靖青秀,王云燕,柴立元,唐崇儉,黃曉東,郭 歡,王 魏,游 威
?
硅藻土?鎢渣基多孔陶粒對離子型稀土礦區(qū)土壤氨氮淋濾液的吸附
靖青秀1, 2,王云燕1,柴立元1,唐崇儉1,黃曉東2,郭 歡2,王 魏2,游 威2
(1. 中南大學 冶金與環(huán)境學院,長沙 410083;2. 江西理工大學 冶金與化學工程學院,贛州 341000)
為實現(xiàn)工業(yè)鎢渣資源化利用以及“以廢治廢”的目標,以硅藻土和工業(yè)鎢渣為主要原料制備多孔陶粒,研究陶粒對離子型稀土礦區(qū)土壤淋濾液中氨氮的吸附去除規(guī)律。結果表明:近球狀的硅藻土?鎢渣基陶粒表面粗糙多孔,內(nèi)部有大量貫穿孔洞與表面相連通,陶粒的主要物相組成含有MnFe2O4;在試驗溶液初始pH范圍內(nèi),當pH=5.68左右時,陶粒對溶液中氨氮的吸附量達最大;隨著試驗溫度的升高,陶粒對氨氮的吸附去除量降低;在溫度為303 K、陶粒投加量為0.5 g的條件下,陶粒對氨氮的飽和吸附量為1.60 mg/g;陶粒對氨氮的等溫吸附符合Langmuir模型和Freundlich模型,吸附動力學符合準二級動力學模型;據(jù)此可推斷,對于實際稀土礦區(qū)土壤的氨氮淋濾液,所制備陶粒可有效去除其中氨氮,吸附去除過程易于進行,且隨溫度的降低,其對氨氮的去除量增大;在實際淋濾液的pH值存在范圍內(nèi),當pH=5.68左右時,陶粒對淋濾液中氨氮的吸附去除量將達到最大值。
離子型稀土礦區(qū);多孔陶粒;鎢渣;土壤氨氮淋濾液;吸附
南方離子型稀土礦是我國特有的極其重要的戰(zhàn)略性資源[1?2]。經(jīng)原地浸礦后,該礦種礦區(qū)土壤中殘留大量氨氮,在雨水等的作用下,形成的淋濾液給周邊土壤、地下水系等造成嚴重的氨氮擴散性污染,導致水體富營養(yǎng)化及水質急劇惡化等環(huán)境問題發(fā)生[3?6]。因此,亟需對離子型稀土礦區(qū)土壤中形成的氨氮淋濾液進行脫氮凈化處理。氨氮淋濾液是屬于氨氮廢水的一種,目前,針對氨氮廢水的處理方法主要有生物法、折點氯化法、膜分離法、離子交換法、氧化法、吸附法等[7?10]。其中,吸附法具有操作簡單、節(jié)能高效、氨回收利用率高等諸多優(yōu)勢[8, 11],有著廣泛的應用前景,但吸附劑成本過高是該法難以推廣應用的主要限制性因素。因此,亟需研發(fā)低成本、易制備的氨氮吸附材料,以高效低成本去除廢水中氨氮。
陶粒是一種內(nèi)部呈蜂窩狀微孔的陶瓷材料,具有耐高溫、耐腐蝕、筒壓強度大等特點,可作為優(yōu)良的吸附或過濾材料[12]。目前,國內(nèi)外有關陶粒處理氨氮廢水方面已有一些研究報道。BAO等[13]以坡縷石黏土為主要原料制備了多孔陶粒,可有效去除廢水中氨氮。ZHAO等[14]分別以Kanuma黏土和Akadama黏土為原料制備了陶粒吸附劑,結果發(fā)現(xiàn)在氨氮初始濃度為10000 mg/L、陶粒投加量20 g/L、吸附時間480 min的條件下,該陶粒對氨氮的最大吸附量可達75.5 mg/g。王文東等[15]以污泥為原料制備了多孔陶粒,結果發(fā)現(xiàn)該陶粒對氨氮有較好的吸附去除效果,且吸附過程是自發(fā)吸熱的。LIU等[16]以鐵尾礦為原料制備了多孔陶粒,研究發(fā)現(xiàn)該陶??捎行摮龔U水中氨氮。因此,陶粒在氨氮廢水吸附處理方面有著良好的應用前景。
