• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Electron Donating Ability on Reverse Intersystem Crossing Rate for One Kind of Thermally Activated Delayed Fluorescence Molecules

    2018-06-27 06:48:14MinglngWngJinzhongFnLiliLin
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年3期

    Ming-lng Wng,Jin-zhong Fn,Li-li Lin?

    a.Shandong Province Key Laboratory of Medical Physics and Image Processing Technology,School of Physics and Electronics,Shandong Normal University,Jinan 250014,China

    b.Department of Electronics,Peking University,Beijing 100871,China

    I.INTRODUCTION

    Since the milestone work of Tang et al.in 1987,organic light-emitting diodes(OLEDs)have attracted extensive attentions because of their potential application in flat-panel display and solid-state lighting[1?3].In OLEDs,the singlet to triplet exciton formation ratio is 1:3 due to the spin statistics.For normal fluorescence emitters,radiative decay of the triplet excitons that account for 75%is spin forbidden and only the singlet excitons(25%)can be used for light emitting.To realize the goal of fully harvesting the triplet excitons,phosphorescent materials are developed and have achieved great success[4?7].However,the phosphorescent materials are limited to Ir and Pt complexes,thus both fluorescence and phosphorescence OLEDs have advantages and disadvantages.Recently,Adachi et al.successfully achieved 100%internal quantum efficiency(IQE)by the use of pure organic thermally activated delayed fluorescence(TADF)OLEDs[8?12].For effective TADF-OLEDs,a small energy gap(?ES1-T1)between the lowest singlet excited state(S1)and lowest triplet excited state(T1)is expected,which can be achieved by decreasing the overlap between highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO).According to the equation,where kBdenotes the Boltzmann constant and T is temperature,a small?ES1-T1can facilitate the reverse intersystem crossing(RISC)process[13].For improving utilization of excitons,one effective way is to convert triplet excitons into singlet excitons through a rapid RISC process[14?16].Moreover,the spin-orbit coupling coefficient Hsobetween S1and T1is also a key factor that influences the conversion rate,so two important factors Hsoand?ES1-T1should be determined for realizing high efficient RISC process.

    As we know,molecular structures determine their photophysical properties.In order to illustrate the influence of modification in donor groups of TADF molecules on their transition properties,?ES1-T1,ISC and RISC rates,here we adopt the xanthone(XTN)which is well known for its involved solvent and temperature dependent photophysics as electron acceptor unit[17],the carbazole,phenoxazine(PXZ),9,9-dimethyl-9,10-dihydroacridine(DMAC)and phenothiazine(PTZ)as well as their derivatives which is substituted by diphenylamine as electron donating part to construct carbazole-XTN(a),PXZ-XTN(b),DMACXTN(c),PTZ-XTN(d)as well as carbazole-II-XTN(e),PXZ-II-XTN(f),DMAC-II-XTN(g),PTZ-II-XTN(h),all studied structures are shown in FIG.1.Thus,we can analyze the effect of different electron donating ability and delocalization of frontier molecular orbitals on?ES1-T1,ISC and RISC rates.Furthermore,we can determine the dominant factor in realizing efficient RISC process and provide some suggestions for designing high efficient TADF emitters.

    II.COMPUTATION

    The geometry optimizations and frequency calculations are performed for the ground and excited states by using density functional theory(DFT)and timedependent density functional theory(TD-DFT)with the B3LYP functional and 6-31G(d)basis set respectively.No imaginary frequencies are found which can help one to ensure the structure is stabilized.All calculations are carried out by Gaussian 16 package[18].Besides,we not only draw the distribution of HOMO and LUMO but also analyze the overlap between them by Multiwfn(a multifunctional wavefunction analyzer)[19].Moreover,based on the analysis of the excitation component of S1state,the HOMO-LUMO dominates the transition for all studied molecules,so the distribution of HOMO(LUMO)can be represented by the distribution of hole(electron).Moreover,we analyze the delocalization of hole by the following equation Xhole=∫xρhole(r)dr,where x is component of r.The root mean square deviation(RMSD)of hole is used to characterize its distribution breadth.Meanwhile,the coupling coefficients ofandare calculated based on the optimized structures of T1,T2and T3respectively,all results can be acquired by Dalton 2013 package[20].

    Finally,the intersystem crossing rate constant from initial singlet/triplet to triplet/singlet states can be calculated based on the perturbation theory as

    FIG.1 Geometry structures of all studied molecules.

    Tif,k(l)is the mixed spin-orbit and non-radiative couplings between two electronic states for the k(l)th normal mode[21,22],

    Eq.(6)and Eq.(7)are from Ref.[23]and Ref.[24]respectively.

    For the first-order contribution,by applying the thermal vibration correlation function ρIC(t,T),thesimplest and the most commonly employed intersystem crossing rate formalism can be written as:

    TABLE I Dihedral angle and bond length(marked out in FIG.1)between donor and acceptor for S0,S1and T1are listed respectively based on optimized structures.

    All these calculations for ISC and RISC rates are performed by MOMAP(molecular materials property prediction package)promoted by the Institute of Chemistry Chinese Academy of Sciences and Department of Chemistry in Tsinghua University.Both the methodology and application of this formalism can be found in Peng et al’s and Shuai et al’s.works[25?30].

