311),(440) Co3O4(PDF 43-1003) was observed at 2θ=19.0°,36.8°,65.3°,respectively.In terms of Cu-Co oxides,the appearance of intense peaks at 2θ=35.5°,38.7° revealed the presence of tenorite (111) CuO (PDF 48-1548),the peaks in 2θ=19.0°,31.3°,36.8°,44.7°,55.6° are ascribed to the presence of (111),(220),(311),(400),(422) Co3O4phase (PDF 43-1003),respectively.In addition to CuO and Co3O4phase,a mixed spinel oxide Cu0.76Co2.24O4(PDF 36-1189) in Cu-Co sample was detected.The characteristic peaks of this phase at 2θ=59.3°,65.1° ascribe to (511),(440) crystal plane.The obtained values in detail are listed in Table 2.The crystallite size of Ce-Co oxide is 6.3 nm,which is the smallest among the prepared catalysts,the mean crystallite sizes were further estimated according to the Debye-Scherer equation.More active sites over the particles on the Ce-Co oxide seemed generating from the small size of the crystallite[2]112.L F Liotta et al[27]and M M Schubert et al[29]also proposed that oxygen vacancies on the surface of the Co3O4played an important and favorable role in accelerating the adsorption and dissociation of oxygen molecules resulting in the formation of highly active electrophilic O-species.Although the active phase in the oxidation of toluene may involve Co3O4,the interaction between the CeO2and Co3O4phase facile would enhance the catalytic activity in the oxidation of toluene since both CeO2and Co3O4possess strong redox ability.

    Table 2 Physicochemical Properties of Ce-Co,Mn-Co,Cu-Co Mixed Oxides and Co Oxide

    3.3 N2 Adsorption Desorption Isotherms

    BET surface areas,pore size and pore volume are presented in the Table 2.With respect to Co oxide,Mn-Co and Cu-Co,Ce-Co mixed oxide shows the highest surface area value (31 m2/g).The corresponding average pore size of Ce-Co,Mn-Co,Cu-Co mixed oxide and Co oxide are 6.9,15.9,24.7,18.7 nm,respectively.The Ce-Co oxide with the highest surface area shows the most active catalytic performance in the oxidation of toluene in the Fig. 1.The excellent catalytic performances of catalysts were associated with large surface area,because higher surface area could provide more active sites for catalytic reaction[2]115.

    3.4 Scanning Electron Microscope (SEM)

    Fig. 4 shows the morphology and particle size distribution of prepared catalysts.All these oxides consist of nano-sized aggregates.The mean particle size of Ce-Co mixed oxide is obviously smaller than that of Mn-Co,Cu-Co and Co3O4oxide.As we expected there is a reverse relation between particle size and specific surface area of sample (Table 2).

    Fig. 4 SEM Images of Ce-Co (a),Mn-Co (b),Cu-Co (c) Mixed Oxides and Co3O4 (d)

    3.5 H2 Temperature Programmed Reduction (H2 -TPR)

    Fig. 5 H2-TPR Profiles of Ce-Co,Mn-Co,Cu-Co Mixed Oxides and Co Oxide

    H2-TPR was carried out to investigate the reducibility of the series of catalysts.In Fig. 5,a broad overlapping peak appears around 441 ℃ in the H2-TPR curve of pure cobalt oxide,indicating to the reduction of cobalt oxide:Co3O4→CoO→Co[17]11 453.The H2-TPR of Ce-Co oxide yields two reduction peaks at temperatures of 280 and 512 ℃,respectively,the lower temperature is associated with the reduction reactions of Co3O4,the peak at 512 ℃ is ascribed to the reduction of CeO2[30-33].In the case of H2-TPR curve of Mn-Co oxide,a first peak at around 456 ℃ indicates to the reduction of Mn3O4in spinel environment to MnO.The weak reduction peak around 645 ℃ ascribes to the reduction of Co2+metallic cobalt[22]1 658.In terms of Cu-Co oxides,the broad overlapping peak at 300° can be assigned to the reduction of Cu2+→Cu0and Co3+→Co2+[25]3 093,[34].The total H2consumption in the temperature range of 100~800 ℃ of cobalt oxide-base catalysts was given in Table 2.However,the catalytic activity of toluene oxidation corresponds to the less total H2consumption of TPR.We conclude that total H2consumption of TPR involves surface oxygen and bulk oxygen in the catalyst,and the toluene oxidation is mainly governed by the amount of available surface oxygen species.The most activity of Ce-Co catalyst may relate to the highest surface oxygen species in spite of the least total H2consumption.

