李學(xué)武,劉燕,王瑞軍,王志英,娜清,李宏偉,王振宇,徐冰冰,蘇蕊,張燕軍,劉志紅,李金泉
?
內(nèi)蒙古絨山羊不同毛被類型產(chǎn)絨量和體重的遺傳參數(shù)估計(jì)
李學(xué)武,劉燕,王瑞軍,王志英,娜清,李宏偉,王振宇,徐冰冰,蘇蕊,張燕軍,劉志紅,李金泉
(內(nèi)蒙古農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)學(xué)院/動(dòng)物遺傳育種與繁殖自治區(qū)重點(diǎn)實(shí)驗(yàn)室/農(nóng)業(yè)部肉羊遺傳育種重點(diǎn)實(shí)驗(yàn)室/內(nèi)蒙古自治區(qū)山羊遺傳育種工程技術(shù)研究中心,呼和浩特 010018)
【目的】?jī)?nèi)蒙古絨山羊是經(jīng)過長(zhǎng)期自然選擇和人工選育而成的優(yōu)秀地方品種。主要產(chǎn)于內(nèi)蒙古西部地區(qū),分布于二郎山、阿爾巴斯和阿拉善左旗3個(gè)地區(qū)。產(chǎn)絨量和抓絨后體重均是絨山羊重要經(jīng)濟(jì)性狀,并且屬于數(shù)量性狀,數(shù)量性狀受微效多基因控制,本研究通過數(shù)量遺傳學(xué)方法對(duì)內(nèi)蒙古絨山羊產(chǎn)絨量和抓絨后體重進(jìn)行遺傳參數(shù)評(píng)估,旨在研究?jī)?nèi)蒙古絨山羊不同毛被類型對(duì)產(chǎn)絨量和體重的遺傳參數(shù)的影響,為絨山羊育種提供理論依據(jù)。【方法】?jī)?nèi)蒙古白絨山羊種羊場(chǎng)1990—2014年間54 044只絨山產(chǎn)絨量、體重和毛長(zhǎng)的重復(fù)數(shù)據(jù)為研究材料。按照不同羊毛長(zhǎng)度將絨山羊分為3個(gè)類型:短毛型(≤13 cm,SSL)、 中間型(13 cm<羊毛長(zhǎng)度≤22 cm,ISL)和長(zhǎng)毛型(>22 cm,LSL)。利用Excel對(duì)不同毛被類型內(nèi)產(chǎn)絨量和抓絨后體重進(jìn)行表型分析,然后將處理好的數(shù)據(jù)利用SAS9.2的REG程序計(jì)算不同毛被類型內(nèi)毛長(zhǎng)對(duì)產(chǎn)絨量和體重的回歸系數(shù),確定不同毛被類型對(duì)產(chǎn)絨量和人體重的影響。最后采用WOMBAT軟件的AIREML算法對(duì)不同毛被類型內(nèi)產(chǎn)絨量和抓絨后體重進(jìn)行方差組分分析和遺傳參數(shù)估計(jì)?!窘Y(jié)果】對(duì)不同類型產(chǎn)絨量和體重進(jìn)行基本統(tǒng)計(jì)分析,發(fā)現(xiàn)長(zhǎng)毛型毛長(zhǎng)均值比中間型和短毛型分別增加了6.20 cm和13.40 cm。長(zhǎng)毛型產(chǎn)絨量較中間型和短毛型高105.03 g和59.85 g。長(zhǎng)毛型體重較中間型和短毛型分別高8.78 kg和10.06 kg。長(zhǎng)毛型的產(chǎn)絨量(721.15 g)最高,體重最大(41.98 kg)。毛長(zhǎng)和產(chǎn)絨量的變異系數(shù)隨著毛長(zhǎng)的增加在減小,但是體重的變異系數(shù)隨著毛長(zhǎng)的增加而增加。產(chǎn)絨量和體重的變異系數(shù)均在27%以上,說明產(chǎn)絨量和體重均具有較高的提升潛力。經(jīng)過回歸分析發(fā)現(xiàn)不同毛被類型內(nèi)產(chǎn)絨量和體重對(duì)毛長(zhǎng)的線性回歸均存在極顯著差異。短毛型、中間型和長(zhǎng)毛型毛長(zhǎng)對(duì)產(chǎn)絨量的回歸系數(shù)分別為-4.63、1.92和21.07。短毛型、中間型和長(zhǎng)毛型毛長(zhǎng)對(duì)體重的回歸系數(shù)分別為0.04、0.32和1.94。即長(zhǎng)毛型的毛長(zhǎng)對(duì)產(chǎn)絨量和體重的回歸系數(shù)最高,說明長(zhǎng)毛型個(gè)體對(duì)產(chǎn)絨量和體重的影響較大。遺傳參數(shù)估計(jì)結(jié)果表明短毛型、中間型和長(zhǎng)毛型產(chǎn)絨量的遺傳力分別是0.14、0.22和0.33,短毛型和中間型的遺傳力為低遺傳力,長(zhǎng)毛型為中等遺傳力。短毛型、中間型和長(zhǎng)毛型體重的遺傳力分別是0.10,0.11和0.12,屬于低遺傳力。長(zhǎng)毛型產(chǎn)絨量和體重遺傳力最高。從遺傳相關(guān)來看,產(chǎn)絨量與體重(-0.20—0.26)、產(chǎn)絨量與毛長(zhǎng)(-0.11—0.37)和體重與毛長(zhǎng)(0.21—0.43)的遺傳相關(guān)隨著毛長(zhǎng)的增加而增加?!窘Y(jié)論】長(zhǎng)毛型個(gè)體產(chǎn)絨量和體重的表型值最高,并且長(zhǎng)毛型個(gè)體的體重和產(chǎn)絨量的遺傳力最高,長(zhǎng)毛型產(chǎn)絨量和體重的遺傳相關(guān)也最大,因此,選擇長(zhǎng)毛型個(gè)體留種可以加快絨山羊產(chǎn)絨量和體重的遺傳進(jìn)展,實(shí)現(xiàn)羊毛對(duì)產(chǎn)絨量和體重的間接選擇。