    III.RESULTS AND DISCUSSION

    A.Geometry structures

    According to the method discussed in computational details,the geometry structures of S0,S1and T1for all investigated molecules are optimized by B3LYP functional.Basic molecular structures are shown in FIG.1 and the main geometric parameters are listed in Table I.One can see that different donor units change the dihedral angle and bond length(marked out in FIG.1)between donor and acceptor for S0,S1and T1states.For a more visible comparison,FIG.2 is plotted.Combining Table I and FIG.2,the dihedral angle(θ)is almost unchanged for S1and T1states comparing all studied molecules except for carbazole-XTN,this indicates a small geometry variation when molecule changes from S1state to T1state.Meanwhile,the dihedral angles in S0,S1and T1states are similar for DMAC-XTN and DMAC-II-XTN,this illustrates a small change of reorganization energy from S1to S0and T1to S0.Besides,the bond length between donor and acceptor is slightly changed for S1and T1states compared all studied molecules except for molecule Carbazole-XTN.The bond length of all molecules in S1state is the longest one compared with molecules in S0and T1states,this indicates a decreased interaction between donor and acceptor unit for S1state.Moreover,comparing the bond length of the first four molecules with their diphenylamine substitutions in their S0,S1and T1states respectively,one can see that the latter four molecular bond lengths are reduced comparing with the former four molecules except for the T1states of carbazole-XTN and carbazole-II-XTN.All these results suggest that diphenylamine substitution can decrease the bond length between donor and acceptor unit while little effect on the dihedral angle between them.

    FIG.2 (a)Dihedral angles and(b)bond length between donor and acceptor for optimized S0,S1and T1states of all studied molecules respectively.

    TABLE II Atomic charges of investigated molecules in S0 and S1using NPA method.?is the charge difference between S1and S0states.

    Moreover,the electron-donating ability affects molecular photophysical properties.Atomic charges of the S0and S1states for the eight molecules are calculated by natural population analysis(NPA)method,all data are collected in Table II.From Table II,charges of the donor group for the S0and S1states are negative and positive respectively for all studied molecules,while opposite results are found for the acceptor unit.In addition,the charge difference(?)between S1and S0is calculated,we use the value of?to measure the electron donating ability,the larger the charge difference is,the stronger the electron-donating ability is.Thus,we illustrate the effect of different electron-donating to?ES1-T1and transition properties.Moreover,comparing the former four molecules and the corresponding ones with diphenylamine added in donor unit,the effect of delocalization of molecular orbital to photophysical properties can be analyzed.

    B.Frontier molecular orbital properties

    Composition of frontier molecular orbital(FMO)is closely related to the molecular excitation propertiessuch as absorption and emission properties.Moreover,ultrafast excited state dynamics investigation is a research hotspot[31,32].In order to get a deep understanding of photophysical behavior of all investigated compounds,analysis of FMO at S0state is performed.Distributions of HOMO and LUMO as well as their energy levels are plotted in FIG.3.One can see that the HOMO and LUMO are localized in donor and acceptor unit respectively,and small orbital overlap between HOMO and LUMO is found.According to the following equation

    TABLE III Overlap between HOMO and LUMO(S)as well as the value of RMSD of hole(δhole)and electron(δelectron)with the unit of?A are listed.

    a small?ES1-T1can be expected.Moreover,the delocalization of frontier orbitals should also be considered.It is reasonable to obtain the same overlap between the HOMO and LUMO for two different molecules such as,one which has the electronic density of both orbitals confined to one group of the molecule and a second for which the density of both orbitals is delocalized over the whole molecular sca ff old.This degree of spatial confinement is important.Comparing molecule Carbazole-XTN(a)with carbazole-II-XTN(e),PXZ-XTN(b)with PXZ-II-XTN(f),DMAC-XTN(c)with DMAC-IIXTN(g)and PTZ-XTN(d)with PTZ-II-XTN(h),one can see that the energy of LUMO is almost unchanged while the energy of HOMO is increased,which brings a decreased HOMO-LUMO energy gap for later four molecules.Moreover,the diphenylamine in donor part not only adjusts the HOMO-LUMO energy level but also increases the delocalization of HOMO.In order to achieve quantitative comparison,the index of S,δholeand δelectronare used to characterize the HOMO-LUMO overlap as well as the delocalization of HOMO and LUMO respectively,all calculated data are collected in Table III.Furthermore,we analyze the electrondonating ability(?)due to its role in determining the molecular orbital properties.Relationship between S and?is shown in FIG.4.An inversely proportional relationship is graphed,namely,the stronger the electron-donating ability is,the smaller the HOMO-LUMO overlap is.Through comparing the value of δholefor later four molecules with the former four molecules,the value of δholeis increased when diphenylamine is added in donor unit,so the later four molecules possess larger delocalization of HOMO.For the former four molecules,the δelectrondecreases((a)>(b)>(c)>(d))with the donating ability increases((a)<(b)<(c)<(d)).While for the later four molecules,similar condition is found with the donating ability is(g)≈(h)>(f)>(e)and the δelectronis(h)≈(g)<(f)<(e).Thus,an effective way to decrease?ES1-T1is illustrated that either to increase the electron donating ability or enlarge the delocalization of HOMO can bring a small?ES1-T1.

    FIG.3 Calculated energy levels,energy gaps(in eV),and orbital composition distributions of the HOMO and LUMO for all molecules(isovalue=0.02).

    FIG.4 Relationship between charge difference(?)and HOMO-LUMO overlap(S).

