• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic Structure and Optical Properties of K2Ti6O13Doped with Transition Metal Fe or Ag

    2018-06-27 06:48:22HengliChenHongynLuYuminQiPengJin
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年3期

    Heng-li Chen,Hong-yn Lu,Yu-min Qi*,Peng Jin

    a.School of Material Science and Engineering,Hebei University of Technology,Tianjin 300130,China

    b.School of Physics and Electronic Information,Huaibei Normal University,Huaibei 235000,China

    I.INTRODUCTION

    During the past decades,semiconductor-based photocatalysis has received a lot of attention[1–3],since it is a promising eco-friendly technology to solve the environmental pollution and energy shortage by utilizing solar energy.However,the photoreaction efficiency of the most reported materials is very low,and is only active in ultraviolet region[4,5].Moreover,the fast recombination of electrons and holes in the catalyst still remains a tricky problem[6].Therefore,how to effectively utilize sunlight with suppressed electron-hole recombination is the most important subject for developing these materials as a photocatalyst.To improve the photoreaction efficiency,many approaches have been designed[7–12].Among them,metal elements doping is considered as one of the most effective methods[13,14].Furthermore,transition metal doping gets more and more attention due to the unique d electronic configuration of transition metals,which can narrow the band gap or insert a new band into the band gap,and thus extends the absorption edge of photocatalysis to visible light region[15–19].

    Nowadays,potassium hexatitanate(K2Ti6O13)has attracted growing attention because of its high performance[20]and low synthesis cost[21,22].In K2Ti6O13crystal,potassium ions are located in the tunnel space formed by a 3D arrangement of TiO6octahedra[23].K2Ti6O13has various applications[24,25],especially as a photocatalyst[26–29].However,K2Ti6O13has a wide band gap of 3.45 eV and shows photocatalytic activity only under UV-light irradiation[30].Therefore,it is necessary to extend the spectral response of K2Ti6O13to visible light by doping transition metals.It is noteworthy that there are many experimental and theoretical reports about 3d transition-metal doping such as iron doping[31–34]and 4d transition-metal doping such as silver doping[35–37]that can shift the optical absorption from UV light to the visible-light region.Inspired by these works,we prepared pure,Fe-doped and Ag-doped K2Ti6O13and studied their optical properties.To understand our experimental results,we designed computational models of pure,Fe-doped and Agdoped K2Ti6O13(Fe or Ag atom substitutes for the Ti atom).The band structure,density of states,the imaginary part ε2(ω)of dielectric function and the absorption spectrum of them were studied by the first-principles pseudoptential plane-wave method based on the density functional theory(DFT).The calculated optical results basically agree with our experimental research.Most importantly,the Ag-doped K2Ti6O13exhibits higher visible-light photocatalytic efficiency than the pure and Fe-doping cases.The current results are useful for designing K2Ti6O13related materials that have absorption under visible light.

    II.EXPERIMENTS

    Fe-doped TiO2(0.2 mol%doping)and Ag-doped TiO2(0.2 mol%doping)are prepared by sol-gel method at room temperature,and then by hydrothermal synthesis with KOH,Fe-doped and Ag-doped K2Ti6O13are prepared.In sol-gel process, firstly,concentrated nitric acid is diluted with deionized water,then the dilute nitric acid(2 wt%)and the sodium polyacrylate(5 wt%)are mixed and stirred for 30 min,the resulting solution is named as solution A.Secondly,butyl titanate,absolute ethanol and ferric nitrate or silver nitrate are also mixed and stirred for 30 min,named as solution B.Finally,the solution B is added to the solution A and stirred for 2 h.Then,the Fe-doped or Ag-doped TiO2is obtained by filtering.For the hydrothermal synthesis,Fe-doped TiO2or Ag-doped TiO2is added to KOH aqueous solution(8 mol/L),and then the mixture is heated at 150?C in stainless steel autoclaves for 12 h.Finally,the Fe-doped or Ag-doped K2Ti6O13is obtained by filtering and the products are washed with deionized water.For comparison,pure K2Ti6O13is prepared according to the above procedure without using ferric nitrate or silver nitrate.The samples are characterized by X-ray diffraction(Smart Lab)with Cu-Kα irradiation(λ=0.15406 nm),scanning electron microscopy(S-4800)with energy dispersive spectrometer and UV-Vis spectroscopy(U-3900H).