絨山羊;不同毛被類型;抓絨性狀;遺傳參數(shù);間接選擇
【研究意義】?jī)?nèi)蒙古絨山羊是經(jīng)過長(zhǎng)期自然選擇和人工選育而成的優(yōu)秀地方品種。主要產(chǎn)于內(nèi)蒙古西部地區(qū),分布于二郎山、阿爾巴斯和阿拉善左旗3個(gè)地區(qū)。因此,按產(chǎn)地不同分為二郎山型、阿爾巴斯型和阿拉善型。內(nèi)蒙古絨山羊所產(chǎn)羊絨纖細(xì)、柔軟、潔白、富有彈性而聞名中外。內(nèi)蒙古絨山羊?qū)儆陔p層毛被類型,其毛纖維主要是由初級(jí)毛囊產(chǎn)生的羊毛和次級(jí)毛囊產(chǎn)生的羊絨組成,絨毛生長(zhǎng)是一個(gè)復(fù)雜的生理過程,受遺傳和環(huán)境因素共同影響,并且羊絨生長(zhǎng)具有明顯的季節(jié)性,但是羊毛沒有明顯的季節(jié)性生長(zhǎng)和脫落[1-2]。在實(shí)際生產(chǎn)過程中發(fā)現(xiàn)內(nèi)蒙古絨山羊的羊毛長(zhǎng)度存在很大的差異,羊毛長(zhǎng)度在5—34 cm之間,以進(jìn)化角度方面來看,在同一個(gè)群體中,造成表型差異的原因有兩個(gè)或者二者兼有,一是由于基因型不同而引起表型差異,二是由于環(huán)境影響而引起表型差異。如果這種差異是由于基因型不同而引起,那么有可能是偶然出現(xiàn)或者是受到的環(huán)境選擇而出現(xiàn)[3]。所以,通過選擇會(huì)提高目標(biāo)性狀的生產(chǎn)性能。由于羊絨具有較高的經(jīng)濟(jì)價(jià)值,且羊毛與羊絨具有較高的遺傳相關(guān),所以通過絨山羊羊毛的研究,了解絨山羊羊毛對(duì)其他重要經(jīng)濟(jì)性狀的影響,也通過對(duì)羊毛長(zhǎng)度研究實(shí)現(xiàn)對(duì)其他相關(guān)經(jīng)濟(jì)性狀的間接選擇?!厩叭搜芯窟M(jìn)展】絨山羊的毛長(zhǎng)性狀作為一個(gè)數(shù)量性狀,其在遺傳過程中受微效多基因控制[4]。而且數(shù)量遺傳學(xué)已經(jīng)成功的應(yīng)用于動(dòng)物育種中,通過對(duì)數(shù)量性狀的遺傳參數(shù)估計(jì),可以預(yù)測(cè)其表型是否可以穩(wěn)定遺傳[5]。在動(dòng)物育種中通過對(duì)數(shù)量性狀的遺傳評(píng)估確定育種方案,并為選種選育提供準(zhǔn)確可靠的理論依據(jù)[6]。因此,娜清(2016)按其毛長(zhǎng)將內(nèi)蒙古絨山羊分為三個(gè)類型,即短毛型(≤13cm)、中間型(13cm<,且,≤22cm)和長(zhǎng)毛型(>22cm),并且經(jīng)過顯著性檢驗(yàn)得出每個(gè)類型的毛長(zhǎng)對(duì)其他抓絨性狀均存在顯著性影響[7], MCGREGOR等(2009)對(duì)安哥拉山羊的毛長(zhǎng)進(jìn)行REML(restricted maximum likelihood)分析,發(fā)現(xiàn)髖部、背中部的毛長(zhǎng)可以反映群體毛長(zhǎng),并且這兩個(gè)位點(diǎn)可以作為群體毛長(zhǎng)遺傳選擇位點(diǎn)[8]。【本研究切入點(diǎn)】由于羊絨的經(jīng)濟(jì)價(jià)值高于羊毛,因此目前的研究主要集中在羊絨方面的研究[9-13],并且關(guān)于絨毛分子方面的研究較多[14-19],關(guān)于絨山羊羊毛的研究甚少,更沒有對(duì)絨山羊羊毛進(jìn)行系統(tǒng)性的研究?!緮M解決的關(guān)鍵問題】通過羊毛長(zhǎng)度對(duì)內(nèi)蒙古絨山羊不同毛被類型的產(chǎn)絨量和體重的研究實(shí)現(xiàn)毛長(zhǎng)性狀對(duì)其他經(jīng)濟(jì)性狀的間接選擇,降低測(cè)量其他生產(chǎn)性能時(shí)的勞動(dòng)強(qiáng)度和資金消耗。為絨山羊的育種方案提供科學(xué)合理的理論依據(jù)。