且我國鎢冶煉過程產(chǎn)生大量廢渣,目前,鎢渣主要以堆存處理為主,其累積堆存量近年來已達數(shù)百萬噸[17],這不僅存在嚴重的環(huán)境安全隱患,還造成資源的極大浪費。若能將鎢渣制成陶粒,以吸附去除廢水中氨氮,則可望解決上述資源環(huán)境問題。但鎢渣是一種低硅渣,單獨使用無法燒制成型,需添加含高硅的成分,以助于其燒結成型。因此,本文作者以鎢渣、價廉含高硅的硅藻土為主要原料,制備多孔陶粒,研究其對廢水中氨氮的脫除規(guī)律,研究結果以期有助于實現(xiàn)鎢渣資源化利用、“以廢治廢”并降低成本的多重目標,并為離子型稀土礦區(qū)土壤淋濾液中氨氮的脫除實踐提供一定的理論依據(jù)。
試驗所用鎢渣取自贛南某鎢冶煉廠,其主要元素及含量見表1。鎢渣的主要物相為鐵錳的氧化物、水合鋁硅氧化物、鈣氧化物、錫氧化物等,鎢渣中未檢出放射性元素超標。試驗所用硅藻土購自天津市福晨化學試劑有限公司,添加劑高嶺土等購于贛州市贛滬試劑店。鎢渣經(jīng)破碎、洗滌后,于110 ℃下干燥5 h,經(jīng)研磨后過孔徑125 μm篩網(wǎng),備用。試驗試劑除特別指明外均為分析純級。
表1 鎢渣所含主要元素及其含量
按一定配比稱取硅藻土、鎢渣、助燒劑和造孔劑后,充分混勻,加入少量去離子水濕混造粒(粒徑為2~8 mm),經(jīng)陳化烘干后,于燒結爐中燒結成型,后隨爐冷卻,制得陶粒樣品備用。
采用TM3030型掃描電子顯微鏡觀察陶粒樣品的外觀形貌與結構。采用Empyrean型X射線粉末衍射儀(Cu靶,K射線,為0.1542 nm,角度范圍5°~80°)測定樣品的物相結構。采用ALPHA型傅里葉變換紅外光譜儀分析樣品的結構,樣品與KBr的質量比為1:100。采用UV?2802型紫外可見分光光度計測定溶液中氨氮的含量。
1) 用NH4Cl試劑配制一定量設定初始質量濃度的模擬氨氮淋濾溶液。分別量取50 mL設定初始濃度的氨氮溶液移入各100 mL具蓋聚乙烯瓶中,再分別加入設定量的上述所制備陶粒后,調(diào)節(jié)溶液pH至設定值,在一定溫度下振蕩吸附,吸附平衡后取出樣品離心過濾,濾液采用納氏試劑分光光度法測定其中氨氮質量濃度e,并根據(jù)式(1)計算氨氮的吸附量e:
式中:e為陶粒對氨氮的平衡吸附量,mg/g;0為吸附前溶液中氨氮的初始質量濃度,mg/L;e為吸附平衡時溶液中氨氮的質量濃度,mg/L;為吸附溶液體積,mL;為吸附劑質量,g。
2) 準確量取一組設定初始濃度的氨氮待吸附溶液各50 mL,分別置于100 mL聚乙烯瓶中,均投加設定量陶粒搖勻后,置于振蕩器中恒溫振蕩,于不同吸附時間間隔取樣分析,測定溶液中氨氮的質量濃度,并根據(jù)式(2)計算時刻的氨氮吸附量Q:
式中:為時刻溶液中氨氮的濃度,mg/L;Q為時刻陶粒對氨氮的吸附量,mg/g。
選用準一級速率方程、準二級速率方程、顆粒內(nèi)擴散方程3種模型對動力學試驗數(shù)據(jù)進行擬合,研究吸附過程的動力學特點。
3) 等溫吸附
分別準確量取初始濃度為10、15、20、25、30、40、50 mg/L的氨氮溶液各50 mL置于100 mL聚乙烯瓶中,均加入0.5 g陶粒并混勻后,分別在288、303、318 K溫度下等溫振蕩吸附,待吸附平衡后取出樣品,離心過濾后測定濾液中氨氮濃度e,并根據(jù)式(1)計算平衡吸附量e。
試驗所制得硅藻土?鎢渣基陶粒的SEM像和XRD譜分析結果分別如圖1和2所示。由圖1可見,陶粒表面粗糙多孔,內(nèi)部有大量貫穿孔洞與表面相連通,這使得陶粒具有較大比表面積,將有利于對氨氮等污染物的吸附去除。
由圖2可知,所制得陶粒的主要物相組成為鐵錳尖晶石(MnFe2O4)PDF#38—0430、二氧化硅(SiO2)PDF#82—1564、鈣硅石(Ca2Si)PDF#03—0798、硅酸鈣(CaSiO3)PDF#88—1922等。有研究表明[18],MnFe2O4對氨氮具有良好的吸附能力。對陶粒的紅外分析結果中,在1000、790和569 cm?1處分別有Si—O—Si基團的不對稱伸縮振動峰、Si—O伸縮振動吸收峰、Fe—O的特征峰[19?21],1650 cm?1處較弱峰值顯示為陶粒中水分子的振動吸收峰[22]。由紅外光譜檢測結果結合XRD檢測結果可知,試驗所制得陶粒結構中含有大量如Fe—O等極性基團的存在,這將有利于對溶液中NH4+等的吸附。