    The X-ray diffraction(XRD)patterns of pure,Fedoped,and Ag-doped K2Ti6O13are shown in FIG.1.Compared with the diffraction peak at 2θ=24.4?indexed to(110)crystal plane of pure K2Ti6O13(JCPDS card No.40-0403),the diffraction peaks of Fe-doped K2Ti6O13are slightly shifted to the right,indicating the decreased d-spacing of(110)crystal plane.While the diffraction peaks of Ag-doped K2Ti6O13are slightly shifted to the left,indicating the increased d-spacing of(110)crystal plane.Thus,Fe and Ag atoms both enter into the lattice of K2Ti6O13.Due to the fact that the radii of Fe3+(0.64?A)[38],Ag+(1.26?A)[39],and Ti4+(0.68?A)[38,39]are similar,Fe atom and Ag atom tend to replace Ti atom after doping.Previous studies showed that Fe atom is doped into the TiO2lattice and replaces Ti atom by sol-gel method[31,40]and Ag atom also replaces Ti atom[39].Considering the process of our material preparation,we believe that Fe and Ag atoms have replaced some Ti atoms in K2Ti6O13.

    The morphology of synthesised samples are observed by scanning electron microscope(SEM)analysis.After Fe or Ag doping,it can be observed that the radii and lengths of potassium titanate nanowires have increased.In energy dispersive spectrometer(EDS)patterns,Ti,O,and K elements could be observed,which is consistent with the elements of K2Ti6O13.In addition,Fe element in FIG.2(b)and Ag element in FIG.2(c)could be observed,which also proved that the samples contained Fe or Ag element.

    The UV-Vis spectra for the three samples are shown in FIG.3.For the pure K2Ti6O13,there is nearly no absorption in the visible light region.For the doped ones,although their absorption intensity in UV region is slightly weaker compared with the pure K2Ti6O13,they have higher absorption than pure K2Ti6O13under visible light irradiation and the edge of the optical absorption has a significant red shift.Therefore,after doping,K2Ti6O13realizes the absorption of visible light.This result also indicates that Fe and Ag ions are successfully doped into potassium titanate.To understand these experimental results,we then carried out detailed first-principles calculations as shown in the following sections.

    III.COMPUTATION

    A.Calculation methods

    According to experimental results,that Fe or Ag atom replaces Ti atom in K2Ti6O13,one Ti atom is substituted by Fe or Ag atom in the calculation model.If the doping concentration in the calculation model is consistent with the experimental one,the model will be very large and make the calculation very timeconsuming.Therefore,we established a 1×2×1 supercell model of K2Ti6O13,which does not affect the qualitative analysis of experimental results.The 1×2×1 supercells of pure K2Ti6O13,Fe-doped K2Ti6O13,and Ag-doped K2Ti6O13used in this work are displayed in FIG.4.As shown in FIG.4(b),one Ti atom is replaced by one Fe or Ag atom for the doping cases.The properties of pure,Fe-doped,and Ag-doped K2Ti6O13are calculated by using the CASTEP code in the Materials Studio software[41].We first optimized the crystal structures using the GGA functional PW91[41].We then calculated their band structures,density of states(DOS),the imaginary parts ε2(ω)of dielectric function and the absorption spectra.In the geometry optimization,the convergence tolerance of maximum displacement,maximum force,maximum stress,and total en-ergy change are 1.0×10?4nm,0.3 eV/nm,0.05 GPa,and 1.0×10?5eV/atom,respectively.The cutoff energy for the plane wave expansion is 340 eV,and the Monkhorst-Pack k-point sampling[42]is generated with a 2×3×3 grid.In addition,the used valence electron configurations are 3s23p63d24s2for Ti,2s22p4for O,3s23p64s1for K,3s23p63d64s2for Fe,and 4s24p64d105s1for Ag.In optical properties calculations,“scissors operator”[43]is introduced due to the fact that the band gap calculated by GGA methods is generally underestimated.The optical properties of a semiconductor are mainly determined by its electronic structure,so the nature of light absorption would be found by studying the relationship between the electronic structures and the optical properties of pure,Fe-doped,and Ag-doped K2Ti6O13.

    FIG.2 EDS and SEM images of(a)pure,(b)Fe-doped,and(c)Ag-doped K2Ti6O13.

    FIG.3 UV-Vis spectra of pure,Fe-doped,and Ag-doped K2Ti6O13.

    FIG.4 (a)Pure 1×2×1 supercell of K2Ti6O13,(b)supercell of M-doped K2Ti6O13(M=Fe or Ag).

    B.Crystal structure

    By optimizing the pure K2Ti6O13supercell,we get the lattice parameters as shown in Table I,a=15.850?A,b=7.616?A,c=9.243?A,V=1098.637?A3.The calculated results are well consistent with the experimental results[44],indicating that our methodology is reasonable.According to the calculated results,we can see that the lattice parameters and the volume of Fe-doped K2Ti6O13are smaller than the pure cases.This can be explained by the smaller radius of iron ion than that of titaniumion.In contrast,for the Ag-doped K2Ti6O13,the lattice parameters and the volume become larger due to the bigger radius of silver ion than that of titanium ion.The changes in the lattice parameters after doping are consistent with the results of our XRD analysis.