本試驗(yàn)所用數(shù)據(jù)來源于內(nèi)蒙古白絨山羊種羊場(chǎng),該羊場(chǎng)采用分群飼養(yǎng)管理,利用人工授精方法實(shí)施統(tǒng)一配種,生產(chǎn)性能數(shù)據(jù)和系譜數(shù)據(jù)記錄完整、詳實(shí)。本研究收集了該羊場(chǎng)1990—2014年間54 044只絨山羊生產(chǎn)性能數(shù)據(jù)記錄進(jìn)行遺傳參數(shù)估計(jì)。
1.2.1 不同毛被類型的基本統(tǒng)計(jì)分析 將1990-2014年的毛長(zhǎng)、產(chǎn)絨量和體重的重復(fù)記錄數(shù)據(jù)利用Excel按照年份進(jìn)行初步整理,并依據(jù)羊毛長(zhǎng)度將內(nèi)蒙古絨山羊分為3個(gè)類型,即短毛型(≤13cm)、中間型(13cm<,且,≤22cm)和長(zhǎng)毛型(>22cm),選擇毛長(zhǎng)、產(chǎn)絨量和體重這三個(gè)性狀均記錄全面的51 942條數(shù)據(jù)用于統(tǒng)計(jì)分析。
1.2.2 毛長(zhǎng)對(duì)其他性狀的回歸分析 將處理好的數(shù)據(jù)經(jīng)過SAS9.2軟件[20]的REG程序計(jì)算不同毛被類型內(nèi)產(chǎn)絨量和體重對(duì)毛長(zhǎng)的回歸系數(shù),此處毛長(zhǎng)為內(nèi)蒙古絨山羊三個(gè)類型中的羊毛長(zhǎng)度(短毛型(≤13cm)、中間型(13cm<,且,≤22cm)和長(zhǎng)毛型(>22cm),為連續(xù)性變量,回歸模型如下:
是性狀觀測(cè)值,即產(chǎn)絨量和體重,表示截距,表示斜率,表示殘差,表示不同毛被類型下羊毛長(zhǎng)度表型值。
根據(jù)Wang等[21]和Momen等[22]的研究得出了影響各抓絨性狀的非遺傳因素,而且在隨機(jī)效應(yīng)當(dāng)中除個(gè)體加性效應(yīng)和個(gè)體永久環(huán)境效應(yīng)之外,母體加性效應(yīng)和母體永久環(huán)境效應(yīng)僅對(duì)早期生長(zhǎng)性狀有影響,對(duì)其它抓絨性狀和絨毛品質(zhì)性狀沒有影響。本研究考慮的固定效應(yīng)包括測(cè)定年份、群、個(gè)體年齡、出生類型(單羔/雙羔)和性別,因此,選擇以下動(dòng)物模型進(jìn)行遺傳參數(shù)估計(jì):
式中:是性狀觀察值;是固定效應(yīng);是個(gè)體加性效應(yīng),永久環(huán)境效應(yīng)。,,分別是固定效應(yīng)、個(gè)體加性效應(yīng)、永久環(huán)境效應(yīng)對(duì)應(yīng)的結(jié)構(gòu)矩陣,是隨機(jī)殘差效應(yīng)。然后,利用WOMBAT軟件的平均信息約束最大似然法(AIREML),采用多性狀重復(fù)力模型進(jìn)行方差組分和遺傳參數(shù)估計(jì)。
不同毛被類型毛長(zhǎng)、體重和產(chǎn)絨量表型值的基本描述統(tǒng)計(jì)分析結(jié)果見表1??芍洪L(zhǎng)毛型毛長(zhǎng)均值比中間型和短毛型分別增加了6.20 cm和13.40 cm。長(zhǎng)毛型產(chǎn)絨量較中間型和短毛型高105.03 g和59.85 g。長(zhǎng)毛型體重較中間型和短毛型分別高8.78 kg和10.06 kg。長(zhǎng)毛型的產(chǎn)絨量(721.15 g)最高,體重最大(41.98 kg)。毛長(zhǎng)和產(chǎn)絨量的變異系數(shù)隨著毛長(zhǎng)的增加在減小,但是體重的變異系數(shù)隨著毛長(zhǎng)的增加而增加。產(chǎn)絨量和體重的變異系數(shù)均在27%以上,說明產(chǎn)絨量和體重均具有較高的提升潛力。
不同毛被類型下,產(chǎn)絨量和體重對(duì)毛長(zhǎng)的線性回歸分析見表2。由表2可知:不同毛被類型內(nèi)產(chǎn)絨量和體重對(duì)毛長(zhǎng)的線性回歸均存在極顯著差異。說明不同毛被類型內(nèi)產(chǎn)絨量和體重對(duì)毛長(zhǎng)的影響不同。短毛型、中間型和長(zhǎng)毛型毛長(zhǎng)對(duì)產(chǎn)絨量的回歸系數(shù)分別是為-4.63、1.92和21.07。短毛型、中間型和長(zhǎng)毛型毛長(zhǎng)對(duì)體重的回歸系數(shù)分別是為0.04、0.32和1.94。即長(zhǎng)毛型的產(chǎn)絨量和體重對(duì)毛長(zhǎng)的回歸系數(shù)最高,說明長(zhǎng)毛型個(gè)體對(duì)產(chǎn)絨量和體重的影響較大。
表1 不同毛被類型抓絨性狀的基本統(tǒng)計(jì)量
表2 不同毛被類型對(duì)其他抓絨性狀的回歸分析