    3.6 X-Ray Photoelectron Spectroscopy (XPS)

    Fig. 6 O 1s XPS Spectra of Ce-Co,Mn-Co,Cu-Co Mixed Oxides

    Fig. 6 is the O 1s XPS spectra of the Ce-Co,Mn-Co and Cu-Co mixed oxides,which show O 1s level peaks in which two oxygen species can be distinguished by deconvolution.The dominant peak at lower binding energy of about 529.3,529.8 and 529.9 eV represents the lattice oxygen (Olatt).The higher binding energy at 531.3 and 531.8 eV is attributed to the adsorbed oxygen (oxygen vacancy,Oads).It has been elucidated that oxygen vacancy is very important for catalyst's physicochemical property because of its more surface active oxygen species for oxidation reaction[35]4.The ratio of Oads/Olattof Ce-Co,Mn-Co and Cu-Co mixed oxide is 0.5,0.45,0.33,respectively.High oxygen vacancy might be caused from the strong interaction between CeO2and Co3O4.The presence of CeO2in the mixtures enhanced the mobility of the lattice oxygen species offers more surface-active oxygen species for toluene oxidation reaction,which agreed with the result of H2-TPR.These results could explain that the Ce-Co exhibited the highest catalytic activity for toluene oxidation among all the prepared catalysts.

    Mars-Van Krevelen mechanism is generally accepted to take account of the oxidation mechanism of toluene,which involves adsorption of toluene,and its subsequent oxidation by lattice oxygen and adsorbed oxygen atoms.This mechanism can be depicted in Fig. 7.In terms of oxidation of toluene,Ce4+/Ce3+and Co3+/Co2+redox couples may facilitate the surface oxygen species and high mobility of the oxygen.The generation of active oxygen species activated by oxygen vacancies and oxygen mobility and are the main factors that affect the catalytic activity of Co3O4-CeO2binary oxides for toluene catalytic oxidation[25]3 094,[35]4,[36].

    Fig. 7 Illustration of Synergistic Effect of CeO2 and Co3O4 in Oxidation of Toluene

    4 Conclusion

    In summary,different composites of cobalt oxide-based catalysts were successfully synthesized via sol-gel method.The binary mixing oxides show higher activities than pure Co3O4,involving in the synergistic effect between Co3O4and other metal oxides.The Ce-Co oxide catalyst shows the best catalytic activity with thet90of 238 ℃ and good stability in the oxidation of toluene.The characteristics obtained suggest that the toluene oxidation over the cobalt oxide-based catalysts is governed by the amount of surface oxygen species in the mixed oxides.Ce4+/Ce3+and Co3+/Co2+redox couples in the Ce-Co catalyst may facilitate the mobility of oxygen and improve the reducibility of surface oxygen accounting for the synergetic effect in the oxidation of toluene.

    :

    [1] HUANG H B,XU Y,FENG Q Y,et al.Low Temperature Catalytic Oxidation of Volatile Organic Compounds:A Review[J].Catalysis Science & Technology,2015,5(5):2 649-2 669.

    [2] TANG W X,WU X F,LI S D,et al.Co-Nanocasting Synthesis of Mesoporous Cu-Mn Composite Oxides and Their Promoted Catalytic Activities for Gaseous Benzene Removal[J].Applied Catalysis B:Environmental,2015,162:110-121.

    [3] JI Y M,ZHAO J,TERAZONO H,et al.Reassessing the Atmospheric Oxidation Mechanism of Toluene[J].Proceedings of the National Academy of Sciences of the United States of America,2017,114(31):8 169-8 174.

    [4] LEE-TAYLOR J,MADRONICH S,AUMONT B,et al.Explicit Modeling of Organic Chemistry and Secondary Organic Aerosol Partitioning for Mexico City and Its Outflow Plume[J].Atmospheric Chemistry and Physics,2011,11(24):13 219-13 241.

    [5] ROKICINSKA A,DROZDEK M,DUDEK B,et al.Cobalt-Containing BEA Zeolite for Catalytic Combustion of Toluene[J].Applied Catalysis B:Environmental,2017,212:59-67.

    [6] YI H H,YANG Z Y,TANG X L,et al.Promotion of Low Temperature Oxidation of Toluene Vapor Derived from the Combination of Microwave Radiation and Nano-Size Co3O4[J].Chemical Engineering Journal,2018,333:554-563.

    [8] SIHAIB Z,PULEO F,GARCIA-VARGAS J M,et al.Manganese Oxide-Based Catalysts for Toluene Oxidation[J].Applied Catalysis B:Environmental,2017,209:689-700.

    [9] TANG W X,WU X F,LIU G,et al.Preparation of Hierarchical Layer-Stacking Mn-Ce Composite Oxide for Catalytic Total Oxidation of VOCs[J].Journal of Rare Earths,2015,33(1):62-69.