    TABLE I Parameters and average bond lengths of pure,Fe-doped,and Ag-doped K2Ti6O13for optimized structure.

    FIG.5 Calculated band structure of(a)pure,(b)Fe-doped,and(c)Ag-doped K2Ti6O13.

    C.Band structure

    The calculated band structures of pure,Fe-doped,and Ag-doped K2Ti6O13are depicted in FIG.5.The calculated band gap of pure K2Ti6O13is 2.834 eV,which is similar to the previous result[45].But it is underestimated compared with the experimental Eg=3.45 eV[30]due to the well-known shortcoming of DFT[46,47].As shown in FIG.5(b)and(c),the Fe-doped and Ag-doped K2Ti6O13both have three impurity bands in the forbidden band.

    The calculated band gap of Fe-doped K2Ti6O13is 2.502 eV.By comparing FIG.5(a)and(b),it is seen that both the conduction band and valence band move down after Fe doping(the conduction band moves down by 1.455 eV and the valence band moves down by 1.123 eV).On one hand,the band gap is narrowed by about 0.332 eV,resulting that the photoresponse range of K2Ti6O13extends to the visible-light region.On the other hand,the width of the impurity bands is only 0.209 eV,which makes it difficult for the electrons excited from the valence band to the intermediate impurity level to return back to the valence band.Thus,the impurity bands can act as a bridge for valence band electrons transition to the conduction band.Electrons can be firstly excited by low-energy photons to impurity bands and then sequentially absorb photons to transfer to the conduction band.The photon absorption energy of Fe-doped K2Ti6O13are reduced,which appears as the absorption of visible light.The calculated band gap of Ag-doped K2Ti6O13is 2.829 eV as shown in FIG.5(c).Comparing FIG.5(a)and(c),the conduction band and valence band also both move down after Ag doping,the conduction band moves down by 0.608 eV and the valence band moves down by 0.603 eV.Thus,the gap of Ag-doped K2Ti6O13also becomes a little narrower.The impurity bands are located just above the valence band maximum(VBM)which form a shallow acceptor because the distance is very small between the impurity bands and the VBM.The impurity bands can reduce the recombination rate of electrons and holes.

    D.Density of states

    The DOS plots for pure,Fe-doped,and Ag-doped K2Ti6O13are shown in FIG.6.From FIG.6(a),it can be seen that the valence band is dominated by the O 2p states and the conduction band is mainly formed by the Ti 3d states.On the other hand,the Ti 3d states have a little contribution to the valence band and the O 2p states have a little contribution to the conduction band.The K 4s states nearly do not contribute to the valence band and the conduction band.It indicates that there is a strong interaction between Ti atom and O atom.From FIG.6(b)and(c),the VB and CB are mainly formed by O 2p states and Ti 3d states,and the impurity bands are formed by the hybridization of O 2p states and Ti 3d states with Fe 3d states or Ag 4d states.The positions of the CB and VB both move down after doping,agreeing with the calculated results of the band structure.From FIG.6(b),a small DOS peak appears in the forbidden band of Fe-doped K2Ti6O13,which corresponds to the impurity bands in the band structure.In order to better understand the effect of Fe doping on the energy gap,FIG.6(d)shows the enlarged DOS of Fe-doped K2Ti6O13,which reveals that the impurity bands mainly originate from the hybridization between Fe 3d,O 2p,and Ti 3d states.As shown in FIG.6(c)and(e),the impurity bands overlap with the VBM and are hybridized by O 2p states,Ag 4d states,and Ti 3d states.The reason for the overlap can be understood by its band structure,that is,the impurity bands are very close to VBM,as can be seen in FIG.5(c).

    FIG.6 Calculated DOS of(a)pure K2Ti6O13,(b)Fe-doped K2Ti6O13,(c)Ag-doped K2Ti6O13,(d)enlarged DOS of Fe-doped K2Ti6O13,and(e)enlarged DOS of Ag-doped K2Ti6O13.

    FIG.7 Imaginary part of dielectric function as a function of photon energy for pure,Fe-doped,and Ag-doped K2Ti6O13.

