孫 旭,胡志新,楊柳燕
(1.南京大學(xué)環(huán)境學(xué)院,江蘇 南京 210023; 2.污染控制與資源化國(guó)家重點(diǎn)實(shí)驗(yàn)室,江蘇 南京 210023;3.環(huán)境保護(hù)部南京環(huán)境科學(xué)研究所,江蘇 南京 210042; 4.南京工程學(xué)院環(huán)境工程學(xué)院,江蘇 南京 211167)
與反硝化耦合的硝化作用在湖泊氮循環(huán)中起著重要作用。氨氧化過程是硝化過程的限速步驟,氨氧化細(xì)菌(ammonia-oxidizing bacteria,AOB)是氨氧化過程的驅(qū)動(dòng)者,但是隨著對(duì)氨單加氧酶α亞基基因作為分子生物標(biāo)記物研究的深入,發(fā)現(xiàn)在好氧氨氧化過程中還存在另一類原核微生物——氨氧化古菌(ammonia-oxidizing archaea, AOA)[1-2]。研究表明,在土壤、河口、海洋、淡水沉積物中均發(fā)現(xiàn)AOA的蹤跡,且數(shù)量遠(yuǎn)超過AOB。在寡營(yíng)養(yǎng)和極端環(huán)境中,AOA是好氧氨氧化過程的主要驅(qū)動(dòng)者[3-4]。
AOA和AOB在不同生境的分化除了自身進(jìn)化的差異外,環(huán)境因子如氨濃度、DO、pH等也是其分布的主要調(diào)控因素[5-7],另外,湖泊水體的營(yíng)養(yǎng)狀況也是影響沉積物氨氧化微生物分布和功能的一個(gè)潛在因素。研究表明,隨著湖泊富營(yíng)養(yǎng)化程度的加重,沉積物中AOA和AOB的多樣性增加,且富營(yíng)養(yǎng)狀態(tài)湖泊沉積物中AOB的豐度和多樣性都遠(yuǎn)遠(yuǎn)高于貧營(yíng)養(yǎng)狀態(tài)湖泊[8-11],但是也有研究表明,不同湖區(qū)沉積物中氨氧化微生物的豐度和多樣性與湖泊營(yíng)養(yǎng)狀態(tài)無關(guān)[12-13]。本課題組前期研究發(fā)現(xiàn),不同生態(tài)類型湖泊沉積物中AOA和AOB群落組成并無顯著差異,而沉積物中有機(jī)質(zhì)含量是影響AOA和AOB異質(zhì)性分布的主要因子[14-15],湖泊生態(tài)類型與富營(yíng)養(yǎng)化程度有時(shí)會(huì)存在不一致的現(xiàn)象,因此湖泊富營(yíng)養(yǎng)化狀態(tài)與湖泊沉積物好氧氨氧化菌組成的關(guān)系還存在爭(zhēng)議[12,16]。鑒于湖泊生態(tài)系統(tǒng)的復(fù)雜性以及營(yíng)養(yǎng)狀態(tài)劃定的差異,有必要對(duì)不同營(yíng)養(yǎng)狀況下好氧氨氧化菌的異質(zhì)性進(jìn)行深入研究。
本研究以江蘇省7個(gè)湖泊為研究對(duì)象,利用分子生物學(xué)的方法,對(duì)不同營(yíng)養(yǎng)狀態(tài)湖泊沉積物中氨氧化菌的群落結(jié)構(gòu)進(jìn)行分析,目的在于了解不同營(yíng)養(yǎng)狀況下湖泊沉積物氨氧化菌的群落特征,同時(shí)探索其潛在的調(diào)控因子,為富營(yíng)養(yǎng)化湖泊氮素控制提供理論依據(jù)。
以江蘇省洪澤湖(HZ)、白馬湖(BM)、高郵湖(GY)、玄武湖(XW)、石臼湖(SJ)、固城湖(GC)和太湖(T)7個(gè)湖泊為研究對(duì)象,具體采樣點(diǎn)位置見圖1。于2012年4月,用采水器采集距水面0.5 m處的上覆水,低溫保存在1 L的聚乙烯瓶?jī)?nèi),帶回實(shí)驗(yàn)室立即測(cè)定葉綠素a(Chl-a)及其他常規(guī)理化指標(biāo)。采用彼得森采集器采集湖泊沉積物樣品,取表層5 cm樣品混勻后放入無菌的聚乙烯自封袋,低溫保存運(yùn)回實(shí)驗(yàn)室,保存在-80℃低溫冰箱中備用。
圖1 湖泊采樣點(diǎn)位置
按照土壤DNA試劑盒(MoBio Laboratories, Carlsbad, USA)的操作說明提取沉積物基因組DNA,用50 μL無菌水洗脫后,用0.8%瓊脂糖凝膠電泳驗(yàn)證及230、260、280 nm吸光值測(cè)定檢驗(yàn)提取效率和純度,用NanoDrop?2000分光光度計(jì)(NanoDrop Technologies Inc, Wilmington, DE) 測(cè)定待測(cè)DNA樣品的濃度。采用引物AF/AR和1F/2R分別擴(kuò)增AOA和AOB的amoA基因,其拷貝數(shù)采用熒光定量PCR方法(Bio-Rad CFX96 real-time System)進(jìn)行分析,使用一系列10倍稀釋的質(zhì)粒制備標(biāo)準(zhǔn)曲線,AOA的amoA基因拷貝數(shù)從1.0×101μL-1到1.0 ×106μL-1,擴(kuò)增效率為91.8%(R2=1.00);AOB的amoA基因拷貝數(shù)在1.0×102μL-1到1.0×107μL-1之間,擴(kuò)增效率為90.2% (R2=0.99)。