    [10] ABOUKAIS A,SKAF MS,HANY S,et al.A Comparative Study of Cu,Ag and Au Doped CeO2in the Total Oxidation of Volatile Organic Compounds (VOCs)[J].Materials Chemistry and Physics,2016,177:570-576.

    [11] HE C,LI J R,ZHANG X Y,et al.Highly Active Pd-Based Catalysts with Hierarchical Pore Structure for Toluene Oxidation:Catalyst Property and Reaction Determining Factor[J].Chemical Engineering Journal,2012,180(1):46-56.

    [12] SANZ O,DELGADO J J,NAVARRO P,et al.VOCs Combustion Catalyzed by Platinum Supported on Manganese Octahedral Molecular Sieves[J].Applied Catalysis B:Environmental,2011,110(45):231-237.

    [13] SOLSONA B,AYLO'N E,MURILLO R,et al.Deep Oxidation of Pollutants Using Gold Deposited on a High Surface Area Cobalt Oxide Prepared by a Nanocasting Route[J].Journal of Hazardous Materials,2011,187(1/2/3):544-552.

    [14] CAI T,HUANG H,DENG W,et al.Catalytic Combustion of 1,2-Dichlorobenzene at Low Temperature over Mn-Modified Co3O4Catalysts[J].Applied Catalysis B:Environmental,2015,166/197:393-405.

    [15] REN Q,MO S,PENG R,et al.Controllable Synthesis of 3D Hierarchical Co3O4Nanocatalysts with Various Morphologies for the Catalytic Oxidation of Toluene[J].Journal of Materials Chemistry A,2018,6(2):498-509.

    [16] CARABINEIRO S A C,CHEN X,KONSOLAKIS M,et al.Catalytic Oxidation of Toluene on Ce-Co and La-Co Mixed Oxides Synthesized by Exotemplating and Evaporation Methods[J].Catalysis Today,2015,244:161-171.

    [17] GOMEZ D M,GALVITA V V,GATICA J M,et al.TAP Study of Toluene Total Oxidation over a Co3O4/La-CeO2Catalyst with an Application as a Washcoat of Cordierite Honeycomb Monoliths[J].Physical Chemistry Chemical Physics,2014,16(23):11 447-11 455.

    [18] GARCIA T,AGOURAM S,SANCHEZ-ROYO J F,et al.Deep Oxidation of Volatile Organic Compounds Using Ordered Cobalt Oxides Prepared by a Nanocasting Route[J].Applied Catalysis A:General,2010,386(1/2):16-27.

    [19] HU F Y,CHEN J J,PENG Y,et al.Novel Nanowire Self-Assembled Hierarchical CeO2Microspheres for Low Temperature Toluene Catalytic Combustion[J].Chemical Engineering Journal,2018,331:425-434.

    [20] JIANG S J,SONG S Q.Enhancing the Performance of Co3O4/CNTs for the Catalytic Combustion of Toluene by Tuning the Surface Structures of CNTs[J].Applied Catalysis B:Environmental,2013,140:1-8.

    [21] DU Y C,MENG Q,WANG J S,et al.Three-Dimensional Mesoporous Manganese Oxides and Cobalt Oxides:High-Efficiency Catalysts for the Removal of Toluene and Carbon Monoxide[J].Microporous and Mesoporous Materials,2012,162:199-206.

    [22] HOSSEINI S A,NIAEI A,SALARI D,et al.Nanocrystalline AMn2O4(A=Co,Ni,Cu) Spinels for Remediation of Volatile Organic Compounds—Synthesis,Characterization and Catalytic Performance[J].Ceramics International,2012,38(2):1 655-1 661.

    [23] HOSSEINI S A,NIAEI A,SALARI D,et al.Study of Correlation Between Activity and Structural Properties of Cu-(Cr,Mn and Co)2Nano Mixed Oxides in VOC Combustion[J].Ceramics International,2014,40(4):6 157-6 163.

    [24] HOSSEINI S A,ALVAREZ-GALVAN M C,FIERRO J L G,et al.MCr2O4(M=Co,Cu,and Zn) Nanospinels for 2-Propanol Combustion:Correlation of Structural Properties with Catalytic Performance and Stability[J].Ceramics International,2013,39(8):9 253-9 261.

    [25] LIOTTA L F,WU F,PANTALEO G,et al.Co3O4Nanocrystals and Co3O4-MOxBinary Oxides for CO,CH4and VOC Oxidation at Low Temperatures:A Review[J].Catalysis Science & Technology,2013,3(12):3 085-3 102.