    E.Imaginary part ε2(ω)of dielectric function

    For the calculations of dielectric function,the scissors operator is set as 0.616 eV due to the differences between the calculated band gap(2.834 eV)and the experimental band gap(3.45 eV).As shown in FIG.7,for pure K2Ti6O13,the ε2(ω)is nearly zero below 3.30 eV.After Fe or Ag doping,however,there are finite values for ε2(ω)and there are also some peaks.These peaks may stem from the impurity bands,which play a bridge role in the process of the electronic transition.Compared with the DOS in FIG.6,the distances between the impurity bands and the VB or CB are small,so the electrons in these impurity bands only need small photon energy to be excited and would have finite absorption in the visible-light region.

    F.Absorption spectra

    FIG.8 Absorption spectra of pure K2Ti6O13,Fe-doped,and Ag-doped K2Ti6O13.

    In order to compare with the experimental result,we plot the absorption coefficient as a function of wavelength in FIG.8,which is also corrected by scissors operator.The absorption spectrum of pure K2Ti6O13is basically consistent with that of our experiment and previous reports[25,30],which also proves the rationality and correctness of our calculation method.It can be seen from FIG.8 that the absorption coefficients of Fe-doped and Ag-doped K2Ti6O13have an obvious red-shift compared with that of pure K2Ti6O13,especially for the Ag-doped case.The absorption intensity is enhanced in the visible light region and the absorption intensity in UV light is slightly weak after doping,which are in good agreement with the experimental results.For Fe doping,the absorption peak occurs in the range of 450 nm to 500 nm in both experimental and calculated research,being consistent with the peak of ε2(ω)in the range of 2.5 eV to 3.0 eV.By comparing with the electronic structure in FIG.5(b)and FIG.6(b),we think it may originate from the transition of the electron from the impurity bands to the conduction bands.However,the red-shifted values of calculated absorption edges are smaller than those of experimental results.This phenomenon may be because that only direct transition and first-order excitation between occupied and unoccupied states are considered in calculation.Besides,phonons and their optical effects have been neglected,and the nonlocal nature of the GGA exchange-correlation functionals is not taken into account when evaluating the matrix elements.Therefore,the computational result cannot perfectly reproduce the experimental results.However,the computational results can give a qualitative explanation and prediction.

    IV.CONCLUSION

    In summary,the electronic structure and optical properties of pure,Fe-doped,and Ag-doped K2Ti6O13were calculated by the first-principles pseudoptential plane-wave method based on the density functional theory(DFT).The doping effects on the electronic structure and optical properties of K2Ti6O13were analyzed.The calculated optical results basically agree with our experimental research.Most importantly,the Ag-doped K2Ti6O13exhibits higher visible-light photocatalytic efficiency than the pure and Fe-doping ones.Based on the results,the following conclusions have been drawn.Firstly,K2Ti6O13doped with Fe has isolated impurity states in the middle of the band gap,which can be used as a bridge for electron transition from the valence band to the conduction band.Whereas K2Ti6O13with Ag doping has shallow acceptor states above the top of the VB.These impurity bands are mainly from the hybridization by Ag 4d states with Ti 3d states and O 2p states.It is very useful to separate photoexcited electron-hole pairs and improve the photocatalytic properties.Secondly,after doping,the band gap of K2Ti6O13becomes narrower.Thus,the absorption spectra exhibit obvious red-shifted absorption band edge.The calculated results qualitatively agree with our experimental results.Our results can be used to tune the optical properties of K2Ti6O13in visible-light region.

    [1]A.Fujishima and K.Honda,Nature 238,37(1972).

    [2]M.R.Hoffmann,S.T.Martin,W.Choi,and D.W.Bahnemann,Chem.Rev.95,69(1995).

    [3]M.D.Bhatt and J.S.Lee,J.Mater.Chem.3,10632(2015).

    [4]Z.Zhao and Q.Liu,J.Phys.D:Appl.Phys.41,025105(2007).

    [5]Z.Liu,J.Zhang,Y.Lv,X.Zhou,and S.Li,J.Alloys Compd.700,1(2017).

    [6]G.Yang,T.Xiao,J.Sloan,G.Li,and Z.Yan,Chem.Eur.J.17,1096(2011).

    [7]H.Fujii,K.Inata,M.Ohtaki,K.Eguchi,and H.Arai,J.Mater.Sci.36,527(2001).

    [8]M.Anpo and M.Takeuchi,J.Catal.216,505(2003).

    [9]R.Abe,J.Photochem.Photobiol.C:Photochem.Rev.11,179(2010).

    [10]S.Ouyang,T.Hua,N.Umezawa,J.Cao,L.Peng,Y.Bi,Y.Zhang,and J.Ye,J.Am.Chem.Soc.134,1974(2012).

    [11]Y.Zhang,A.Thomas,M.Antonietti,and X.Wang,J.Am.Chem.Soc.131,50(2009).

    [12]K.Shankar,K.Chhay Tep,G.K.Mor,and C.A.Grimes,J.Phys.D:Appl.Phys.39,2361(2006).