**表示差異極顯著 means especially significant difference
不同毛被類型內(nèi)產(chǎn)絨量和體重的固定效應(yīng)見表3,場(chǎng)年季、個(gè)體年齡和性別對(duì)各個(gè)類型下的產(chǎn)絨量和體重均存在極顯著差異的影響,而出生類型除了對(duì)短毛型的產(chǎn)絨量和體重以及中間型的產(chǎn)絨量影響極顯著外,對(duì)其他性狀影響不顯著。不同毛被類型產(chǎn)絨量和體重的方差組分和遺傳參數(shù)評(píng)估結(jié)果見表4和表5。由表4可以看出,產(chǎn)絨量和體重的加性效應(yīng)隨著毛長(zhǎng)的增加而增加。由表5可以看出,短毛型、中間型和長(zhǎng)毛型的產(chǎn)絨量遺傳力分別是0.14、0.22和0.33,體重的遺傳力分別是0.10、0.11和0.12,產(chǎn)絨量和體重的遺傳力也隨著毛長(zhǎng)的增加而增加。毛長(zhǎng)與產(chǎn)絨量和體重表型相關(guān)在-0.08—0.11之間,表型相關(guān)較小。產(chǎn)絨量和體重與毛長(zhǎng)的遺傳相關(guān)隨著毛長(zhǎng)的增加而增加,尤其是長(zhǎng)毛型個(gè)體的產(chǎn)絨量與毛長(zhǎng)存在正遺傳相關(guān)(0.37),體重與毛長(zhǎng)存在高度正遺傳相關(guān)(0.46)。產(chǎn)絨量與體重存在較低的正遺傳相關(guān),并且遺傳力也隨著毛長(zhǎng)的增加而變大。
表3 不同毛被類型毛長(zhǎng)的固定效應(yīng)
<0.01表示差異極顯著;>0.05表示差異不顯著
<0.01 means especially significant difference;>0.05: means insignificant difference
表4 不同毛被類型各性狀方差組分估計(jì)結(jié)果
表5 不同毛被類型各性狀遺傳參數(shù)評(píng)估結(jié)果
對(duì)角線為遺傳力,上三角為表型相關(guān),下三角為遺傳相關(guān),產(chǎn)絨量/體重:產(chǎn)絨量與體重的遺傳相關(guān)
The diagonal is heritability of each trait; below diagonal is a genetic correlation; above diagonal is a phenotypic correlation
內(nèi)蒙古絨山羊不同毛被類型產(chǎn)絨量和體重的表型不同。長(zhǎng)毛型的產(chǎn)絨量最高,短毛型次之,中間型最低,這可能是由于在實(shí)際生產(chǎn)中短毛型毛被對(duì)羊絨保護(hù)作用較低,在短毛型的羊絨中混有大量的雜質(zhì)和塵土,這可能是造成短毛型產(chǎn)絨量高于中間型的原因。體重隨著毛長(zhǎng)的增加而增加,尤其長(zhǎng)毛型體重遠(yuǎn)遠(yuǎn)高于其他兩個(gè)類型,由于該羊場(chǎng)一直以產(chǎn)絨量和體重為選育目標(biāo),所以產(chǎn)絨量和體重與毛長(zhǎng)可能存在一因多效或連鎖遺傳,短毛型、中間型和長(zhǎng)毛型的毛長(zhǎng)和產(chǎn)絨量的標(biāo)準(zhǔn)差變化不大,但是體重的標(biāo)準(zhǔn)差隨著毛長(zhǎng)的增加變大,說明長(zhǎng)毛型的體重變化較大,具有較高的提升空間。短毛型、中間型和長(zhǎng)毛型的毛長(zhǎng)和產(chǎn)絨量的變異系數(shù)隨著毛長(zhǎng)的增加而降低,但是體重的變異系數(shù)則變大。產(chǎn)絨量的變異系數(shù)在30.96%以上,體重的變異系數(shù)在27.13%以上,即不同毛被類型的產(chǎn)絨量和體重的變異系數(shù)均高,說明產(chǎn)絨量和體重均具有較高的提升潛力,所以選擇長(zhǎng)毛型個(gè)體留作種用不僅可以提高產(chǎn)絨量還可以提高產(chǎn)肉性能,為培育肉絨兼用型品種奠定一定的理論基礎(chǔ)。并且體重和產(chǎn)絨量的平均值高于BAI等[17]的研究結(jié)果,說明內(nèi)蒙古絨山羊在培育中取得了較好的遺傳進(jìn)展,即通過科學(xué)的選擇可以提高目標(biāo)性狀的生產(chǎn)性能。
除短毛型產(chǎn)絨量對(duì)毛長(zhǎng)的回歸系數(shù)為負(fù),其他類型產(chǎn)絨量和體重對(duì)毛長(zhǎng)的回歸系數(shù)均為正,說明毛長(zhǎng)小于一定的程度產(chǎn)絨量會(huì)降低,其他會(huì)隨著毛長(zhǎng)的增加而增加,并且毛長(zhǎng)對(duì)產(chǎn)絨量和體重的回歸系數(shù)隨著毛長(zhǎng)的增加均呈上升趨勢(shì),說明隨著毛長(zhǎng)的增加,產(chǎn)絨量也會(huì)快速升高。尤其是長(zhǎng)毛型個(gè)體毛長(zhǎng)每增加1 cm,產(chǎn)絨量會(huì)增加21.07 g,體重增加1.94 kg。即選擇長(zhǎng)毛型的個(gè)體留種會(huì)提高產(chǎn)絨量和體重。