    In order to determine the dominant factor in decreasing the?ES1-T1,relationship between HOMO-LUMO overlap,delocalization of molecular orbital and?ES1-T1is analyzed.Values of?ES1-T1for all studies molecules are calculated by TD-DFT method through optimizing excited state geometries,and the adiabatic excitation energies of S1and T1are corrected by zero point vibrational energy(ZPVE).All data are collected in Table IV,and we elaborate the effect of HOMO-LUMO overlap and delocalization of HOMO on?ES1-T1.Comparing the value of S,δholeand?ES1-T1between carbazole-XTN(a)and carbazole-II-XTN(e),DMAC-XTN(c)and DMAC-II-XTN(g)as well as PTZ-XTN(d)and PTZ-II-XTN(h),one know that the S is decreased,while the δholeis increased for molecules with diphenylamine added in donor unit,and a decreased?ES1-T1is obtained.While for PXZ-XTN(b)and PXZ-IIXTN(f),S and δholeare all increased,and a decreased?ES1-T1is also found.This means that the additional diphenylamine in donor part can decrease?ES1-T1.Through above-mentioned comparisons,we can come to the conclusion that the enlarge delocalization of molecular orbitals with large separation between HOMO and LUMO can bring a small?ES1-T1.

    C.Transition properties

    In order to investigate the electronic transition nature of all studied compounds,TD-DFT calculations are performed based on their optimized S0states.The vertical excitation energy of S1(EVA(S1)),T1(EVA(T1))and their gaps(Evert)as well as the adiabatic excitation energies of S1(E0-0(S1)),T1(E0-0(T1))and theirgaps(?ES1-T1)are all collected in Table IV.Results show that the value of Evertis inversely proportional to electron-donating ability,the stronger the electrondonating ability is,the smaller the Evertis.Moreover,we calculate the energy landscape of single and triplet states to determine the intersystem crossing and reverse intersystem crossing processes,and their transition properties are analyzed by natural transition orbital(NTO)method.As shown in FIG.5,the energy of T1is lower than S1and no extra energy levels are found between them for studied molecules except for carbazole-XTN.S1and T1states all possess charge transfer(CT)properties which can facilitate the reverse conversion from T1to S1[33,34].For carbazole-XTN,T2and T3are also lower than S1,thus the ISC and RISC processes occur between S1and T2as well as S1and T3.Moreover,T2and T3possess localized excitation(LE)properties,this feature can also affect the ISC and RISC processes[35].Corresponding data are shown in the following section.

    TABLE IV Vertical excitation energies of S1(EVA(S1)),T1(EVA(T1))and their gaps(Evert)as well as their adiabatic excitation energies(with ZPVE correction)of S1(E0-0(S1))and T1(E0-0(T1))and their gaps(?ES1-T1).Units are in eV.

    TABLE V Spin-orbit coupling constants(cm?1)between S1and T1for studied molecules.

    D.ISC and RISC rates

    As we all know,ISC and RISC processes play a crucial role in efficient TADF-OLEDs.Through abovementioned results,we know that?ES1-T1is largely dependent on the frontier orbital overlap and delocalization.The transition nature of S1and T1(T2or T3)also plays an important role in achieving efficient ISC and RISC processes.In order to calculate the ISC and RISC rate parameters,spin-orbit coupling coefficients(Hso)between singlet and triplet states are acquired by Dalton 2013 package,corresponding data are collected in Table V.Further,the ISC and RISC rates between S1and T1are calculated by MOMAP package,and results are summarized in Table VI.From Table V and Table VI,one can see that Hsoof carbazole-XTN between S1and T1is the biggest one(1.75 cm?1)among all studied molecules,but the ISC and RISC rates are smaller than that of remainders,this is due to its large?ES1-T1(0.141 eV).So we investigate the ISC and RISC processes between S1and T2as well as S1and T3for carbazole-XTN,and all data are summarized in Table VII.For carbazole-XTN,the spinorbit coupling coefficientsare larger than that ofwith decreased adiabatic energy gap.However,the ISC and RISC rates between S1and T3are comparable with these between S1and T1,this is related to the LE transition nature of T3.Gibson and Penfold found that3LE often brings a stable triplet state while3CT can promote the reverse conversion from3CT to1CT[36].Furthermore,we investigate the relationship between spin-orbit coupling coefficient Hso,?ES1-T1,and RISC rate for studied molecules except for the carbazole-XTN,corresponding results are shown in FIG.6.A liner relationship

    TABLE VI The calculated intersystem crossing rate and reverse intersystem crossing rates for all molecules with the unit of s?1.

    FIG.5 The energy levels and molecular orbital characters of different excited states for all studied molecules.The value above every arrow represents the ratio in the corresponding transition.

    TABLE VII Spin-orbit coupling constants?andas well as the ISC and RISC rates are listed with the unit of s?1.

    TABLE VII Spin-orbit coupling constants?andas well as the ISC and RISC rates are listed with the unit of s?1.

    ?S1|?Hso|T2?5.888 ISC(S1→T2)1.339×106?S1|?Hso|T3?2.307 ISC(S1→T3)8.274×103 RISC(T2→S1)3.434×105 RISC(T3→S1)7.296×102

    FIG.6 Relationship betweenand RISC rate.