    [13]H.R.Rajabi and M.Farsi,J.Mol.Catal.A:Chem.399,53(2015).

    [14]K.Yang,D.F.Li,W.Q.Huang,L.Xu,G.F.Huang,and S.Wen,Appl.Phys.A 123,96(2017).

    [15]Y.Wang,R.Zhang,J.Li,L.Li,and S.Lin,Nanoscale Res.Lett.9,46(2014).

    [16]G.Shao,J.Phys.Chem.C 112,18677(2008).

    [17]L.K.Zhang,B.Wu,M.Wang,L.Chen,G.X.Ye,T.Chen,H.L.Liu,C.R.Huang,and J.L.Li,Adv.Mater.Res.399,1789(2012).

    [18]C.D.Valentin,G.Pacchioni,H.Onishi,and A.Kudo,Chem.Phys.Lett.469,166(2009).

    [19]Y.F.Zhao,C.Li,S.Lu,L.J.Yan,Y.Y.Gong,L.Y.Niu,and X.J.Liu,Chem.Phys.Lett.647,36(2016).

    [20]H.K.Lee,J.P.Shim,M.J.Shim,S.W.Kim,and J.S.Lee,Mater.Chem.Phys.45,243(1996).

    [21]D.Kapusuz,Y.E.Kalay,J.Park,and A.Ozturk,J.Ceram.Process.Res.16,291(2015).

    [22]Y.Li,H.Yu,Y.Yang,F.Zheng,H.Ni,M.Zhang,and M.Guo,Ceram.Int.42,11294(2016).

    [23]J.Xie,X.Lu,Y.Zhu,C.Liu,N.Bao,and X.Feng,J.Mater.Sci.38,3641(2003).

    [24]M.A.Siddiqui,V.S.Chandel,M.Shariq,and A.Azam,J.Mater.Sci.Mater.Electron.24,4725(2013).

    [25]B.L.Wang,Q.Chen,R.H.Wang,and L.M.Peng,Chem.Phys.Lett.376,726(2003).

    [26]M.A.Siddiqui,V.S.Chandel,and A.Azam,Appl.Surf.Sci.258,7354(2012).

    [27]X.Meng,D.Wang,J.Liu,B.Lin,and Z.Fu,Solid State Commun.137,146(2006).

    [28]M.Pescatori and C.Quondamcarlo,Chem.Phys.Lett.376,726(2003).

    [29]H.Yoshida,M.Takeuchi,M.Sato,L.Zhang,T.Teshima,and M.G.Chaskar,Catal.Today 232,158(2014).

    [30]G.H.Du,Q.Chen,P.D.Han,Y.Yu,and L.M.Peng,Phys.Rev.B 67,106(2003).

    [31]J.Zhu,F.Chen,J.Zhang,H.Chen,and M.Anpo,J.Photochem.Photobiol.,A:Chem.180,196(2006).

    [32]G.Impellizzeri,V.Scuderi,L.Romano,P.M.Sberna,E.Arcadipane,R.Sanz,M.Scuderi,G.Nicotra,M.Bayle,and R.Carles,J.Appl.Phys.116,37(2014).

    [33]L.Z.Qin,H.Liang,B.Liao,A.D.Liu,X.Y.Wu,and J.Sun,Nucl.Instrum.Methods Phys.Res.Sect.A 307,385(2013).

    [34]J.Yu,Q.Xiang,and M.Zhou,J.Phys.Chem.B 90,595(2009).

    [35]T.Murase,H.Irie,and K.Hashimoto,J.Phys.Chem.B 109,13420(2005).

    [36]M.J.Nalbandian,M.Zhang,J.Sanchez,S.Kim,Y.H.Choa,D.M.Cwiertny,and N.V.Myung,J.Hazard.Mater.299,141(2015).

    [37]M.Guo and J.Du,Physica B:Condens.Matter 407,1003(2012).

    [38]Z.Li,W.Shen,W.He,and X.Zu,J.Hazard.Mater.155,590(2008).

    [39]K.Zhang,X.Wang,X.Guo,T.He,and Y.Feng,J.Nanopart.Res.16,2246(2014).

    [40]M.R.Bayati,M.Aminzare,R.Molaei,and S.K.Sadrnezhaad,Mater.Lett.65,840(2011).

    [41]P.J.D.Lindan,J.Phys.:Condens.Matter 14,2717(2002).

    [42]H.J.Monkhorst and J.D.Pack,Phys.Rev.B 13,5188(1976).

    [43]R.W.Godby,M.Schlüter,and L.J.Sham,Phys.Rev.B 37,10159(1988).