根據(jù)HJ/T299—2007[23]和GB 5085.3—2007[24]對制得的陶粒進行了浸出毒性物質試驗與毒性物質濃度檢測,結果如表2所示。
圖1 陶粒樣品的照片及顆粒內(nèi)部孔結構SEM像
圖2 陶粒樣品的XRD譜
表2 多孔陶粒浸出毒性物質及其含量
由表2可知,陶粒的浸出毒性物質濃度均符合國標要求,該陶??蓱糜诎钡獜U水處理。
2.2.1 溶液初始pH值對NH4+?N吸附量的影響
因為離子型稀土礦區(qū)土壤淋濾液中的氨氮主要來源于礦土中所吸附氨氮的解吸,隨解吸條件的不同如雨水量大小的不同,淋濾液中氨氮的濃度會不同,一般在幾十到幾百mg/L之間。試驗選擇氨氮初始濃度為50 mg/L的模擬淋濾液為研究對象,另在陶粒投加量0.5 g、溫度303 K的條件下,考察溶液不同初始pH值對NH4+?N吸附去除量的影響,結果如圖3所示。
由圖3可知,溶液初始pH值的變化對氨氮吸附去除量有較大的影響。當溶液初始pH<5.68時,隨著pH值的增大,陶粒對氨氮的吸附量增大。分析原因是由于pH值較低時,溶液中H+離子濃度較高,H+會和陶粒表面某些極性基團發(fā)生離子交換或絡合作用,導致許多吸附位點被H+占據(jù), H+對NH4+產(chǎn)生了競爭吸附[25],阻礙了陶粒對NH4+的吸附;隨著pH值的升高,溶液中H+離子濃度降低,競爭吸附減弱,陶粒對氨氮的吸附量就隨溶液初始pH值的增大而增大。但當pH>5.68左右后,溶液中NH4+會逐漸發(fā)生水解轉變?yōu)?NH3·H2O,且隨著pH值的增大,該水解反應會加劇向右進行,導致溶液中游離NH4+的濃度急劇下降,即可供陶粒吸附的NH4+濃度急劇降低,最終陶粒對氨氮的平衡吸附量也就快速下降。因此,當溶液初始pH值為5.68時,該陶粒對溶液中氨氮的吸附去除效果最佳。由此,應用該陶粒處理實際淋濾液時,可調(diào)節(jié)淋濾液初始pH值為5.68左右,以獲得較佳的氨氮去除效果。
圖3 溶液初始pH值對氨氮吸附去除量的影響
2.2.2 溫度對陶粒與氨氮吸附過程的影響
試驗研究了在不同溫度條件下氨氮吸附平衡濃度與陶粒對氨氮的平衡吸附量間的對應關系如圖4所示。由圖4可知,在同一溫度下,陶粒對氨氮的平衡吸附去除量隨氨氮初始濃度以及吸附平衡濃度的增大而增大;而在同一初始濃度下,隨著溫度的升高,陶粒對氨氮的平衡吸附去除量減少。當溫度由288 K升至318 K過程中,陶粒對氨氮的平衡去除量由0.87 mg/g降至0.82 mg/g再降至0.771 mg/g。這說明升溫不利于陶粒對氨氮的吸附去除,由此推斷,陶粒對氨氮的吸附可能是一個放熱過程;應用該陶粒處理實際淋濾液時,在更低的溫度下可獲得更好的氨氮去除 效果。
圖4 不同溫度對氨氮吸附去除量的影響
2.2.3 氨氮初始濃度對陶粒對NH4+?N吸附量的影響
試驗研究了在=303 K,陶粒投加量為0.5 g的條件下,氨氮初始濃度0與陶粒對NH4+?N平衡吸附量e間的對應關系,結果如圖5所示。由圖5可見,當氨氮初始濃度低于500 mg/L 左右時,陶粒對氨氮的平衡吸附量e隨0的增大而增大,當0=500 mg/L左右時,e達最大值為1.60 mg/g,后再增大溶液中氨氮初始濃度,陶粒對NH4+?N的平衡吸附量基本保持不變。這說明當溶液中氨氮初始濃度達500 mg/L左右時,陶粒對氨氮的吸附達飽和,飽和吸附量e(max)=1.60 mg/g。因此,在對實際稀土礦區(qū)土壤氨氮淋濾液進行處理的過程中,可根據(jù)淋濾中的初始氨氮濃度、淋濾液體積結合此飽和吸附量數(shù)據(jù),大致推算出處理過程所需的陶粒投加量,以實現(xiàn)陶粒的最大利用率。