    IV.CONCLUSION

    In this work,the electronic structures,molecular orbital properties,energy gaps,excitation properties and RISC process of all eight molecules are investigated by DFT and TDDFT methods.Through our investigations,the diphenylamine substitution in the donor unit has little effect on the dihedral angle between donor and acceptor unit,but can decrease the bond length between them except for the T1state of Carbazole-XTN.The electron donating ability,HOMO-LUMO overlap and frontier molecular orbital delocalization are quantitatively calculated.Results show that the overlap between HOMO and LUMO is decreased when the electron donating ability of donor groups is increased.As the diphenylamine groups are added in donor part,the delocalization of HOMO is enlarged,this brings a decreased energy gap between S1and T1state.Moreover,the spin-orbit coupling coefficient plays a significant role in realizing high efficient RISC process,large value ofcan accelerate the exciton conversion from T1to S1.All our investigated molecules possess small?ES1-T1and fast RISC rates,these molecules can be regarded as promising candidates for efficient TADF molecules.Furthermore,a wise molecular design strategy that enlarges the delocalization of frontier molecular orbitals with large separation between HOMO and LUMO,is proposed to achieve a small?ES1-T1.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.11374195 and No.21403133),the Taishan Scholar Project of Shandong Province,the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province(No.BS2014CL001),and the General Financial Grant from the China Postdoctoral Science Foundation(No.2014M560571).Great thanks to Professor Yi Luo at University of Science and Technology of China,Professor Zhi-gang Shuai at Tsinghua University and Qian Peng at Institute of Chemistry,Chinese Academy of Sciences for their helpful suggestions in our calculation.Thanks to Professor Ying-li Niu at Beijing Jiaotong University for his great help in the usage of MOMAP.

    [1]C.W.Tang and S.A.VanSlyke,Appl.Phys.Lett.51,913(1987).

    [2]J.H.Jou,S.Kumar,A.Agrawal,T.H.Li,and S.Sahoo,J.Mater.Chem.C 3,2974(2015).

    [3]S.Xu,R.F.Chen,C.Zheng,and W.Huang,Adv.Mater.28,9920(2016).

    [4]C.Adachi,M.A.Baldo,M.E.Thompson,and S.R.Forrest,J.Appl.Phys.90,5048(2001).

    [5]Z.Kuang,X.Wang,Z.Wang,G.He,Q.Guo,L.He,and A.Xia,Chin.J.Chem.Phys.30,259(2017).

    [6]C.Li,L.Duan,D.Zhang,and Y.Qiu,Acs.Appl.Mater.Inter.7,15154(2015).

    [7]S.Cao,L.Hao,W.Y.Lai,H.Zhang,Z.Yu,X.Zhang,X.Liu,and W.Huang,J.Mater.Chem.C 4,4709(2016).

    [8]H.Uoyama,K.Goushi,K.Shizu,H.Nomura,and C.Adachi,Nature 492,234(2012).

    [9]J.Guo,X.L.Li,H.Nie,W.Luo,R.Hu,A.Qin,Z.Zhao,S.J.Su,and B.Z.Tang,Chem.Mater.29,3623(2017).

    [10]J.Guo,X.L.Li,H.Nie,W.Luo,S.Gan,S.Hu,R.Hu,A.Qin,Z.Zhao,S.J.Su,and B.Z.Tang,Adv.Funct.Mater.27,1606458(2017).

    [11]L.Yu,Z.Wu,C.Zhong,G.Xie,K.Wu,D.Ma,and C.Yang,Dyes.Pigments.141,325(2017).

    [12]J.Luo,S.Gong,T.Zhang,C.Zhong,G.Xie,Z.H.Lu,and C.Yang,Dyes.Pigments.147,350(2017).

    [13]T.Sato,M.Uejima,K.Tanaka,H.Kaji,and C.Adachi,J.Mater.Chem.C 3,870(2015).

    [14]Q.S.Zhang,H.Kuwabara,W.J.Potscavage Jr.,S.P.Huang,Y.Hatae,T.Shibata,and C.Adachi,J.Am.Chem.Soc.136,18070(2014).

    [15]J.Z.Fan,S.Qiu,L.L.Lin,and C.K.Wang,Chin.J.Chem.Phys.29,291(2016).

    [16]J.Fan,L.Cai,L.Lin,and C.Wang,Chem.Phys.Lett.664,33(2016).

    [17]M.Y.Wong and E.Zysman-Colman,J.Mater.Chem.C 29,1605444(2017).

    [18]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani,V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai,T.Vreven,J.A.Montgomery Jr.,J.E.Peralta,F.Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N.Kudin,V.N.Staroverov,R.Kobayashi,J.Normand,K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,N.J.Millam,M.Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochter-ski,R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A.Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A.D.Daniels,?.Farkas,J.B.Foresman,J.V.Ortiz,J.Cioslowski,and D.J.Fox,Gaussian 16,Revision A.03,Wallingford CT,USA:Gaussian Inc.(2016).

    [19]T.Lu and F.W.Chen,J.Comput.Chem.33,580(2012).

    [20]Dalton,a Molecular Electronic Structure Program,http://daltonprogram.org.

    [21]Y.L.Niu,Q.Peng,C.M.Deng,X.Gao,and Z.G.Shuai,J.Phys.Chem.A 114,7817(2010).

    [22]Q.Peng,Q.H.Shi,Y.L.Niu,Y.P.Yi,S.R.Sun,W.Li,W.Q,and Z.G Shuai,J.Mater.Chem.C.4,6829(2016).

    [23]Q.Peng,Y.L.Niu,Q.H.Shi,X.Gao,and Z.G.Shuai,J.Chem.Theory.Comput.9,1132(2013).

    [24]T.Zhang,H.L.Ma,Y.L.Niu,W.Q.Li,D.Wang,Q.Peng,Z.G.Shuai,and W.Z.Liang,J.Phys.Chem.C 119,5040(2015).

    [25]Z.G.Shuai and Q.Peng,Phys.Rep.537,123(2014).

    [26]J.Z.Fan,L.Cai,L.L.Lin,and C.K.Wang,J.Phys.Chem.A 120,9422(2016).

    [27]J.Fan,L.Lin,and C.K.Wang,J.Mater.Chem.C 5,8390(2017).

    [28]L.Lin,Z.Wang,J.Fan,and C.Wang,Org.Electron.41,7(2017).

    [29]J.Fan,L.Lin,and C.K.Wang,Phys.Chem.Chem.Phys.19,30147(2017).