    [44]S.Andersson and A.D.Wadsley,Acta Cryst.15,194(1962).

    [45]M.Hua and Y.Li,C.Long,and L.Xia,Physica B:Condens.Matter 407,2811(2012).

    [46]C.Stampfl and C.G.V.D.Walle,Phys.Rev.B:Condens.Matter 59,5521(1999).

    [47]J.P.Perdew and M.Levy,Phys.Rev.Lett.51,1884(1983).

    国模一区二区三区四区视频| 久久精品国产亚洲网站| 国产毛片a区久久久久| 成人美女网站在线观看视频| 精品久久久久久久久久久久久| 日本免费a在线| 亚洲熟妇熟女久久| 欧美日本亚洲视频在线播放| 男女下面进入的视频免费午夜| 久久香蕉精品热| 欧美潮喷喷水| 国产真实乱freesex| 最近最新免费中文字幕在线| 天堂动漫精品| 深夜精品福利| 亚洲美女视频黄频| 日韩中字成人| 国产高清视频在线播放一区| 免费无遮挡裸体视频| 18+在线观看网站| 美女 人体艺术 gogo| 99九九线精品视频在线观看视频| eeuss影院久久| 国产男靠女视频免费网站| 悠悠久久av| 国产视频一区二区在线看| 亚洲av二区三区四区| 久久久久久久久久成人| 麻豆一二三区av精品| 久久久久精品国产欧美久久久| 最新在线观看一区二区三区| 成年免费大片在线观看| 18禁黄网站禁片午夜丰满| 国产成人av教育| 午夜激情福利司机影院| 一本一本综合久久| 禁无遮挡网站| 1024手机看黄色片| 亚洲国产色片| 国产精华一区二区三区| 午夜福利在线观看吧| 女人十人毛片免费观看3o分钟| 久久6这里有精品| 淫秽高清视频在线观看| 狂野欧美激情性xxxx在线观看| 国产亚洲91精品色在线| 亚州av有码| 久久久久久伊人网av| 日本 av在线| 亚洲国产精品sss在线观看| 人人妻人人澡欧美一区二区| 亚洲一区二区三区色噜噜| 欧美日韩黄片免| 国产免费男女视频| 少妇高潮的动态图| 麻豆一二三区av精品| 老师上课跳d突然被开到最大视频| 久久精品国产亚洲av天美| 成年人黄色毛片网站| 亚洲一级一片aⅴ在线观看| 亚洲成人免费电影在线观看| 久久久久久久亚洲中文字幕| 日本一二三区视频观看| 国产91精品成人一区二区三区| 麻豆成人av在线观看| 久久人妻av系列| 禁无遮挡网站| 床上黄色一级片| 亚洲国产精品sss在线观看| 久久久久国产精品人妻aⅴ院| 99热这里只有是精品在线观看| 88av欧美| 国产精品久久久久久久电影| 国产成人a区在线观看| 国产成人影院久久av| 国产成年人精品一区二区| 黄色日韩在线| 老师上课跳d突然被开到最大视频| 真人一进一出gif抽搐免费| 男人和女人高潮做爰伦理| 男人和女人高潮做爰伦理| 午夜精品久久久久久毛片777| 高清毛片免费观看视频网站| 亚洲最大成人手机在线| 俺也久久电影网| 国产精品一区www在线观看 | 色吧在线观看| 91麻豆精品激情在线观看国产| 婷婷六月久久综合丁香| 美女免费视频网站| 一级a爱片免费观看的视频| www日本黄色视频网| 男女下面进入的视频免费午夜| 99热网站在线观看| 美女黄网站色视频| 亚洲熟妇中文字幕五十中出| 欧美精品国产亚洲| 深夜精品福利| 亚洲精品粉嫩美女一区| 乱人视频在线观看| 日日干狠狠操夜夜爽| 亚洲精华国产精华精| 久久九九热精品免费| 日本欧美国产在线视频| 非洲黑人性xxxx精品又粗又长| 久久草成人影院| 亚洲国产精品久久男人天堂| 久久久久久久久中文| 欧美日韩瑟瑟在线播放| 国产毛片a区久久久久| av天堂中文字幕网| av在线蜜桃| 午夜免费成人在线视频| 久久人人精品亚洲av| 国产三级中文精品| 国产午夜精品久久久久久一区二区三区 | 国产黄片美女视频| 在线a可以看的网站| 国产高清视频在线播放一区| 午夜福利在线在线| 3wmmmm亚洲av在线观看| 