不同毛被類型產(chǎn)絨量和體重的固定效應(yīng)有所差別,場(chǎng)年季、個(gè)體年齡和性別對(duì)各個(gè)類型下的產(chǎn)絨量和體重均存在極顯著差異的影響,而出生類型除了對(duì)短毛型的產(chǎn)絨量和體重以及中間型的產(chǎn)絨量影響極顯著外,對(duì)其他性狀影響不顯著。并且Bai等[23]和McGregor等[8]的研究也發(fā)現(xiàn)母體效應(yīng)對(duì)羊毛長(zhǎng)度幾乎沒有影響,經(jīng)整理和計(jì)算得出不同毛被類型各性狀的固定效應(yīng)為場(chǎng)年季、個(gè)體年齡和出生類型。不同毛被類型產(chǎn)絨量和體重的遺傳參數(shù)估計(jì)值不同,短毛型產(chǎn)絨量的遺傳力是0.14,屬于低遺傳力,而中間型和長(zhǎng)毛型的遺傳力分別是0.22和0.33,屬于中等遺傳力。說明長(zhǎng)毛型遺傳穩(wěn)定,短毛型和中間型產(chǎn)絨量的遺傳力低于GIFFORD等(0.38)[24]和LI等(0.34)[25]的研究結(jié)果,但是與長(zhǎng)毛型產(chǎn)絨量的遺傳力一致(0.33)。這種差異可能是由于品種或數(shù)據(jù)大小和數(shù)據(jù)結(jié)構(gòu)不同而造成的。產(chǎn)絨量的遺傳力隨著毛長(zhǎng)的增加而增加,并且長(zhǎng)毛型產(chǎn)絨量的遺傳力高于其他兩個(gè)類型,說明長(zhǎng)毛型的遺傳進(jìn)展較快。短毛型、中間型和長(zhǎng)毛型體重的遺傳力分別是0.10、0.11和0.12,均屬于低遺傳力,低于RASHIDI等(0.41)[26]、SNYMAN等(0.35)[27]和VISSER等(0.24)[28]的研究結(jié)果,但是與ASSAN等[23]的研究結(jié)果相似(0.11),這可能是由于品種不同而引起的。體重的遺傳力相對(duì)較低,但是長(zhǎng)毛型的體重遺傳力高于其他兩個(gè)類型,所以選擇長(zhǎng)毛型可以加速體重的遺傳進(jìn)展,有利于體重的選擇。
產(chǎn)絨量與短毛型、中間型和長(zhǎng)毛型毛長(zhǎng)的遺傳相關(guān)分別是-0.11,-0.24和0.37,即產(chǎn)絨量與毛長(zhǎng)的遺傳相關(guān)隨著毛長(zhǎng)的增加其相關(guān)程度在增加,由于短毛型和中間型產(chǎn)絨量與毛長(zhǎng)存在負(fù)遺傳相關(guān),說明產(chǎn)絨量隨著毛長(zhǎng)的增加呈降低趨勢(shì)。但是長(zhǎng)毛型的產(chǎn)絨量與毛長(zhǎng)的遺傳相關(guān)呈正相關(guān),說明當(dāng)羊毛增加到一定的程度會(huì)提高產(chǎn)絨量,所以選擇長(zhǎng)毛型個(gè)體可能提高產(chǎn)絨量。本研究短毛型和中間型的產(chǎn)絨量和毛長(zhǎng)的遺傳相關(guān)與LI等[25]的研究結(jié)果一致(-0.23),但是長(zhǎng)毛型的遺傳相關(guān)高于其研究結(jié)果,這可能是由于數(shù)據(jù)大小和數(shù)據(jù)結(jié)構(gòu)不同造成的。產(chǎn)絨量與毛長(zhǎng)存在負(fù)表型相關(guān),但是相關(guān)特別小。體重與短毛型、中間型和長(zhǎng)毛型毛長(zhǎng)的遺傳相關(guān)分別是0.21、0.26和0.43,本研究結(jié)果高于LI等[30]的研究結(jié)果(0.05),說明內(nèi)蒙古絨山羊在體重上取得了較好的遺傳進(jìn)展。體重與短毛型和中間型毛長(zhǎng)的遺傳相關(guān)屬于中等遺傳相關(guān),但是體重與長(zhǎng)毛型毛長(zhǎng)存在高度的遺傳相關(guān)。并且體重與毛長(zhǎng)的遺傳相關(guān)隨著毛長(zhǎng)的增加而增加。體重與毛長(zhǎng)的表型相關(guān)也較小。說明選擇長(zhǎng)毛型個(gè)體留作種用可以提高體重的遺傳進(jìn)展,有助于肉絨兼用型品種的培育。短毛型、中間和長(zhǎng)毛型個(gè)體的體重與產(chǎn)絨量的遺傳相關(guān)分別是-0.20、0.05和0.26,高于BAI等[23](-0.06)和DAI等[31](0.07)的研究結(jié)果,這可能是由于數(shù)據(jù)量和數(shù)據(jù)結(jié)構(gòu)不同而造成的。內(nèi)蒙古絨山羊不同毛被類型產(chǎn)絨量和體重與毛長(zhǎng)的遺傳相關(guān)不同,并且隨著毛長(zhǎng)的增加其遺傳相關(guān)在逐步增加,長(zhǎng)毛型毛長(zhǎng)與產(chǎn)絨量和體重存在高度的遺傳相關(guān),說明體重和產(chǎn)絨量與毛長(zhǎng)在遺傳過程中存在一因多效或者連鎖遺傳的可能,并且長(zhǎng)毛型個(gè)體的體重與產(chǎn)絨量顯著高于短毛型和中間型。