    [26] LIAO Y N,ZHANG X,PENG R S,et al.Catalytic Properties of Manganese Oxide Polyhedra with Hollow and Solid Morphologies in Toluene Removal[J].Applied Surface Science,2017,405:20-28.

    [27] LIOTTA L F,OUSMANE M,DI CARLO G,et al.Catalytic Removal of Toluene over Co3O4-CeO2Mixed Oxide Catalysts:Comparison with Pt/Al2O3[J].Catalysis Letters,2008,127(3/4):270-276.

    [28] AGUILERA D A,PEREZ A,MOLINA R,et al.Cu-Mn and Co-Mn Catalysts Synthesized from Hydrotalcites and Their Use in the Oxidation of VOCs[J].Applied Catalysis B:Environmental,2011,104(1/2):144-150.

    [29] SCHUBERT M M,HACKENBERG S,VAN VEEN A C,et al.CO Oxidation over Supported Gold Catalysts-"Inert" and "Active" Support Materials and Their Role for the Oxygen Supply During Reaction[J].Journal of Catalysis,2001,197(1):113-122.

    [30] LIU Y Xi,DAI H X,DENG J G,et al.Mesoporous Co3O4-Supported Gold Nanocatalysts:Highly Active for the Oxidation of Carbon Monoxide,Benzene,Toluene,ando-Xylene[J].Journal of Catalysis,2014,309:408-418.

    [31] WANG C,ZHANG C H,HUA W C,et al.Catalytic Oxidation of Vinyl Chloride Emissions over Co-Ce Composite Oxide Catalysts[J].Chemical Engineering Journal,2017,315:392-402.

    [33] HOSSEINI S A,SALARI D,NIAEI A,et al.Chemical-Physical Properties of Spinel CoMn2O4Nano-Powders and Catalytic Activity in the 2-Propanol and Toluene Combustion:Effect of the Preparation Method[J].Journal of Environmental Science and Health.Part A,Toxic/Hazardous Substance & Environmental Engineering,2011,46(3):291-297.

    [34] CARRILLO A M,CARRIAZO J G.Cu and Co Oxides Supported on Halloysite for the Total Oxidation of Toluene[J].Applied Catalysis B:Environmental,2015,164(4):443-452.

    [35] MENON U,GALVITA V V,MARIN G B.Reaction Network for the Total Oxidation of Toluene over CuO-CeO2/Al2O3[J].Journal of Catalysis,2011,283(1):1-9.

    [36] TODOROVA S,NAYDENOV A,KOLEV H,et al.Mechanism of Completen-Hexane Oxidation on Silica Supported Cobalt and Manganese Catalysts[J].Applied Catalysis A:General,2012,413(4):43-51.