    [30]J.Fan,L.Cai,L.Lin,and C.K.Wang,Phys.Chem.Chem.Phys.19,29872(2017).

    [31]X.C.Li,N.Sui,Q.H.Liu,Q.L.Yuan,and Y.H.Wang,Chin.J.Chem.Phys.29,389(2016).

    [32]Y.P.Wang,S.Zhang,S.m.Sun,K.Liu,and B.Zhang,Chin.J.Chem.Phys.26,651(2013).

    [33]M.K.Etherington,J.Gibson,H.F.Higginbotham,T.J.Penfold,and A.P.Monkman,Nat.Commun.7,13680(2016).

    [34]Y.Gao,S.Zhang,Y.Pan,L.Yao,H.Liu,Y.Guo,Q.Gu,B.Yang,and Y.Ma,Phys.Chem.Chem.Phys.18,24176(2016).

    [35]J.Gibson,A.P.Monkman,and T.J.Penfold,ChemPhysChem 17,2956(2016).

    [36]J.Gibson and T.J.Penfold,Phys.Chem.Chem.Phys.19,8428(2017).

    欧美成人性av电影在线观看| 精品免费久久久久久久清纯| 亚洲精品美女久久av网站| 精华霜和精华液先用哪个| 成人特级黄色片久久久久久久| 久久久久国产精品人妻aⅴ院| 亚洲午夜精品一区,二区,三区| 亚洲精品一卡2卡三卡4卡5卡| 成人av一区二区三区在线看| ponron亚洲| 国产男靠女视频免费网站| 亚洲精品久久成人aⅴ小说| www.999成人在线观看| 黄色视频不卡| 午夜亚洲福利在线播放| 18禁裸乳无遮挡免费网站照片 | 91老司机精品| 国产精品免费视频内射| 少妇被粗大的猛进出69影院| 在线观看免费日韩欧美大片| 啦啦啦观看免费观看视频高清| 日韩中文字幕欧美一区二区| 久久精品国产清高在天天线| 中亚洲国语对白在线视频| 久久久久国内视频| 国产人伦9x9x在线观看| 日日夜夜操网爽| 亚洲av五月六月丁香网| 一进一出好大好爽视频| 久久九九热精品免费| 国产片内射在线| 国语自产精品视频在线第100页| 天天躁狠狠躁夜夜躁狠狠躁| 满18在线观看网站| svipshipincom国产片| 曰老女人黄片| 免费电影在线观看免费观看| 亚洲色图 男人天堂 中文字幕| 最近最新中文字幕大全电影3 | 国内毛片毛片毛片毛片毛片| 欧美黄色淫秽网站| 9191精品国产免费久久| 欧美av亚洲av综合av国产av| 亚洲黑人精品在线| 欧美大码av| 麻豆成人av在线观看| 久久亚洲精品不卡| 国产精华一区二区三区| 日日爽夜夜爽网站| 亚洲真实伦在线观看| 亚洲狠狠婷婷综合久久图片| 老司机福利观看| 日韩精品中文字幕看吧| 欧美午夜高清在线| 一本一本综合久久| 久久国产亚洲av麻豆专区| 亚洲成人久久性| 亚洲精品美女久久久久99蜜臀| 禁无遮挡网站| 夜夜躁狠狠躁天天躁| 国产午夜福利久久久久久| 亚洲av美国av| 三级毛片av免费| 午夜久久久久精精品| 最新美女视频免费是黄的| 日本一本二区三区精品| 搡老熟女国产l中国老女人| 欧美最黄视频在线播放免费| 在线播放国产精品三级| 成人亚洲精品av一区二区| 日韩欧美国产在线观看| 国内精品久久久久精免费| 搡老熟女国产l中国老女人| av免费在线观看网站| 欧美+亚洲+日韩+国产| 两个人免费观看高清视频| 久久久久久久午夜电影| 国产精品 国内视频| 美女 人体艺术 gogo| 中文字幕最新亚洲高清| 91在线观看av| 自线自在国产av| 欧美性猛交黑人性爽| 国产成人一区二区三区免费视频网站| 亚洲国产精品合色在线| 88av欧美| 一本一本综合久久| 国产伦在线观看视频一区| 久久国产乱子伦精品免费另类| 18禁美女被吸乳视频| 老司机福利观看| 变态另类成人亚洲欧美熟女| 国产午夜精品久久久久久| 可以在线观看的亚洲视频| 色综合婷婷激情| 人人妻人人澡欧美一区二区| 国产精品 国内视频| 最新美女视频免费是黄的| 亚洲精品国产区一区二| 欧美日韩亚洲综合一区二区三区_| 成人国语在线视频| 国产视频一区二区在线看| 99热只有精品国产| 中文字幕人妻熟女乱码| 日本熟妇午夜| 国产91精品成人一区二区三区| 国产亚洲av嫩草精品影院| 怎么达到女性高潮| 2021天堂中文幕一二区在线观 | 一级黄色大片毛片| 国产亚洲欧美在线一区二区| 精品久久蜜臀av无| 国产亚洲精品久久久久久毛片| 国产精品一区二区三区四区久久 | 久久香蕉精品热| 欧美黑人欧美精品刺激| 国产日本99.