長(zhǎng)毛型個(gè)體產(chǎn)絨量和體重的表型值最高。不同毛被類型個(gè)體的產(chǎn)絨量和體重的遺傳力不同,長(zhǎng)毛型個(gè)體的體重和產(chǎn)絨量的遺傳力最高,并且各性狀之間的遺傳相關(guān)也最大,因此,選擇長(zhǎng)毛型個(gè)體留種可以加快絨山羊產(chǎn)絨量和體重的遺傳進(jìn)展,實(shí)現(xiàn)羊毛對(duì)產(chǎn)絨量和體重的間接選擇。
[1] PAULA R C D, BORGES R D C G, PIRES I E, BARROS N F D, CRUZ C D. Estimation of genetic parameters in half-sib families ofDehnh. I. Growth characteristics and basic wood density., 1996:309-317.
[2] 賀延玉, 羅玉柱, 程李香, 王繼卿 ,劉秀. 河西絨山羊次級(jí)毛囊超微結(jié)構(gòu)的周期性變化. 中國(guó)農(nóng)業(yè)科學(xué), 2012, 45(13):2779-2786.
HE Y Y, LUO Y Z, CHENG L X,WANG J Q, LIU X. Identification of the secondary follicle cycling of Hexi cashmere goat., 2012, 45(13):2779-2786. (in Chinese)
[3] ?KESSON M, BENSCH S, HASSELQUIST D, TARKA M, HANSSON B. Estimating heritabilities and genetic correlations: Comparing the ‘Animal Model’ with parent-offspring regression using data from a natural population., 2008, 3(3):e1739.
[4] FALCONER D S, MACKAY T F C, FRANKHAM R. Introduction to quantitative genetics (4th)., 1996, 12(7): 280.
[5] HENDRY A P, KINNISON M T. JSTOR: Evolution,. 1999, . 53(6): 1637-1653.
[6] Kruuk L E B. Estimating genetic parameters in natural populations using the "animal model"., 2004, 359(1446):873-890.
[7] 娜清. 內(nèi)蒙古絨山羊不同毛被類型遺傳規(guī)律及其對(duì)重要經(jīng)濟(jì)性狀影響的研究[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué), 2016.
NA Q. Genetic pattern of different types of hair coat in Inner Mongolia Cashmere goats and their effect on important economic traits[D]. Huhhot: Inner Mongolia Agricultural University, 2016. (in Chinese)
[8] MCGREGOR B A, BUTLER K L. Variation of mohair staple length across Angora goat fleeces: implications for animal selection and fleece evaluation., 2009, 147(147): 493-501.
[9] Li S S, Zhang Y, Wang J H, Yang Y F, Miao C, Guo Y F,Zhang Z D, Cao Q C, Shui W Q. Combining untargeted and targeted proteomic strategies for discrimination and quantification of cashmere fibers., 2016, 11(1).