    国产精品爽爽va在线观看网站| 午夜免费观看性视频| 国产日韩欧美在线精品| 伊人久久国产一区二区| 中文字幕免费在线视频6| 高清在线视频一区二区三区| 欧美97在线视频| 欧美变态另类bdsm刘玥| 成人午夜精彩视频在线观看| 成人一区二区视频在线观看| 99久久精品一区二区三区| 亚洲国产精品999| 日日摸夜夜添夜夜添av毛片| 成人免费观看视频高清| av福利片在线观看| 纵有疾风起免费观看全集完整版| 亚洲精品视频女| 亚洲熟女精品中文字幕| 亚洲欧美成人综合另类久久久| av又黄又爽大尺度在线免费看| 91久久精品国产一区二区三区| 少妇裸体淫交视频免费看高清| 亚洲成人手机| 99久国产av精品国产电影| 狂野欧美激情性bbbbbb| 极品教师在线视频| 丝袜喷水一区| 亚洲精品一二三| 最近中文字幕2019免费版| 国产乱人视频| 深夜a级毛片| 日韩三级伦理在线观看| 久久影院123| 国产免费一区二区三区四区乱码| 在线 av 中文字幕| 啦啦啦啦在线视频资源| 久久精品国产鲁丝片午夜精品| 成人一区二区视频在线观看| 国产在线视频一区二区| 肉色欧美久久久久久久蜜桃| 2022亚洲国产成人精品| 看非洲黑人一级黄片| 各种免费的搞黄视频| 激情 狠狠 欧美| 好男人视频免费观看在线| 国产 精品1| 午夜精品国产一区二区电影| 亚洲av成人精品一区久久| 久久这里有精品视频免费| 日韩,欧美,国产一区二区三区| 永久网站在线| av免费观看日本| 最近最新中文字幕免费大全7| 亚洲内射少妇av| 我要看日韩黄色一级片| 国模一区二区三区四区视频| a 毛片基地| 特大巨黑吊av在线直播| 亚洲第一av免费看| 久久久久久久久久成人| 高清午夜精品一区二区三区| 亚洲真实伦在线观看| 亚洲怡红院男人天堂| 狂野欧美激情性xxxx在线观看| 男男h啪啪无遮挡| 国产在视频线精品| 韩国av在线不卡| av在线app专区| 日韩成人伦理影院| 最近中文字幕2019免费版| 国产极品天堂在线| 美女国产视频在线观看| 久久影院123| 婷婷色综合www| a级毛色黄片| 欧美一级a爱片免费观看看| 十八禁网站网址无遮挡 | 男女无遮挡免费网站观看| 亚洲,欧美,日韩| 亚洲欧美精品自产自拍| 免费观看a级毛片全部| 一级片'在线观看视频| 嫩草影院新地址| 在线 av 中文字幕| 蜜桃久久精品国产亚洲av| 日韩欧美一区视频在线观看 | 亚洲精品乱码久久久久久按摩| 国产精品av视频在线免费观看| 91久久精品国产一区二区三区| 国产在视频线精品| 国产v大片淫在线免费观看| 成人综合一区亚洲| 色综合色国产| 久久精品人妻少妇| 熟女av电影| 国产有黄有色有爽视频| 国产永久视频网站| 亚洲伊人久久精品综合| 久久人人爽av亚洲精品天堂 | 制服丝袜香蕉在线| 深夜a级毛片| 啦啦啦在线观看免费高清www| 啦啦啦视频在线资源免费观看| 少妇 在线观看| 尤物成人国产欧美一区二区三区| 熟女av电影| 你懂的网址亚洲精品在线观看| 亚洲欧美精品专区久久| 高清av免费在线| 在线观看免费高清a一片| 亚洲精品成人av观看孕妇| 在线观看人妻少妇| 久久久久久久久久成人| 欧美日韩一区二区视频在线观看视频在线| 亚洲一区二区三区欧美精品| 美女国产视频在线观看| av一本久久久久| 亚洲综合精品二区| 国产精品蜜桃在线观看| 日韩一区二区视频免费看| 大陆偷拍与自拍| 国产 一区精品| 欧美另类一区| 日本一二三区视频观看| 国产爽快片一区二区三区| kizo精华| 在线看a的网站| 少妇人妻久久综合中文| 深爱激情五月婷婷| 国产亚洲精品久久久com| 女的被弄到高潮叫床怎么办| 日韩欧美一区视频在线观看 | 国产爱豆传媒在线观看| 九九久久精品国产亚洲av麻豆| 综合色丁香网| 久久精品夜色国产| 精品一区二区三卡| 久久精品国产亚洲av涩爱| 精品人妻偷拍中文字幕| 又大又黄又爽视频免费| 精品一区在线观看国产| av不卡在线播放| 国产深夜福利视频在线观看| 亚洲无线观看免费| 国产高潮美女av| 色吧在线观看| 嫩草影院入口| 亚洲av综合色区一区| 日韩欧美一区视频在线观看 | 日本与韩国留学比较| 免费久久久久久久精品成人欧美视频 | 性高湖久久久久久久久免费观看| 交换朋友夫妻互换小说| 美女国产视频在线观看| 日日摸夜夜添夜夜爱| 色视频www国产| 