免费观看| 日韩国内少妇激情av| 国产一区在线观看成人免费| 日韩大码丰满熟妇| 国产激情偷乱视频一区二区| 18禁观看日本| 香蕉丝袜av| 校园春色视频在线观看| 日韩中文字幕欧美一区二区| 99国产综合亚洲精品| 亚洲第一欧美日韩一区二区三区| 少妇 在线观看| 久久中文看片网| 欧美日韩一级在线毛片| 亚洲专区字幕在线| 欧美午夜高清在线| 热99re8久久精品国产| 亚洲一区二区三区不卡视频| 国产免费av片在线观看野外av| 禁无遮挡网站| 中文字幕高清在线视频| 久热这里只有精品99| 制服诱惑二区| 中文字幕精品免费在线观看视频| 亚洲成av片中文字幕在线观看| bbb黄色大片| 午夜日韩欧美国产| 亚洲片人在线观看| 给我免费播放毛片高清在线观看| 精品卡一卡二卡四卡免费| 精品国产一区二区三区四区第35| 禁无遮挡网站| 熟妇人妻久久中文字幕3abv| 国产精品免费一区二区三区在线| 99久久精品国产亚洲精品| 色老头精品视频在线观看| 久久精品国产清高在天天线| 很黄的视频免费| www日本在线高清视频| 国产一卡二卡三卡精品| 久久这里只有精品19| 99国产精品一区二区三区| avwww免费| 嫁个100分男人电影在线观看| 窝窝影院91人妻| 精品久久久久久,| 亚洲五月天丁香| 脱女人内裤的视频| 一区福利在线观看| 亚洲人成伊人成综合网2020| 亚洲三区欧美一区| 国产伦人伦偷精品视频| 91老司机精品| av在线播放免费不卡| 国产色视频综合| 成人精品一区二区免费| 日韩欧美一区视频在线观看| 日本撒尿小便嘘嘘汇集6| 白带黄色成豆腐渣| 淫秽高清视频在线观看| 黄色丝袜av网址大全| 999精品在线视频| 亚洲性夜色夜夜综合| 国产激情久久老熟女| 亚洲精品中文字幕在线视频| 国产一区二区三区在线臀色熟女| 天堂影院成人在线观看| 午夜福利在线在线| 在线观看免费日韩欧美大片| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看一区二区三区| 国产熟女午夜一区二区三区| 老司机深夜福利视频在线观看| 日韩欧美一区二区三区在线观看| 久久久久久亚洲精品国产蜜桃av| 老司机靠b影院| 免费女性裸体啪啪无遮挡网站| 中文在线观看免费www的网站 | 亚洲性夜色夜夜综合| 国内久久婷婷六月综合欲色啪| 成人av一区二区三区在线看| 69av精品久久久久久| 黄片播放在线免费| 一区福利在线观看| 亚洲免费av在线视频| 黄网站色视频无遮挡免费观看| 精品久久久久久久毛片微露脸| 在线播放国产精品三级| 97人妻精品一区二区三区麻豆 | 精品福利观看| 亚洲人成77777在线视频| 日本在线视频免费播放| 日韩成人在线观看一区二区三区| 中文字幕人妻熟女乱码| 色婷婷久久久亚洲欧美| 男人舔女人下体高潮全视频| 91成年电影在线观看| 久99久视频精品免费| 亚洲第一电影网av| 久久久久久久久免费视频了| 黑人巨大精品欧美一区二区mp4| 少妇被粗大的猛进出69影院| 亚洲成av片中文字幕在线观看| 母亲3免费完整高清在线观看| 国产成人av激情在线播放| 久久人人精品亚洲av| 99riav亚洲国产免费| 一级毛片高清免费大全| 亚洲成人国产一区在线观看| 午夜久久久在线观看| 自线自在国产av| 亚洲精品久久国产高清桃花| 亚洲va日本ⅴa欧美va伊人久久| АⅤ资源中文在线天堂| 精品久久久久久久久久久久久 | 禁无遮挡网站| 国产精品免费视频内射| 午夜亚洲福利在线播放| 国产精品电影一区二区三区| 日本 av在线| 美女 人体艺术 gogo| 国产视频一区二区在线看| 日本免费a在线| 看免费av毛片| 久久久久久久久久黄片| 91麻豆av在线| 免费看a级黄色片| 国产色视频综合| 又黄又爽又免费观看的视频| 免费看美女性在线毛片视频| 波多野结衣巨乳人妻| 国产精品久久久人人做人人爽| 国产日本99.免费观看| 久久久久久免费高清国产稀缺| 狠狠狠狠99中文字幕| 看片在线看免费视频| 一区二区日韩欧美中文字幕| 婷婷丁香在线五月| 亚洲自拍偷在线| 精品欧美国产一区二区三| 激情在线观看视频在线高清| 少妇裸体淫交视频免费看高清 | 亚洲自偷自拍图片 自拍| 99在线人妻在线中文字幕| 色尼玛亚洲综合影院| 国产三级在线视频| 中文字幕精品亚洲无线码一区 | 69av精品久久久久久| 色综合婷婷激情| 男女床上黄色一级片免费看| 中文在线观看免费www的网站 | 久久久久久久精品吃奶| 日韩国内少妇激情av| 久久久久久久午夜电影| 男女那种视频在线观看| 欧美午夜高清在线| 高清在线国产一区| 中文字幕人妻熟女乱码| 一边摸一边做爽爽视频免费| 中亚洲国语对白在线视频| 一本大道久久a久久精品| 亚洲精品粉嫩美女一区| 国内精品久久久久精免费| 日韩欧美一区视频在线观看| 午夜福利成人在线免费观看| 精华霜和精华液先用哪个| 最近在线观看免费完整版| 侵犯人妻中文字幕一二三四区| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久人妻蜜臀av| 国产一卡二卡三卡精品| 午夜成年电影在线免费观看| 国产又色又爽无遮挡免费看| 99久久精品国产亚洲精品| 黄色 视频免费看| 久久精品成人免费网站| 国产精品1区2区在线观看.