久久婷婷人人爽人人干人人爱| 国产免费一级a男人的天堂| 国产精品无大码| 美女黄网站色视频| 天堂√8在线中文| 丰满乱子伦码专区| 搡老妇女老女人老熟妇| 国产精品久久久久久av不卡| 免费观看的影片在线观看| 午夜激情欧美在线| 老司机午夜福利在线观看视频| 级片在线观看| 99精品在免费线老司机午夜| 成人精品一区二区免费| 国产免费男女视频| 欧美日韩综合久久久久久 | 人人妻人人澡欧美一区二区| 国产不卡一卡二| www日本黄色视频网| 亚洲国产欧洲综合997久久,| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕熟女人妻在线| 校园人妻丝袜中文字幕| 免费人成视频x8x8入口观看| 久久亚洲真实| 久久久色成人| 无人区码免费观看不卡| 乱人视频在线观看| 午夜免费激情av| 欧美丝袜亚洲另类 | 无遮挡黄片免费观看| АⅤ资源中文在线天堂| 亚洲黑人精品在线| 午夜精品在线福利| 性色avwww在线观看| 在线看三级毛片| 亚洲人成网站高清观看| 看免费成人av毛片| 色哟哟哟哟哟哟| 午夜福利欧美成人| 亚洲国产精品成人综合色| 内地一区二区视频在线| 伊人久久精品亚洲午夜| 色综合亚洲欧美另类图片| 99在线视频只有这里精品首页| 色5月婷婷丁香| 97人妻精品一区二区三区麻豆| 亚洲av一区综合| 级片在线观看| 美女大奶头视频| 亚洲欧美清纯卡通| 日韩国内少妇激情av| 美女黄网站色视频| 成熟少妇高潮喷水视频| 男女啪啪激烈高潮av片| 欧美成人一区二区免费高清观看| 欧美高清成人免费视频www| 日韩中字成人| 国内精品宾馆在线| 国产成人一区二区在线| 免费电影在线观看免费观看| 特大巨黑吊av在线直播| 一进一出抽搐gif免费好疼| 嫩草影院新地址| 一本精品99久久精品77| 日本与韩国留学比较| 在线观看午夜福利视频| 免费一级毛片在线播放高清视频| 日日撸夜夜添| 亚洲欧美精品综合久久99| 亚洲第一区二区三区不卡| 美女xxoo啪啪120秒动态图| 日韩欧美国产在线观看| 18禁黄网站禁片免费观看直播| 国产亚洲av嫩草精品影院| 国产精品不卡视频一区二区| 免费高清视频大片| 亚洲不卡免费看| 国产高清视频在线播放一区| 最近最新免费中文字幕在线| 久久久久久久久久成人| 国产精品日韩av在线免费观看| 女的被弄到高潮叫床怎么办 | 亚洲人与动物交配视频| 国产精品98久久久久久宅男小说| 丰满乱子伦码专区| 亚洲图色成人| 精品久久久久久,| 桃红色精品国产亚洲av| 欧美激情久久久久久爽电影| 免费高清视频大片| 又爽又黄a免费视频| 国产av在哪里看| 99riav亚洲国产免费| 欧美高清成人免费视频www| 国产精品久久久久久精品电影| 欧美xxxx性猛交bbbb| 网址你懂的国产日韩在线| 精品久久国产蜜桃| 级片在线观看| 亚洲成人中文字幕在线播放| 热99re8久久精品国产| 亚洲经典国产精华液单| 观看美女的网站| 国产在线精品亚洲第一网站| 男女下面进入的视频免费午夜| 国产精品美女特级片免费视频播放器| 日韩中文字幕欧美一区二区| 欧美成人a在线观看| 真人做人爱边吃奶动态| 五月玫瑰六月丁香| 尤物成人国产欧美一区二区三区| 婷婷色综合大香蕉| 最新在线观看一区二区三区| 夜夜看夜夜爽夜夜摸| 超碰av人人做人人爽久久| 久久久久久久亚洲中文字幕| 久久婷婷人人爽人人干人人爱| 国产日本99.免费观看| 日韩中文字幕欧美一区二区| 日本 欧美在线| 亚洲午夜理论影院| 长腿黑丝高跟| 又黄又爽又刺激的免费视频.| 亚洲自拍偷在线| 真人一进一出gif抽搐免费| 黄色一级大片看看| 亚洲国产欧美人成| 亚洲三级黄色毛片| 国产91精品成人一区二区三区| 一级av片app| 欧美一区二区精品小视频在线| 国产精品久久久久久av不卡| 熟妇人妻久久中文字幕3abv| 淫秽高清视频在线观看| 又黄又爽又刺激的免费视频.