圖5 氨氮初始濃度與陶粒對氨氮平衡吸附量間的關系(T=303 K, 陶粒投加量0.5 g)
對等溫吸附試驗數(shù)據(jù)分別采用Langmuir[26]、Freundlich[27]、D-R[28]和Temkin[29]等溫模型擬合,這4種模型分別如式(3)~(6)所示:
式中:F為Freundlich常數(shù);為經(jīng)驗常數(shù)。
式中:m2為D-R模型最大吸附量,mg/g;是與吸附能有關的D-R模型常數(shù),mol2/J2;為D-R方程波蘭尼吸附能,=ln(1+1/e)。
式中:T為平衡結合常數(shù),L/mg;T為與吸附熱有關的Temkin常數(shù)。
上述4種模型對試驗數(shù)據(jù)的擬合結果如圖6和表3所示。
由圖6和表3的擬合結果可知,在3種溫度下,4種模型中Langmuir和Freundlich模型的線性擬合相關系數(shù)2較高,尤其是前者,擬合度均達0.97以上。因Langmuir模型是基于吸附為單層吸附,所有吸附位點及其吸附能力均相同的假設基礎上推導而來[30],故而可推斷,在試驗陶粒吸附氨氮的過程中,單分子層吸附作用更明顯;對于Langmuir模型的分離平衡常數(shù)L,如其值處于0~1之間,可認為吸附過程屬于優(yōu)惠吸附[31],通過計算得出R的值均在0.1438~0.6022之間,說明試驗陶粒對氨氮的吸附屬于優(yōu)惠吸附;又表3中Langmuir模型單層理論最大吸附量m是隨著試驗溫度的升高而降低的,說明升溫會導致氨氮飽和吸附量降低,即升溫不利于吸附的進行,這與前述研究結果一致。
Freundlich模型是基于吸附為非均質表面吸附的假設而建立[32],若模型中0.1<1/<1,則吸附是易于進行的[33]。根據(jù)表3中滿足0.1<1/<1,說明試驗陶粒對氨氮的吸附易于進行。
D-R模型基于吸附過程是一種孔填充而不是逐漸的表層覆蓋系統(tǒng),吸附機理是建立在波蘭尼吸附勢基礎上,吸附劑表面是不均勻的[28]假設下推導而成。試驗數(shù)據(jù)對D-R模型的擬合程度偏低,2均不超過0.5,說明波蘭尼吸附勢不是影響該陶粒吸附氨氮的主要因素,即吸附過程不僅僅只限于孔填充。
由上述分析可知,試驗陶粒對溶液中氨氮的等溫吸附符合Langmuir模型和Freundlich模型,且升溫不利于該吸附過程的進行。由此可推斷,對于實際稀土礦區(qū)土壤淋濾液,試驗陶粒對其中氨氮的吸附屬于優(yōu)惠吸附,吸附過程易于進行,而升溫不利于該吸附過程的進行。
圖6 陶粒與氨氮的等溫吸附模型線性擬合圖
表3 陶粒與氨氮的等溫吸附模型線性擬合計算結果
采用準一級動力學方程(式(7))[34],準二級動力學方程(式(8))[35],顆粒內(nèi)擴散方程(式(9))[36]對吸附動力學試驗數(shù)據(jù)進行擬合,結果見圖7和表4、5。
式中:為吸附時間;1為準一級速率常數(shù),min?1。
式中:2為準二級速率常數(shù),g/(mg·min)。
式中:p為顆粒內(nèi)擴散速率常數(shù),(mg?min?0.5)/g;為常數(shù),mg/g。
綜上可知,試驗陶粒對溶液中氨氮的吸附去除過程更符合準二級動力學方程,吸附過程受液膜擴散、顆粒內(nèi)擴散和表面吸附等多個環(huán)節(jié)控制。據(jù)此可近似認為,試驗陶粒對實際稀土礦區(qū)土壤淋濾液中氨氮的去除過程更符合準二級動力學方程,其吸附去除過程受液膜擴散、顆粒內(nèi)擴散和表面吸附多個環(huán)節(jié)控制。