Ct值(threshold cycle)和數(shù)據(jù)分析通過iCycler software (version 1.0.1384.0 CR)完成[19]。采用CEQ 8000 Genetic Analyzer (Beckman CEQ8000)遺傳分析儀分別用限制性內(nèi)切酶MspⅠ和Hpy8Ⅰ對(duì)AOB和AOA的amoA基因進(jìn)行限制性片段長(zhǎng)度多態(tài)性(terminal restriction fragment length polymorphism,T-RFLP)分析[15]。
湖泊營(yíng)養(yǎng)狀態(tài)采用綜合營(yíng)養(yǎng)狀態(tài)指數(shù)(trophic status index, ITSI)法進(jìn)行評(píng)價(jià),評(píng)價(jià)指標(biāo)參數(shù)包括Chl-a、TN、TP、CODMn和透明度共5項(xiàng)[20]。
以T-RFLP圖譜中每一個(gè)限制性片段(T-RF)為一個(gè)可操作分類單元(operational taxonomic unit,OTU),OTU豐度按照Saikaly的方法計(jì)算,即以相對(duì)峰高值(每個(gè)T-RF的峰高除以累計(jì)峰高值,舍去小于2%的值)作為OTU豐度,峰高值低于200熒光單位的峰不予考慮。根據(jù)圖譜中OTU的數(shù)目及其豐度用BIODAP程序進(jìn)行Shannon-Wiener多樣性指數(shù)計(jì)算。
采用SPSS 18.0軟件進(jìn)行數(shù)據(jù)方差和相關(guān)性分析,采用Canoco 4.5軟件分析AOA和AOB的T-RFLP指紋圖譜,確定其群落結(jié)構(gòu),所有的環(huán)境因子和每個(gè)T-RF的相對(duì)峰值都進(jìn)行l(wèi)g(x+1)轉(zhuǎn)化,分別構(gòu)成環(huán)境矩陣和物種矩陣,進(jìn)行典范對(duì)應(yīng)分析(canonical correspondence analysis, CCA)。
如圖2所示,根據(jù)水體綜合營(yíng)養(yǎng)狀態(tài)指數(shù)ITSI,7個(gè)湖泊共計(jì)23個(gè)研究湖區(qū)的營(yíng)養(yǎng)狀態(tài)可分為兩個(gè)等級(jí),14個(gè)湖區(qū)處于中營(yíng)養(yǎng)狀態(tài)(30 圖 2 不同湖泊不同湖區(qū)水體綜合營(yíng)養(yǎng)狀態(tài)指數(shù) 采用熒光定量PCR方法分析湖泊沉積物AOA和AOB的豐度,結(jié)果見圖3。隨著湖泊營(yíng)養(yǎng)狀態(tài)的提升,沉積物AOA和AOB的豐度也有所增加,每克底泥AOA的amoA基因拷貝數(shù)從中營(yíng)養(yǎng)狀態(tài)的3.91×106增加到輕度富營(yíng)養(yǎng)狀態(tài)的1.30×107(P=0.06,T-test),AOB的amoA基因拷貝數(shù)從3.82×106增加到6.07×106(P=0.372,T-test)。同一營(yíng)養(yǎng)化狀態(tài)的湖泊沉積物AOA的豐度高于AOB的豐度,但二者之間并無顯著差異。 圖3 不同營(yíng)養(yǎng)狀態(tài)湖區(qū)AOA和AOB豐度箱線圖(相同字母表示P>0.05) (a) AOA(b) AOB圖4 湖泊沉積物中AOA和AOB amoA基因的T-RFLP指紋圖譜 如圖4所示,湖泊水體營(yíng)養(yǎng)狀態(tài)對(duì)AOA和AOB的優(yōu)勢(shì)種屬并未產(chǎn)生影響。用限制性內(nèi)切酶MspⅠ酶切得到AOA 6個(gè)主要片段T-RF56、T-RF74、T-RF90、T-RF94、T-RF99、T-RF434,優(yōu)勢(shì)片段T-RF 56和T-RF 74在中營(yíng)養(yǎng)和輕度富營(yíng)養(yǎng)湖泊沉積物均有檢出;而片段T-RF90、T-RF94和T-RF99主要出現(xiàn)在中營(yíng)養(yǎng)湖泊沉積物中,T-RF434出現(xiàn)在輕度富營(yíng)養(yǎng)湖泊沉積物中。用限制性內(nèi)切酶Hpy8Ⅰ酶切得到AOB 2個(gè)較高相對(duì)豐度的片段(T-RF60和T-RF155),其在不同營(yíng)養(yǎng)狀態(tài)湖泊沉積物均有檢出;其他片段僅出現(xiàn)在1~3個(gè)湖區(qū)。 不同湖泊湖區(qū)沉積物中AOA和AOB群落多樣性變化情況見圖5。