小蜜桃在线观看免费完整版高清| 国产精品久久久久久久电影| 视频区图区小说| 嫩草影院新地址| 热re99久久精品国产66热6| a级一级毛片免费在线观看| 九九在线视频观看精品| 精品久久久久久久久亚洲| 亚洲av电影在线观看一区二区三区| 国产老妇伦熟女老妇高清| 新久久久久国产一级毛片| 亚洲成色77777| 欧美日韩精品成人综合77777| 欧美一区二区亚洲| 亚洲欧美日韩另类电影网站 | 91久久精品电影网| av免费在线看不卡| 六月丁香七月| 18禁动态无遮挡网站| 国产探花极品一区二区| 欧美精品一区二区免费开放| 一级a做视频免费观看| 在现免费观看毛片| 乱码一卡2卡4卡精品| 不卡视频在线观看欧美| 国产黄色免费在线视频| 成人特级av手机在线观看| 老司机影院成人| 亚洲国产毛片av蜜桃av| av.在线天堂| 国产成人免费观看mmmm| 精品久久久久久久末码| 国产久久久一区二区三区| 女性生殖器流出的白浆| 国产一区二区三区av在线| 偷拍熟女少妇极品色| 干丝袜人妻中文字幕| 内射极品少妇av片p| 亚洲熟女精品中文字幕| 一级毛片久久久久久久久女| 色视频www国产| 国产伦在线观看视频一区| 亚洲精品视频女| 亚洲精品国产成人久久av| 日韩 亚洲 欧美在线| 小蜜桃在线观看免费完整版高清| 22中文网久久字幕| 国产精品免费大片| 久久久色成人| 一级毛片aaaaaa免费看小| 亚洲欧美一区二区三区黑人 | 日本av免费视频播放| 99视频精品全部免费 在线| 亚洲真实伦在线观看| 国产精品女同一区二区软件| 三级国产精品片| 中国美白少妇内射xxxbb| 国产精品福利在线免费观看| 青春草亚洲视频在线观看| 韩国av在线不卡| 亚洲无线观看免费| 亚洲成人中文字幕在线播放| 最近中文字幕高清免费大全6| 中文字幕亚洲精品专区| 国产成人freesex在线| 最黄视频免费看| 久久国产亚洲av麻豆专区| 免费黄网站久久成人精品| 亚洲色图av天堂| 亚洲美女视频黄频| 日韩欧美精品免费久久| 涩涩av久久男人的天堂| 波野结衣二区三区在线| 日韩精品有码人妻一区| 99久久综合免费| 尤物成人国产欧美一区二区三区| 欧美日韩综合久久久久久| 各种免费的搞黄视频| av不卡在线播放| 亚洲人成网站高清观看| 国产免费福利视频在线观看| 精品久久久久久久久av| 国产美女午夜福利| 日韩在线高清观看一区二区三区| 亚洲av国产av综合av卡| 丰满迷人的少妇在线观看| 蜜桃亚洲精品一区二区三区| 黄色一级大片看看| 日本午夜av视频| 欧美zozozo另类| 国产深夜福利视频在线观看| 一个人看的www免费观看视频| 亚洲综合色惰| 国产老妇伦熟女老妇高清| 少妇的逼水好多| 91aial.com中文字幕在线观看| 嫩草影院新地址| 极品少妇高潮喷水抽搐| 国产免费一级a男人的天堂| 丰满乱子伦码专区| 麻豆精品久久久久久蜜桃| 国产成人freesex在线| 最新中文字幕久久久久| 丰满少妇做爰视频| 夜夜爽夜夜爽视频| 国内少妇人妻偷人精品xxx网站| 亚洲国产精品一区三区| 一级av片app| 人人妻人人澡人人爽人人夜夜| 99久久中文字幕三级久久日本| 热99国产精品久久久久久7| 午夜免费观看性视频| 日本与韩国留学比较| 久久 成人 亚洲| 又爽又黄a免费视频| 在线看a的网站| 亚洲精品国产成人久久av| 免费看日本二区| 亚洲成人av在线免费| 777米奇影视久久| 亚洲精品第二区| 成人高潮视频无遮挡免费网站| 精品一区二区免费观看| 国产老妇伦熟女老妇高清| 91精品一卡2卡3卡4卡| 久久国产乱子免费精品| 91精品伊人久久大香线蕉| av在线老鸭窝| 男人舔奶头视频| 亚洲aⅴ乱码一区二区在线播放| 97在线人人人人妻| 人妻夜夜爽99麻豆av| 亚洲av电影在线观看一区二区三区| 亚洲国产成人一精品久久久| 久久国产精品大桥未久av | 在线观看国产h片| 高清毛片免费看| 肉色欧美久久久久久久蜜桃| 男女国产视频网站| 亚洲av不卡在线观看| 精品国产一区二区三区久久久樱花 | 在线观看三级黄色| 乱系列少妇在线播放| 国产伦理片在线播放av一区| 搡女人真爽免费视频火全软件| 色婷婷久久久亚洲欧美| 日韩在线高清观看一区二区三区| 3wmmmm亚洲av在线观看| 99久久精品国产国产毛片| kizo精华| 少妇人妻 视频| 