[10] WANG Z Y, WANG Z X, LIU Y, WANG R J, ZHANG Y J, SU R, LI J Q. Genetic evaluation of fiber length and fiber diameter from Inner Mongolia White Cashmere goats at different ages., 2015, 123(1):22-26.
[11] SHAMSALDDINI S, MOHAMMADABADI M R, ESMAILIZADEH A K. Polymorphism of the prolactin gene and its effect on fiber traits in goat., 2016, 52(4): 405-408.
[12] 劉斌, 趙存發(fā), 李玉榮, 高鳳芹,高娃,成立新,孟克巴雅爾,馬躍軍,劉少卿,李金泉.內(nèi)蒙古白絨山羊褪黑激素受體基因SNP與產(chǎn)絨性狀的關(guān)聯(lián). 中國(guó)農(nóng)業(yè)科學(xué), 2012, 45(19):4092-4101.
LIU B, ZHAO C F, LI Y R, GAO F Q ,GAO W, CHENG L X, Mengkebayaer, MA Y J, LIU S Q, LI J Q. Correlations between SNP of MTNR gene and cashmere-producing traits of Inner Mongolia White Cashmere Goat., 2012, 45(19): 4092-4101.
[13] WANG X, CAI B, ZHOU J, ZHU H, NIU Y, MA B, YU H, LEI A, YAN H, SHEN Q, SHI L, ZHAO X, HUA J, HUANG X, QU L, CHEN Y. Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers., 2016, 11(10):e0164640.
[14] YANG M, SONG S, DONG K, CHEN X, LIU X, ROUZI M, ZHAO Q, HE X, PU Y, GUAN W, MA Y, JIANG L. Skin transcriptome reveals the intrinsic molecular mechanisms underlying hair follicle cycling in Cashmere goats under natural and shortened photoperiod conditions., 2017, 7(1).
[15] WANG J, YU P, WANG H, HE Y. HOXC13 and HSP27 expression in skin and the periodic growth of secondary fiber follicles from longdong cashmere goats raised in different production systems., 2017.
[16] JIN M, CAO Q, WANG R, PIAO J, ZHAO F, PIAO J. Molecular characterization and expression pattern of a novel keratin- associated protein 11.1 gene in the liaoning cashmere goat ()., 2016, 30(3): 328-337.
[17] GAO Y, WANG X L , YAN H L, ZENG J , MA S , NIU Y Y , ZHOU G X, JIAN G Y , CHEN Y L. Comparative transcriptome analysis of fetal skin reveals key genes related to hair follicle morphogenesis in cashmere goats., 2016, 11(3):e0151118.
[18] HE X, CHAO Y, ZHOU G, CHEN Y. Fibroblast growth factor 5-short (FGF5s) inhibits the activity of FGF5 in primary and secondary hair follicle dermal papilla cells of cashmere goats., 2016, 575(2 Pt 2):393.
[19] LI X W, WANG R J, WANG Z Y, NA Q, LI H W, WANG Z Y, SU R, ZHANG Y J, LI J Q. The genetic research progress of fiber and wool quality in cashmere goat., 2016.
[20] Publishing S. Sas/Ets 9.2 User's Guide[M]., 2009.
[21] WANG Z Y, WANG R J, LI J Q, ZHANG W G, WURILIGA ,LIU Z H, ZHOU J, WEI Y L, MENG R Q, ZHANG Y J. Modeling genetic covariance structure across ages of fleece traits in an Inner Mongolia cashmere goat population using repeatability and multivariate analysis., 2014, 161(3):1-5.
[22] MOMEN S S. Cashmere quality of Raeini goats kept by nomads in Iran.2012, 104(1-3):10-16.
[23] BAI J Y, JIN-QUAN L I, JIA X P, ZHANG Q, DAO J E. Estimates of genetic parameters and genetic trends for production traits of Inner Mongolian White Cashmere Goat., 2005, 19(1):13-18.
[24] GIFFORD D R, PONZONI R W, LAMPE R J, BURR J. Phenotypic and genetic parameters of fleece traits and live weight in South Australian Angora goats., 1991, 4(3): 293-302.
[25] LI X W, Wang R, Wang Z, NA Q, LI H W, WANG Z Y, SU R, ZHANG Y J, LI J Q, LIU S Q.Study on the estimation of genetic parameters and genetic progress for fleece traits of Inner Mongolian cashmere goats., 2017.
[26] RASHIDI A, SHEIKHAHMADI M, ROSTAMZADEH J, SHRESTHA J N B. Genetic and phenotypic parameter estimates of body weight at different ages and yearling fleece weight in Markhoz goats., 2008, 21(10): 1395-1403.
[27] SNYMAN M A, OLIVIER J J. Repeatability and heritability of objective and subjective fleece traits and body weight in South African Angora goats., 1999, 34(34):103-109.
[28] VISSER C, SNYMAN M A, MARLEK?STER E V, BOVENHUISH. Genetic parameters for physical and quality traits of mohair in South African Angora goats.., 2009, 87(1): 27-32.
[29] ASSAN N. Estimation of covariance components and genetic parameters for weaning weight in Matebele Goat, Sabi, Dorper and Mutton Merino Sheep., 2011.