從圖5可以看出,AOA群落Shannon-Wiener指數(shù)從中營(yíng)養(yǎng)化湖泊的1.57下降到輕度富營(yíng)養(yǎng)湖泊的1.39,AOB群落Shannon-Wiener指數(shù)從0.28上升到0.32,但是,湖泊水體營(yíng)養(yǎng)狀態(tài)對(duì)沉積物好氧氨氧化微生物群落多樣性影響無顯著性差異,然而在同一營(yíng)養(yǎng)狀態(tài)下,沉積物中AOA群落的多樣性顯著高于AOB群落。 圖5 不同營(yíng)養(yǎng)狀態(tài)湖區(qū)沉積物AOA和AOB群落Shannon-Wiener指數(shù)箱線圖 表1 AOA和AOB豐度和多樣性與上覆水水質(zhì)的相關(guān)性分析結(jié)果 注: *表示P<0.05;**表示P<0.01。 (a) AOA (b) AOB圖6 湖泊上覆水理化性質(zhì)與沉積物氨氧化菌的CCA分析 參考文獻(xiàn): [1]HERRMANN M,SCHEIBE A,AVRAHAMI S,et al.Ammonium availability affects the ratio of ammonia-oxidizing bacteria to ammonia-oxidizing archaea in simulated creek ecosystems[J].Applied and Environmental Microbiology,2011,77(5):1896-1899. [2]LIMPIYAKORN T,FURHACKER M,HABERL R,et al.amoA-encoding archaea in wastewater treatment plants:a review[J].Applied Microbiology and Biotechnology,2013,97(4):1425-1439. [3]CAO H L,LI M,HONG Y G,et al.Diversity and abundance of ammonia-oxidizing archaea and bacteria in polluted mangrove sediment[J].Systematic and Applied Microbiology,2011,34(7):513-523. [4]CEBRON A,BERTHE T,GARNIER J.Nitrification and nitrifying bacteria in the lower Seine River and estuary (France)[J].Applied and Environmental Microbiology,2003,69(12):7091-7100. [5]WESSEN E,SODERSTROM M,STENBERG M,et al.Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning[J].International Society for Microbial Ecology,2011,5(7):1213-1225. [6]SZUKICS U,HACKL E,ZECHMEISTER-BOLTENSTERN S,et al.Rapid and dissimilar response of ammonia oxidizing archaea and bacteria to nitrogen and water amendment in two temperate forest soils[J].Microbiological Research,2012,167(2):103-109. [7]REED D W,SMITH J M,FRANCIS C A,et al.Responses of ammonia-oxidizing bacterial and archaeal populations to organic nitrogen amendments in low-nutrient groundwater[J].Applied and Environmental Microbiology,2010,76(8):2517-2523. [8]CHEN G Y,QIU S L,ZHOU Y Y.Diversity and abundance of ammonia-oxidizing bacteria in eutrophic and oligotrophic basins of a shallow Chinese lake (Lake Donghu)[J].Research in Microbiology,2009,160:173-178. [9]HERRMANN M,SAUNDERS A M,SCHRAMM A.Effect of lake trophic status and rooted macrophytes on community composition and abundance of ammonia-oxidizing prokaryotes in freshwater sediments[J].Applied and Environmental