五月天丁香电影| 91狼人影院| 久久久久久久久大av| 人妻少妇偷人精品九色| 久久精品国产亚洲av涩爱| 亚洲av.av天堂| 乱系列少妇在线播放| 日韩,欧美,国产一区二区三区| 高清日韩中文字幕在线| 女性被躁到高潮视频| 尾随美女入室| 精品久久久久久久久亚洲| 国产在视频线精品| 国产精品人妻久久久久久| 久久精品国产自在天天线| a 毛片基地| 亚洲色图av天堂| 国产精品三级大全| 91精品国产九色| 男女免费视频国产| 99九九线精品视频在线观看视频| 直男gayav资源| 91久久精品电影网| 午夜免费鲁丝| 国产色爽女视频免费观看| 免费高清在线观看视频在线观看| 久久韩国三级中文字幕| 一级毛片aaaaaa免费看小| 91aial.com中文字幕在线观看| 一级毛片我不卡| 欧美日本视频| 久久久成人免费电影| 国产黄色视频一区二区在线观看| 黄色一级大片看看| 免费久久久久久久精品成人欧美视频 | 精品久久久久久久末码| 国产在线男女| 九九久久精品国产亚洲av麻豆| 狂野欧美激情性bbbbbb| 亚洲色图av天堂| 免费观看的影片在线观看| 成人综合一区亚洲| 欧美日韩精品成人综合77777| 日本欧美国产在线视频| 亚洲性久久影院| 亚洲精品乱久久久久久| 超碰97精品在线观看| 亚洲欧美精品自产自拍| 啦啦啦中文免费视频观看日本| 日韩视频在线欧美| av免费观看日本| 黄色视频在线播放观看不卡| 大香蕉久久网| 亚洲av福利一区| 中文字幕亚洲精品专区| 中文天堂在线官网| 男男h啪啪无遮挡| 80岁老熟妇乱子伦牲交| 少妇丰满av| 熟女人妻精品中文字幕| 久久女婷五月综合色啪小说| 亚洲精品国产色婷婷电影| 精品亚洲成a人片在线观看 | 青春草国产在线视频| 夫妻性生交免费视频一级片| 久久久久人妻精品一区果冻| 在线观看人妻少妇| 久久国产乱子免费精品| 在现免费观看毛片| 黄色一级大片看看| 欧美另类一区| 高清在线视频一区二区三区| 国产精品福利在线免费观看| 亚洲av免费高清在线观看| 欧美人与善性xxx| 欧美精品国产亚洲| 性色av一级| 1000部很黄的大片| 久久午夜福利片| 久久av网站| 国产亚洲欧美精品永久| 亚洲不卡免费看| 街头女战士在线观看网站| 五月天丁香电影| 看十八女毛片水多多多| 一级a做视频免费观看| 伊人久久国产一区二区| av播播在线观看一区| 国产精品嫩草影院av在线观看| 国产在线免费精品| 97在线视频观看| 国产久久久一区二区三区| 自拍偷自拍亚洲精品老妇| 免费观看的影片在线观看| 伦理电影大哥的女人| 99九九线精品视频在线观看视频| 国产成人精品一,二区| 亚洲欧洲国产日韩| 秋霞在线观看毛片| 永久网站在线| 午夜福利视频精品| 亚洲久久久国产精品| 欧美少妇被猛烈插入视频| tube8黄色片| 少妇被粗大猛烈的视频| 免费在线观看成人毛片| 国产成人精品久久久久久| 在线观看免费高清a一片| 中文资源天堂在线| 黑人高潮一二区| 中文字幕免费在线视频6| 久久99精品国语久久久| 99久久精品国产国产毛片| 国产白丝娇喘喷水9色精品| 久久人人爽av亚洲精品天堂 | 丰满人妻一区二区三区视频av| 中文字幕制服av| 自拍偷自拍亚洲精品老妇| 欧美精品亚洲一区二区| 肉色欧美久久久久久久蜜桃| 国产成人免费无遮挡视频| 国产伦理片在线播放av一区| 大片电影免费在线观看免费| 国产色爽女视频免费观看| 搡女人真爽免费视频火全软件| 亚洲av综合色区一区| 午夜日本视频在线| 亚洲av免费高清在线观看| 人人妻人人澡人人爽人人夜夜| 日本av手机在线免费观看| 亚洲av中文字字幕乱码综合| av又黄又爽大尺度在线免费看| 直男gayav资源| 3wmmmm亚洲av在线观看| 韩国高清视频一区二区三区| 国产乱人视频| 五月天丁香电影| 国产成人精品久久久久久| 国产免费一区二区三区四区乱码| 日本黄色日本黄色录像| 成人特级av手机在线观看| 一级毛片aaaaaa免费看小| 日韩中文字幕视频在线看片 | 亚洲成人中文字幕在线播放| 少妇 在线观看| 日韩欧美 国产精品| 大香蕉97超碰在线| 久久久久久久久久人人人人人人| 亚洲精品久久午夜乱码| av专区在线播放| 日韩中文字幕视频在线看片 | 最近最新中文字幕免费大全7| 在线亚洲精品国产二区图片欧美 | 精品久久久噜噜| 国产精品秋霞免费鲁丝片| 