| 日韩欧美免费精品| 亚洲一区二区三区不卡视频| av在线天堂中文字幕| 日日爽夜夜爽网站| 亚洲精品国产精品久久久不卡| 天堂影院成人在线观看| 国产欧美日韩一区二区三| 婷婷丁香在线五月| 亚洲第一av免费看| 91麻豆av在线| 中文字幕人成人乱码亚洲影| 亚洲欧美精品综合久久99| 亚洲精品在线观看二区| 免费在线观看亚洲国产| 人人妻,人人澡人人爽秒播| 麻豆国产av国片精品| 一级黄色大片毛片| 久久久久国内视频| 欧美成人午夜精品| a在线观看视频网站| 亚洲一区中文字幕在线| 欧美成人性av电影在线观看| 又黄又爽又免费观看的视频| 69av精品久久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 极品教师在线免费播放| 国产成人av激情在线播放| 日韩欧美国产一区二区入口| 久久久国产成人免费| 激情在线观看视频在线高清| 久久久久久久午夜电影| 男女那种视频在线观看| 波多野结衣高清作品| 九色国产91popny在线| 他把我摸到了高潮在线观看| 亚洲天堂国产精品一区在线| 黄片小视频在线播放| www.熟女人妻精品国产| 国产精品香港三级国产av潘金莲| 老司机福利观看| 无遮挡黄片免费观看| 中文字幕精品亚洲无线码一区 | 91国产中文字幕| 老司机在亚洲福利影院| 国产精品 国内视频| 亚洲午夜精品一区,二区,三区| 一夜夜www| 久久精品亚洲精品国产色婷小说| 搡老妇女老女人老熟妇| www日本在线高清视频| 性色av乱码一区二区三区2| 国产亚洲精品av在线| 视频区欧美日本亚洲| 丁香六月欧美| 久久久国产精品麻豆| 国产激情偷乱视频一区二区| 一个人免费在线观看的高清视频| 9191精品国产免费久久| 免费看美女性在线毛片视频| 欧美性长视频在线观看| 亚洲av熟女| 国产免费男女视频| 欧美zozozo另类| 不卡av一区二区三区| 丝袜美腿诱惑在线| 国产精品乱码一区二三区的特点| 国产高清有码在线观看视频 | 久久香蕉精品热| 一边摸一边抽搐一进一小说| 亚洲三区欧美一区| 好男人在线观看高清免费视频 | 欧美黄色淫秽网站| 国产又爽黄色视频| 亚洲国产精品久久男人天堂| 国产精品久久久久久精品电影 | 久久久国产精品麻豆| 99国产精品99久久久久| 国产一区二区三区在线臀色熟女| 亚洲一区二区三区不卡视频| а√天堂www在线а√下载| 欧美 亚洲 国产 日韩一| 一夜夜www| 欧美国产精品va在线观看不卡| 日本a在线网址| 少妇熟女aⅴ在线视频| 欧美成人性av电影在线观看| 国产精品98久久久久久宅男小说| a在线观看视频网站| 黄网站色视频无遮挡免费观看| 男人的好看免费观看在线视频 | 一二三四社区在线视频社区8| 两个人看的免费小视频| 日韩三级视频一区二区三区| 亚洲午夜理论影院| 51午夜福利影视在线观看| 超碰成人久久| 亚洲五月天丁香| 岛国在线观看网站| 88av欧美| 亚洲成国产人片在线观看| 久久国产精品影院| 美女高潮到喷水免费观看| 欧美中文综合在线视频| 18禁观看日本| 两个人视频免费观看高清| 高清在线国产一区| 欧美又色又爽又黄视频| 久久久久九九精品影院| 少妇熟女aⅴ在线视频| 亚洲中文av在线| 天堂影院成人在线观看| 亚洲国产精品sss在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 白带黄色成豆腐渣| av在线天堂中文字幕| 高潮久久久久久久久久久不卡| 男人舔女人下体高潮全视频| 精品无人区乱码1区二区| 国产视频一区二区在线看| 18禁美女被吸乳视频| 男男h啪啪无遮挡| 男女床上黄色一级片免费看| √禁漫天堂资源中文www| 色在线成人网| 国产成人一区二区三区免费视频网站| 欧美av亚洲av综合av国产av| 欧美国产日韩亚洲一区| 十八禁网站免费在线| 成人一区二区视频在线观看| 一个人免费在线观看的高清视频| 在线十欧美十亚洲十日本专区| 亚洲国产精品成人综合色| 777久久人妻少妇嫩草av网站| 一边摸一边抽搐一进一小说| 国产亚洲av高清不卡| 亚洲aⅴ乱码一区二区在线播放 | 精品少妇一区二区三区视频日本电影| 黄色视频,在线免费观看| 怎么达到女性高潮| 中文字幕人成人乱码亚洲影| tocl精华| 99久久99久久久精品蜜桃| 色在线成人网| 大型av网站在线播放| 在线国产一区二区在线| 久久久水蜜桃国产精品网| 一本精品99久久精品77| 亚洲片人在线观看| 成熟少妇高潮喷水视频| 国产精品久久久久久亚洲av鲁大| 亚洲国产精品成人综合色| 精品一区二区三区av网在线观看| 精品国产一区二区三区四区第35| 