圖7 陶粒吸附去除氨氮的動力學模型擬合結果
表4 陶粒對氨氮的吸附準一級和準二級動力學方程擬合計算結果(T=303 K)
表5 陶粒對氨氮的吸附顆粒內(nèi)擴散模型擬合計算結果(T=303 K)
利用Van’t-Hoff方程(10)[37]對不同溫度下陶粒吸附溶液中氨氮的等量吸附焓進行擬合計算,擬合結果如圖8所示。
式中:Δ為等量吸附焓;為摩爾氣體常數(shù);ln0為常數(shù)。
圖8 Vant-Hoff公式線性擬合結果
1) 由硅藻土、鎢渣為主要原料制備的陶粒表面粗糙多孔,內(nèi)部有大量貫穿孔洞與表面相連通,陶粒具有較大的比表面積;其主要物相組成中含有MnFe2O4,這有利于其對溶液中氨氮等污染物的吸附去除。
2) 在試驗溶液初始pH值范圍內(nèi),當pH=5.68左右時,陶粒對溶液中氨氮的吸附量達最大;隨著試驗溫度的升高,陶粒對氨氮的吸附去除量降低;應用所制備陶粒處理實際離子型稀土礦區(qū)土壤淋濾液時,可通過調(diào)節(jié)淋濾液pH值為5.68左右,控制在更低的溫度下去除其中的氨氮,以提高氨氮去除率。
3) 陶粒對溶液中氨氮的等溫吸附符合Langmuir模型和Freundlich模型,吸附動力學符合準二級動力學模型;而陶粒對實際淋濾液中氨氮的吸附過程將易于進行,吸附過程受液膜擴散、顆粒內(nèi)擴散和表面吸附多個環(huán)節(jié)控制。
4) 在溫度為303 K、陶粒投加量為0.5 g的條件下,陶粒對氨氮的飽和吸附量為1.60 mg/g;所制備的鎢渣基陶??赏麑崿F(xiàn)對南方離子型稀土礦區(qū)土壤淋濾液中氨氮的有效去除與鎢渣的就近資源化利用,吸附氨氮后的陶粒經(jīng)NaCl溶液解吸、洗滌、干燥后還可用作建筑陶?;驁@林陶粒再利用。
[1] HE Z Y, ZHANG Z Y, YU J X, XU Z G, XU Y L, ZHOU F, CHI R A. Column leaching process of rare earth and aluminum from weathered crust elution-deposited rare earth ore with ammonium salts[J]. Transactions of Nonferrous Metals Society of China, 2016, 26 (11): 3024?3033.
[2] 尹升華, 謝芳芳. 基于Green-Ampt模型離子型稀土柱浸試驗入滲水頭的確定[J]. 中國有色金屬學報, 2016, 26(12): 2668?2675. YIN Sheng-hua, XIE Fang-fang. Infiltration head of ion-absorbed rare earth with column leaching experiment determined based on Green-Ampt model [J]. The Chinese Journal of Nonferrous Metals, 2016, 26(12): 2668?2675.
[3] JING Q X, CHAI L Y, HUANG X D, TANG C J, GUO H, WANG W. Behavior of ammonium adsorption by clay mineral halloysite[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(7): 1627?1635.