成年av动漫网址| 久久国产乱子免费精品| 国产视频内射| 久久久亚洲精品成人影院| 国产精品久久久久久精品电影小说 | 又大又黄又爽视频免费| 亚洲精品中文字幕在线视频 | 九草在线视频观看| 人人妻人人添人人爽欧美一区卜 | 婷婷色综合大香蕉| 国产亚洲一区二区精品| 久久久午夜欧美精品| 久久精品夜色国产| 男女啪啪激烈高潮av片| 水蜜桃什么品种好| 欧美精品人与动牲交sv欧美| 精品一区二区三区视频在线| 永久网站在线| 国产精品嫩草影院av在线观看| 国产av码专区亚洲av| 日韩欧美精品免费久久| 看十八女毛片水多多多| 亚洲国产欧美人成| 国产日韩欧美在线精品| 我的女老师完整版在线观看| 新久久久久国产一级毛片| 99久久精品热视频| 直男gayav资源| 搡女人真爽免费视频火全软件| 亚洲精品国产av蜜桃| 男女下面进入的视频免费午夜| 91精品国产九色| 日本午夜av视频| 欧美日韩亚洲高清精品| 又黄又爽又刺激的免费视频.| 久久精品久久久久久噜噜老黄| 女的被弄到高潮叫床怎么办| 26uuu在线亚洲综合色| 亚洲人成网站在线播| 欧美bdsm另类| 蜜桃久久精品国产亚洲av| 少妇人妻 视频| 老熟女久久久| 免费播放大片免费观看视频在线观看| 蜜桃亚洲精品一区二区三区| 美女主播在线视频| 亚洲精品国产av蜜桃| 搡女人真爽免费视频火全软件| 国产久久久一区二区三区| 日韩制服骚丝袜av| 涩涩av久久男人的天堂| 久久久久久伊人网av| 国产 一区 欧美 日韩| 爱豆传媒免费全集在线观看| 在线观看一区二区三区激情| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美日本视频| 国产综合精华液| 亚洲欧美日韩东京热| 久久 成人 亚洲| 久久女婷五月综合色啪小说| 最后的刺客免费高清国语| 熟女电影av网| 日韩亚洲欧美综合| 22中文网久久字幕| 久久人人爽人人片av| 日本与韩国留学比较| 国产精品久久久久久久久免| 美女主播在线视频| 成年av动漫网址| 亚洲伊人久久精品综合| 观看免费一级毛片| 午夜激情久久久久久久| 久久久精品免费免费高清| 精品一区在线观看国产| 日日摸夜夜添夜夜添av毛片| 欧美日韩视频高清一区二区三区二| 日本黄色日本黄色录像| 美女福利国产在线 | 亚州av有码| 国产淫语在线视频| 久久ye,这里只有精品| 内射极品少妇av片p| 一二三四中文在线观看免费高清| 国产高清不卡午夜福利| 亚洲四区av| 中文字幕av成人在线电影| 韩国高清视频一区二区三区| 亚洲天堂av无毛| 国产在线一区二区三区精| 日韩三级伦理在线观看| a级一级毛片免费在线观看| 成人漫画全彩无遮挡| 看免费成人av毛片| 丰满少妇做爰视频| 欧美xxⅹ黑人| 51国产日韩欧美| 国产精品无大码| 国产深夜福利视频在线观看| 亚洲精品色激情综合| 小蜜桃在线观看免费完整版高清| 青青草视频在线视频观看| 看十八女毛片水多多多| 日本一二三区视频观看| 男的添女的下面高潮视频| 国产亚洲一区二区精品| 最新中文字幕久久久久| 久久久a久久爽久久v久久| 一级a做视频免费观看| 亚洲国产精品999| 卡戴珊不雅视频在线播放| 插逼视频在线观看| a 毛片基地| 久久国产乱子免费精品| 高清在线视频一区二区三区| 一边亲一边摸免费视频| 亚洲国产精品999| 国产精品久久久久久av不卡| 日本黄大片高清| a级毛色黄片| 国产精品av视频在线免费观看| 国产成人精品一,二区| 激情 狠狠 欧美| 大香蕉久久网| 国产精品久久久久成人av| 91午夜精品亚洲一区二区三区| 91精品国产九色| 亚洲av男天堂| 国产在线男女| 国精品久久久久久国模美| av.在线天堂| 久久精品国产亚洲网站| 26uuu在线亚洲综合色| 国产成人a区在线观看| 搡老乐熟女国产| 久久女婷五月综合色啪小说| 人妻少妇偷人精品九色| 婷婷色综合大香蕉| 国产日韩欧美在线精品| 国产精品女同一区二区软件| 精品国产一区二区三区久久久樱花 | 国产乱来视频区| 国产成人91sexporn| 少妇的逼水好多| 毛片一级片免费看久久久久| 日韩欧美 国产精品| 亚洲精品中文字幕在线视频 | 天天躁夜夜躁狠狠久久av| 久久精品久久久久久久性| 亚洲国产av新网站| 日韩欧美一区视频在线观看 | 国内精品宾馆在线| 亚洲精品,欧美精品|