Microbiology,2009,75(10):3127-3136. [10]HUGONI M,ETIEN S,BOURGES A,et al.Dynamics of ammonia-oxidizing archaea and bacteria in contrasted freshwater ecosystems[J].Research in Microbiology,2013,164 (4):1-11. [11]HOU J,SONG C L,CAO X Y,et al.Shifts between ammonia-oxidizing bacteria and archaea in relation to nitrification potential across trophic gradients in two large Chinese lakes (Lake Taihu and Lake Chaohu)[J].Water Research,2013,47(7):2285-2296. [12]WU Y C,XIANF Y,WANG J J,et al.Heterogeneity of archaeal and bacterial ammonia-oxidizing communities in Lake Taihu,China[J].Environmental Microbiology Reports,2010,2(4):569-576. [13]AUGUET J C,CASAMAYOR E O.Partitioning of thaumarchaeota populations along environmental gradients in high mountain lakes[J].FEMS Microbiology Ecology,2013,84(1):154-164. [14]楊柳燕,王楚楚,孫旭,等.淡水湖泊微生物硝化反硝化過程與影響因素研究[J].水資源保護(hù),2016,32 (1):12-22.(YANG Liuyan,WANG Chuchu,SUN Xu,et al.Study on microbial nitrification and denitrification processes and influence factors in freshwater lakes[J].Water Resources Protection,2016,32 (1):12-22.(in Chinese)) [15]SUN X,WANG A L,YANG L Y,et al.Spatial distribution of ammonia-oxidizing archaea and bacteria across eight freshwater lakes in sediments from Jiangsu of China[J].Journal of limnology,2014,173(2):312-324. [16]DAI J Y,GAO G,CHEN D,et al.Effects of trophic status and temperature on communities of sedimentary ammonia oxidizers in Lake Taihu[J].Geomicrobiology Journal,2013,30(10):886-896. [17]徐彩平,劉霞,陳宇煒.浮游植物葉綠素a濃度測(cè)定方法的比較研究[J].生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2013,29(4):438-442.(XU Caiping,LIU Xia,CHEN Yuwei.Comparison of methods for determination of phytoplankton chlorophyll-a[J].Journal of Ecology and Rural Environment,2013,29(4):438-442.(in Chinese)) [18]國(guó)家環(huán)境保護(hù)總局.水和廢水監(jiān)測(cè)分析方法 [M].4版. 北京:中國(guó)環(huán)境科學(xué)出版社,2002. [19]WU Y C,KE X B,HERNANDEZ M,et al.Autotrophic growth of bacterial and archaeal ammonia oxidizers in freshwater sediment microcosms incubated at different temperatures[J].Applied and Environmental Microbiology,2013,79(9):3076-3084. [20]王明翠,劉雪芹,張建輝.湖泊富營(yíng)養(yǎng)化評(píng)價(jià)方法及分級(jí)標(biāo)準(zhǔn)[J].