婷婷丁香在线五月| 神马国产精品三级电影在线观看 | 国内毛片毛片毛片毛片毛片| 日韩大尺度精品在线看网址| 999久久久精品免费观看国产| 欧美激情极品国产一区二区三区| 久久久久精品国产欧美久久久| 日韩成人在线观看一区二区三区| 18禁黄网站禁片午夜丰满| 妹子高潮喷水视频| 亚洲五月婷婷丁香| 成年版毛片免费区| 亚洲精品中文字幕一二三四区| 91在线观看av| 国产亚洲欧美在线一区二区| 亚洲在线自拍视频| 免费电影在线观看免费观看| 亚洲第一电影网av| 久久天堂一区二区三区四区| 制服人妻中文乱码| 国产av一区二区精品久久| 精品午夜福利视频在线观看一区| 大型黄色视频在线免费观看| 大香蕉久久成人网| 黄色成人免费大全| 亚洲一码二码三码区别大吗| 国产伦在线观看视频一区| 国产一区二区三区在线臀色熟女| 成人欧美大片| 国产精品一区二区三区四区久久 | 欧美三级亚洲精品| 亚洲精华国产精华精| 女性被躁到高潮视频| 国产精品av久久久久免费| 一级毛片高清免费大全| 日韩三级视频一区二区三区| xxx96com| 精品乱码久久久久久99久播| 欧美大码av| 午夜免费观看网址| 国产久久久一区二区三区| 日韩欧美三级三区| 久久久久免费精品人妻一区二区 | 搞女人的毛片| 午夜福利视频1000在线观看| av中文乱码字幕在线| 亚洲avbb在线观看| 啦啦啦 在线观看视频| 熟妇人妻久久中文字幕3abv| 一个人观看的视频www高清免费观看 | 在线观看www视频免费| 大香蕉久久成人网| 亚洲中文字幕日韩| 亚洲国产精品成人综合色| 欧美绝顶高潮抽搐喷水| 一夜夜www| 女人爽到高潮嗷嗷叫在线视频| 久久香蕉国产精品| 精品欧美一区二区三区在线| 午夜影院日韩av| x7x7x7水蜜桃| 久久欧美精品欧美久久欧美| 精品熟女少妇八av免费久了| 国产爱豆传媒在线观看 | 成年免费大片在线观看| 最好的美女福利视频网| 97超级碰碰碰精品色视频在线观看| 成人国产一区最新在线观看| 成年人黄色毛片网站| 好男人电影高清在线观看| 一级作爱视频免费观看| 18禁观看日本| 精品无人区乱码1区二区| ponron亚洲| 日韩大尺度精品在线看网址| 亚洲真实伦在线观看| 一本一本综合久久| 韩国精品一区二区三区| 给我免费播放毛片高清在线观看| 亚洲三区欧美一区| 亚洲精华国产精华精| 女性被躁到高潮视频| av视频在线观看入口| 搞女人的毛片| 久久久久久久精品吃奶| 亚洲色图av天堂| 精品免费久久久久久久清纯| 人人妻人人看人人澡| 欧美黑人欧美精品刺激| 久久热在线av| 精品国产一区二区三区四区第35| 国产亚洲欧美98| 老熟妇仑乱视频hdxx| 国产av又大| 欧美成人午夜精品| 两个人视频免费观看高清| 99久久99久久久精品蜜桃| 国产免费av片在线观看野外av| 欧美日韩亚洲国产一区二区在线观看| 亚洲欧美日韩无卡精品| 很黄的视频免费| 999久久久国产精品视频| 中国美女看黄片| 亚洲av成人一区二区三| 啦啦啦 在线观看视频| 日韩欧美国产在线观看| 免费电影在线观看免费观看| 淫妇啪啪啪对白视频| 亚洲片人在线观看| 亚洲第一电影网av| 国产主播在线观看一区二区| 成年女人毛片免费观看观看9| 国内少妇人妻偷人精品xxx网站 | 欧美乱色亚洲激情| 日本免费a在线| 国产亚洲精品综合一区在线观看 | 国产精品久久久人人做人人爽| 日本三级黄在线观看| 久久精品aⅴ一区二区三区四区| 国产单亲对白刺激| 亚洲真实伦在线观看| 国产精品亚洲av一区麻豆| 国产精品久久久av美女十八| 性欧美人与动物交配| 国产又色又爽无遮挡免费看| 色综合欧美亚洲国产小说| 日韩 欧美 亚洲 中文字幕| 黄色丝袜av网址大全| 十八禁网站免费在线| 热re99久久国产66热| 国产亚洲精品久久久久5区| 老司机在亚洲福利影院| 午夜福利视频1000在线观看| 老熟妇仑乱视频hdxx| 国产97色在线日韩免费| av天堂在线播放| 很黄的视频免费| 大型黄色视频在线免费观看| 国产亚洲欧美98| 久久亚洲精品不卡| 亚洲第一欧美日韩一区二区三区| 午夜福利18| 成年女人毛片免费观看观看9| 99re在线观看精品视频| 熟女少妇亚洲综合色aaa.| 精华霜和精华液先用哪个| 国产又黄又爽又无遮挡在线| 国产av不卡久久| 搞女人的毛片| 又大又爽又粗| 成人国产一区最新在线观看| 美女扒开内裤让男人捅视频| 免费在线观看完整版高清| 国产激情偷乱视频一区二区| 性色av乱码一区二区三区2| 亚洲av五月六月丁香网| 亚洲五月天丁香| 999久久久国产精品视频| 午夜久久久在线观看| 久久久久久久久久黄片| 色播在线永久视频| 久久久久久久精品吃奶| 亚洲五月色婷婷综合| 欧美日韩一级在线毛片| 国产亚洲精品第一综合不卡| 午夜成年电影在线免费观看| 亚洲熟妇中文字幕五十中出| 黑人操中国人逼视频| 男女视频在线观看网站免费 |