[4] ZHOU X, WANG X Z, ZHANG H, WU H M. Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland[J]. Bioresource Technology, 2017, 241: 269?275.
[5] TANG C J, ZHENG P, CHAI L Y, MIN X B. Characterization and quantification of anammox start-up in UASB reactors seeded with conventional activated sludge[J]. International Biodeterioration & Biodegradation, 2013, 82: 141?148.
[6] FAN J L, ZHANG J, GUO W S, LIANG S, WU H M. Enhanced long-term organics and nitrogen removal and associated microbial community in intermittently aerated subsurface flow constructed wetlands[J]. Bioresource Technology, 2016, 214: 871?875.
[7] 陳杰山. 吸附法在氨氮廢水處理中的應用[J]. 廣州化工,2017, 45(13): 11?13. CHEN Jie-shan. Application of adsorption in treatment of ammonia nitrogen wastewater[J]. Guangzhou Chemical Industry, 2017, 45(13): 11?13.
[8] CHOI J W, RYU J C, KWON K S, SONG M K, LEE S, KIM S B, LEE S H. Adsorption of ammonium nitrogen and phosphate onto basanite and evaluation of toxicity[J]. Water Air & Soil Pollution, 2014, 225(8): 2059?2069.
[9] LIU J, SU Y, LI Q, YUE Q Y, GAO B Y. Preparation of wheat straw based superabsorbent resins and their applications as adsorbents for ammonium and phosphate removal[J]. Bioresource Technology, 2013, 143(9): 32–39.
[10] 曾曉嵐, 萬 鵬, 丁文川, 韓 樂, 劉建棟, 王雙雙, 劉 嬌. 曝氣吹脫預處理滲濾液影響因素的中試研究[J]. 中南大學學報(自然科學版), 2012, 43(8): 3314?3319. ZENG Xiao-lan, WAN Peng, DING Wen-chuan, HAN Le, LIU Jian-dong, WANG Shuang-shuang, LIU Jiao. Pilot study on influencing factors of pretreating leachate with ammonia stripping process[J]. Journal of Central South University (Science and Technology), 2012, 43(8): 3314?3319.
[11] 申延明, 張 僖, 趙曉蕾, 劉東斌, 樊麗輝, 李士鳳. 檸檬酸插層MgAl水滑石對水溶液中Zn2+的吸附性能[J]. 中國有色金屬學報, 2015, 25(8): 2300?2308. SHEN Yan-ming, ZHANG Xi, ZHAO Xiao-lei, LIU Dong-bin, FAN Li-hui, LI Shi-feng. Adsorption performance of citrate intercalated MgAl layered double hydroxides on Zn2+in aqueous solution[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(8): 2300?2308.
[12] 邢 奕, 田星強, 盧少勇, 胡為征, 李濟圣, 李 珂, 賈建麗. 處理湖水的垂直流濕地中陶粒的磷吸附特性[J]. 環(huán)境工程學報, 2014, 11(8): 4820?4823. XING Yi, TIAN Xing-qiang, LU Shao-yong, HU Wei-zheng, LI Ji-sheng, LI Ke, JIA Jian-li. Characteristics of phosphorus adsorption by ceramsite invertical subsurface flow constructed wetland streating lake water[J]. Chinese Journal of Environmental Engineering, 2014, 11(8): 4820?4823.
[13] BAO T, CHEN T H, WILLE M L, ZOU X H, FROST R L, QING C S, CHEN D. Preparation of iron oxide-based porous ceramsite from goethite and application for city wastewater treatment in biological aerated filters[J]. Desalination and Water Treatment, 2016, 57(41): 19216?19226.
[14] ZHAO Y X, YANG Y N, YANG S J, WANG Q H, FENG C P, ZHANG Z Y. Adsorption of high ammonium nitrogen from wastewater using a novel ceramic adsorbent and the evaluation of the ammonium-adsorbed-ceramic as fertilizer[J]. Journal of Colloid and Interface Science, 2013, 393(1): 264?270.
[15] 王文東, 劉 薈, 張銀婷, 楊生炯. 新型污泥基吸附材料制備及其氨氮去除性能評價[J]. 環(huán)境科學, 2016, 37(8): 3186?3191. WANG Wen-dong, LIU Hui, ZHANG Yin-ting. YANG Sheng-jiong. Preparation and NH4+?N removal performance of a novel filter substrate made from sludges[J]. Environmental Science, 2016, 37(8): 3186?3191.