中國(guó)環(huán)境監(jiān)測(cè),2002,18(5):47-49.(WANG Mingcui,LIU Xueqin,ZHANG Jianhui.Evaluate method and classification standard on lake eutrophication[J].Environmental Monitoring in China,2002,18(5):47-49.(in Chinese)) [21]張麗梅,賀紀(jì)正.一個(gè)新的古菌類群:奇古菌門(Thaumarchaeota)[J].微生物學(xué)報(bào),2012,54(2):411-421.(ZHANG Limei,HE Jizheng.A novel archaeal phylum:thaumarchaeota[J].Acta Microbiologica Sinica,2012,54(2):411-421.(in Chinese)) [22]KONNEKE M,BERNHARD A E,DE LA TORRE J R,et al.Isolation of an autotrophic ammonia-oxidizing marine archaeon[J].Nature,2005,437(7058):543-546. [23]ISOBE K,KOBA K,SUWA Y,et al.High abundance of ammonia-oxidizing archaea in acidified subtropical forest soils in southern China after long-term N deposition[J].FEMS Microbiology Ecology,2012,80(1):193-203. [24]ERGUDER T H,BOON N,WITTEBOLLE L,et al.Environmental factors shaping the ecological niches of ammonia-oxidizing archaea[J].FEMS Microbiology Review,2009,33(5):855-869. [25]吳俊鋒,謝飛,陳麗娜,等.太湖重污染湖區(qū)底泥沉積物特性[J].水資源保護(hù),2011,27(4):74-78.(WU Junfeng,XIE Fei,CHEN Lina,et al.Characteristics of bottom sediment in heavily polluted area of Taihu Lake [J].Water Resources Protection,2011,27 (4):74-78.(in Chinese)) [26]ALVES R J,WANEK W,ZAPPE A,et al.Nitrification rates in arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea[J].International Society for Microbial Ecology,2013,7(8):1620-1631. [27]FRENCH E,KOZLOWSKI J A,MUKHERJEE M,et al.Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater[J].Applied and Environmental Microbiology,2012,78(16):5773-5780. [28]HUANG L Q,DONG H L,WANG S,et al.Diversity and abundance of ammonia-oxidizing archaea and bacteria in diverse Chinese paddy soils[J].Geomicrobiology Journal,2014,31(1):12-22. [29]JIN T,ZHANG T,YE L,et al.Diversity and quantity of ammonia-oxidizing archaea and bacteria in sediment of the Pearl River Estuary,China [J].Applied Microbiology and Biotechnology,2011,90(3):1137-1145. [30]烏云.烏梁素海上覆水體與表層沉積物污染特征及其污染物遷移轉(zhuǎn)換規(guī)律研究[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2011.2.2 湖泊水體營(yíng)養(yǎng)狀態(tài)對(duì)沉積物好氧氨氧化菌豐度的影響
2.3 湖泊水體營(yíng)養(yǎng)狀態(tài)對(duì)沉積物好氧氨氧化菌群落組成的影響
2.4 上覆水理化性質(zhì)對(duì)沉積物氨氧化菌群落結(jié)構(gòu)的影響
3 討 論
4 結(jié) 論