[30] LI J Q, WANG F, YIN J, LIU S Q, ZHANG Y B, ZHAO C F. Study on genetic parameters for several quantitative traits of Inner Mongolia cashmere goats.2001, 23:211-216.
[31] DAI S C, WANG C X, WANG Z Y, WANG Z X, ZHANG Y J, NA Q, LI J Q. Study on estimation of genetic parameters of economic traits of white cashmere goats in Inner Mongolia., 2012:130-131, 135.
(責(zé)任編輯 林鑒非)
Genetic Parameter Estimation of Cashmere Yield and Body Weight at Different Staple Types of Inner Mongolian Cashmere Goats
LI XueWu, LIU Yan, WANG RuiJun, WANG ZhiYing, NA Qing, LI HongWei, WANG ZhenYu, XU BingBing,SU Rui, ZHANG YanJun, LIU ZhiHong, LI JinQuan
(College of Animal Science/Inner Mongolia Agricultural University/Key Laboratory of Animal Genetics, Breeding and Reproduction of Inner Mongolia Autonomous Region/Key Laboratory of Mutton Sheep Genetics and Breeding of Ministry of Agriculture/ Engineering Research Center for Goat Genetics and Breeding of Inner Mongolia Autonomous Region, Hohhot 010018)
【Objective】Inner Mongolian Cashmere Goats (IMCGs) is an excellently breeding which keeps for both cashmere and meat production by long-term natural selection and artificial selection. And IMCGs Distributed in Erlang, Arbas and Alxa. The cashmere yield (CY) and body weight (BW) were important economic traits, which belonged to quantitative traits and were controlled by the microscopic polygene. The genetic parameters of the CY and the BW of IMCGs were evaluated by quantitative genetic methods. The aim of this study was to investigate the effects of different staple length types on the phenotypic characteristics and genetic parameters of CY and BW for Inner Mongolia cashmere goats, so as to provide a theoretical basis for Cashmere goat breeding. 【Method】In this study, the repetitive data of CY, BW and staple length (SL) of 54 044 Inner Mongolia White Cashmere goats from 1990 to 2014 were collected in a breeding farm. The staple length of IMCGs were divided into three types: short-staple length (≤13cm, SSL), intermediate-staple length (>13cm and ≤22cm, ISL), and long-staple length (>22cm, LSL). Excel software was used to analyze thephenotypic of CY and BW. Then, the REG program of SAS 9.2 was employed to calculate the regression coefficient of CY and BW at different staple length that determined the effects of different staple length types on CY and BW. At last, the average information restricted maximum likelihood (AIREML) method in a multivariate animal model on wombat software was used to analyze variance components and estimate the genetic parameters. 【Result】According to the basic statistical analysis of different types of CY and BW, it was found that the average of staple length at LSL increased 6.20 cm and 13.40 cm than that at ISL and SSL, respectively. The CY of was 105.03 g and 59.85 g higher than that at ISL and SSL, respectively. And the BW of LSL was 8.78 kg and 10.06 kg higher than that at ISL and SSL, respectively. According to the basic statistical analysis CY and BW at different staple types, it was found that the CY (721.15 g) was highest and BW (41.98 kg) was highest weight in three types. The variation coefficient of SL and CY decreased with increasing of staple length, but the coefficient of variation of BW increased with the increasing of staple length. Coefficient of variation of CY and BW were above 27%, which indicated that CY and BW had higher potential for improvement. The result showed that the heritabilities of CY were 0.14, 0.22 and 0.33 in SSL, ISL and LSL, respectively. And the heritabilities of CY in SSL belong to the low heritability, while the heritability of CY in ISL and LSL was the moderate heritability. The heritabilities of BW were 0.10, 0.11 and 0.12 in SSL, ISL and LSL, respectively, which belonged to the low heritability. The heritabilities for CY and BW of LSL were highest in three types. The genetic correlation between CY and BW (-0.20 ~ 0.26), CY and SL (-0.11 ~ 0.37) and BW and SL (0.21-0.43) were increased with increasing of staple length. 【Conclusion】The individuals of LSL had the highest phenotypic value of CY and BW, and the heritability of CY and BW were highest, and had the highest genetic correlation among the traits. Therefore, selecting of LSL could accelerate genetic progress for CY and WT and improve the CY and BW, so this study laid the theoretical foundation for the indirect selection in other important economic traits.
Cashmere goats; different staple types; fleece traits; genetic parameters; indirect selecting
2017-11-20;
2018-02-01
國(guó)家絨毛用羊現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-39-06)、內(nèi)蒙古自治區(qū)計(jì)劃項(xiàng)目、內(nèi)蒙古農(nóng)業(yè)大學(xué)科技成果轉(zhuǎn)化專項(xiàng)資金動(dòng)植物品種選育(培育)項(xiàng)目
李學(xué)武,E-mail:nmgndlxw@163.com。
王瑞軍,E-mail:nmgwrj @126.com。通信作者李金泉,E-mail:lijinquan_nd@126.com
10.3864/j.issn.0578-1752.2018.12.017