[16] LIU Y, DU F, YUAN L, ZENG H, KONG S. Production of lightweight ceramsite from iron ore tailings and its performance investigation in a biological aerated filter (BAF) reactor[J]. Journal of hazardous materials, 2010, 178(1): 999?1006.
[17] 楊金忠, 高何鳳, 王 寧, 陳 林, 王健媛, 楊玉飛. 仲鎢酸銨(APT)生產(chǎn)中鎢渣的污染特性分析[J]. 環(huán)境工程技術學報, 2015, 5(6): 525?530. YANG Jin-zhong, GAO He-feng, WANG Ning, CHEN Lin, WANG Jian-yuan, YANG Yu-fei. Research on polluting characteristic of tungsten residue from ammonium paratungstate (APT)[J]. Journal of Environmental Engineering Technology, 2015, 5(6): 525?530.
[18] PODDER M S, MAJUMDER C B. Sequestering of As(III) and As(V) from wastewater using a novel Neem leaves/MnFe2O4composite biosorbent[J]. International Journal of Phytoremediation, 2016, 18(12): 1237?1257.
[19] 許乃岑, 沈加林, 駱宏玉. X射線衍射和紅外光譜法分析高嶺石結晶度[J]. 資源調(diào)查與環(huán)境, 2014, 35(2): 152?156. XU Nai-cen, SHEN Jia-lin, LUO Hong-yu. Analysis for crystallinity of kaolinites by X-ray diffractometer and infrared spectroscopy[J]. Resources Survey and Environment, 2014, 35(2): 152?156.
[20] 郝保紅. 超細粉磨時粉石英化學鍵變化的紅外光譜分析[J]. 礦冶工程, 2001, 21(4): 64?66. HAO Bao-hong. IR analysis of the chemical bond changes in quartz powder during superfine milling[J]. Mining and Metallurgical Engineering, 2001, 21(4): 64?66.
[21] NEMATOLLAHZADEH A, SERAJ S, MIRZAYI B. Catecholamine coated maghemite nanoparticles for the environmental remediation: Hexavalent chromium ions removal[J]. Chemical Engineering Journal, 2015, 277: 21?29.
[22] 方 瑾. 新型分子篩制備及其處理高氨氮廢水的性能研究[D]. 杭州: 浙江工商大學, 2011: 37?38. FANG Jin. Synthesis of new kaolin molecular sieves and its adsorption of ammonia[D]. Zhejiang: Zhejiang Gongshang University, 2011: 37?38.
[23] HJ/T299—2007, 固體廢物浸出毒性浸出方法?硫酸硝酸法[S]. HJ/T299—2007, Solid waste?extraction procedure for leaching toxicity?Sulphuric acid & nitric acid method[S].
[24] GB 5085.3—2007, 危險廢物鑒別標準浸出毒性鑒別[S]. GB 5085.3—2007, Identification standards for hazardous wastes?Identification for extraction toxicity[S].
[25] EL-SHAFEY O I, FATHY N A, EL-NABARAWY T A. Sorption of ammonium ions onto natural and modified Egyptian kaolinites: Kinetic and equilibrium studies[J]. Advances in Physical Chemistry, 2014, 2014(2): 1?12.
[26] LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of American Chemistry Society, 1918, 40(9): 1361?1403.
[27] KHOSRAVI P, SHIRVANI M, BAKHTIARY S, SHARIATMADARI H. Energetic and entropic features of Cu(II) sorption equilibria on fibrous clay minerals[J]. Water Air & Soil Pollution, 2016, 227(9): 354?365.
[28] NICK D H, RALPH T Y. Theoretical basis for the dubinin-radushkevitch (D-R) adsorption isotherm equation[J]. Adsorption, 1997, 3(3): 189?195.
[29] HUANG Z H, LIU S X, ZHANG B, XU L L, HU X F. Equilibrium and kinetics studies on the absorption of Cu(II) from the aqueous phase using a-cyclodextrin-based adsorbent[J]. Carbohydrate Polymers, 2012, 88: 609–617.
[30] ADEOGUN A I, BABU R B. One-step synthesized calcium phosphate-based material for the removal of alizarin S dye from aqueous solutions: isothermal, kinetics, and thermodynamics studies[J]. Applied Nanoscience, 2015(7): 1?13.
[31] KUMAR A, JENA H M. Adsorption of Cr(VI) from aqueous solution by prepared high surface area activated carbon from Fox nutshell by chemical activation with H3PO4[J]. Journal of Environmental Chemical Engineering, 2017, 5(2): 2032–2041.
[32] YANG Z H, XIONG S, WANG B, LI Q, YANG W C. Cr(III) adsorption by sugarcane pulp residue and biochar[J]. Journal of Central South University, 2013, 20(5): 1319?1325.
[33] MCKAY G, BLAIR H S, GARDNER J R. Adsorption of dyes on chitin. (I). Equilibrium studies[J]. Journal of Applied Polymer Science, 1982, 27(8): 3043?3057.
[34] [34] LAGERGREN S. About the theory of so-called adsorption of soluble substances[J]. The Royal Swedish Academy of Sciences Documents, 1898, 24(4): 1?39.
[35] JAMNONGKAN T, KANTAROT K, NIEMTANG K, PANSILA P P, WATTANAKORNSIRI A. Kinetics and mechanism of adsorptive removal of copper from aqueous solution with poly(vinyl alcohol) hydrogel[J]. Transactions of Nonferrous Metals Society of China, 2014, 24: 3386?3393.
[36] WEBER W J. MORRIS J C. Kinetics of adsorption on carbon from solution[J]. Journal of the Sanitary Engineering Division, American Society of Civil Engineers, 1963, 89(17): 31?60.
[37] AKBARI J, BARZEGAR-JALALI M, LOEBENBERG R, VALIZADEH H. Thermodynamic approaches for the prediction of oral drug absorption[J]. Journal of Thermal Analysis and Calorimetry, 2017, 130: 1371?1382.
Adsorption behavior of ammonium in leachate from ionic rare earth mining area soil by diatomite and tungsten residue based porous ceramsite
JING Qing-xiu1, 2, WANG Yun-yan1, CHAI Li-yuan1, TANG Chong-jian1, HUANG Xiao-dong2, GUO Huan2, WANG Wei2, YOU Wei2
(1.School of Metallurgy and Environment, Central South University, Changsha 410083, China; 2. School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China)
In order to realize resource utilization of industrial tungsten residue and treatment of ammonium wastewater with the solid waste, a porous ceramsite was prepared with the main raw materials of diatomite and tungsten residue. The adsorption behavior of ammonium in synthetic leachate of ionic rare earth mining area soil by the ceramsite was investigated. The results show that the surface of the newly-developed ceramsite is rough and porous. There are lots of pores across the ceramsite from inner to outside. MnFe2O4is one of the main components of the ceramsite. In pH range of the test, when pH is 5.68, the ammonium adsorption capacity by the ceramsite reaches the maximum. With the increase of temperature, the adsorption capacity decreases. The saturated adsorption capacity is 1.60 mg/g at 303 K, 0.5 g dosage of the ceramsite. The isothermal adsorption fits the Langmuir and Freundlich models better; and the adsorption process follows the pseudo-second kinetic equation. Accordingly, it can be deduced that for real leachate from ionic rare earth mining area soil, the ceramsite can be used to remove ammonium from it, the removal process is efficiently; with the decrease of temperature, the adsorption capacity would increase; when pH is about 5.68, the ammonium adsorption capacity by the ceramsite will reach the maximum.
ionic rare earth mining area; porous ceramsite; tungsten residue; soil ammonium leachate; adsorption
Project (51674305) supported by the National Natural Science Foundation of China; Project (2016YT03N101, 2017A090905024) supported by Science and Technology Program of Guangdong Province, China; Project (NSFJ2015-K06) supported by the Jiangxi University of Science and Technology
2017-05-18;
2017-07-20
TANG Chong-jian; E-mail: chjtang@csu.edu.cn
國家自然科學基金資助項目(51674305);廣東省科技廳資助項目(2016YT03N101, 2017A090905024);江西理工大學資助項目(NSFJ2015-K06)
2017-05-10;
2017-07-20
唐崇儉,副教授,博士;電話:0731-88830411;E-mail:chjtang@csu.edu.cn
10.19476/j.ysxb.1004.0609.2018.05.20
1004-0609(2018)-05-1033-10
X75
A
(編輯 龍懷中)