| 五月伊人婷婷丁香| 非洲黑人性xxxx精品又粗又长| 中文亚洲av片在线观看爽| 国产黄色小视频在线观看| 啦啦啦观看免费观看视频高清| 少妇被粗大猛烈的视频| 成年免费大片在线观看| 此物有八面人人有两片| 亚洲成人久久爱视频| 国产老妇女一区| 一个人免费在线观看电影| 99久久精品一区二区三区| 99热网站在线观看| 亚洲精品乱码久久久v下载方式| 午夜影院日韩av| 国产人妻一区二区三区在| 精品不卡国产一区二区三区| 夜夜爽天天搞| 少妇高潮的动态图| av视频在线观看入口| 国产精品人妻久久久久久| 99热只有精品国产| 又爽又黄a免费视频| 亚洲精品成人久久久久久| 日韩 亚洲 欧美在线| 亚洲中文字幕日韩| 日韩高清综合在线| 日本成人三级电影网站| 嫩草影院入口| 亚洲av五月六月丁香网| 精品免费久久久久久久清纯| 欧美人与善性xxx| 亚洲国产欧美人成| 日日摸夜夜添夜夜添小说| 我的女老师完整版在线观看| 别揉我奶头 嗯啊视频| 午夜福利18| 热99re8久久精品国产| 国产一级毛片七仙女欲春2| 少妇猛男粗大的猛烈进出视频 | 99精品在免费线老司机午夜| 欧美精品国产亚洲| 午夜精品一区二区三区免费看| 色综合亚洲欧美另类图片| 欧美成人免费av一区二区三区| 人人妻,人人澡人人爽秒播| 亚洲av免费高清在线观看| 日本成人三级电影网站| 成人无遮挡网站| 成人高潮视频无遮挡免费网站| 国产精品人妻久久久久久| 国产国拍精品亚洲av在线观看| 精品久久久久久久久久久久久| 亚洲精品成人久久久久久| 两人在一起打扑克的视频| 亚洲专区中文字幕在线| 久9热在线精品视频| 国产熟女欧美一区二区| 亚洲五月天丁香| 日韩国内少妇激情av| 欧美黑人欧美精品刺激| 国内精品久久久久久久电影| 免费一级毛片在线播放高清视频| 国产久久久一区二区三区| 一进一出抽搐gif免费好疼| 亚洲性夜色夜夜综合| 在线播放国产精品三级| 国产一区二区三区视频了| 极品教师在线免费播放| 欧美极品一区二区三区四区| 日韩,欧美,国产一区二区三区 | 亚洲精品国产成人久久av| 精品日产1卡2卡| 国产极品精品免费视频能看的| 少妇的逼好多水| 色视频www国产| 在线观看免费视频日本深夜| 99在线人妻在线中文字幕| 久久精品国产99精品国产亚洲性色| 国产黄片美女视频| 哪里可以看免费的av片| xxxwww97欧美| 在线a可以看的网站| a级毛片免费高清观看在线播放| 精品午夜福利视频在线观看一区| av在线蜜桃| 亚洲国产精品成人综合色| 美女被艹到高潮喷水动态| 午夜a级毛片| 国产一级毛片七仙女欲春2| 黄色女人牲交| 午夜精品在线福利| 国内精品一区二区在线观看| 免费不卡的大黄色大毛片视频在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 日韩中文字幕欧美一区二区| a级毛片免费高清观看在线播放| 欧美中文日本在线观看视频| 亚洲专区国产一区二区| 国产亚洲91精品色在线| x7x7x7水蜜桃| 99视频精品全部免费 在线| 男女边吃奶边做爰视频| 老司机福利观看| 国产高清视频在线播放一区| 嫩草影院新地址| 免费在线观看日本一区| 美女大奶头视频| 最近在线观看免费完整版| 日本熟妇午夜| 国产成年人精品一区二区| 成人二区视频| av福利片在线观看| 丰满乱子伦码专区| 九九爱精品视频在线观看| 国产乱人视频| 欧美成人性av电影在线观看| 老师上课跳d突然被开到最大视频| 91午夜精品亚洲一区二区三区 | 欧美日韩国产亚洲二区| 久久精品久久久久久噜噜老黄 | 久久精品国产亚洲av天美| 亚洲成人久久性| 成人无遮挡网站| 亚洲,欧美,日韩| 国产精品国产三级国产av玫瑰| 99热这里只有是精品在线观看| 欧美三级亚洲精品| а√天堂www在线а√下载| 国产欧美日韩精品一区二区| 成人国产麻豆网| 欧美xxxx性猛交bbbb| 熟女电影av网| 日本爱情动作片www.在线观看 | 亚洲无线观看免费| 丰满人妻一区二区三区视频av| 女人被狂操c到高潮| 99久久久亚洲精品蜜臀av| 欧美成人一区二区免费高清观看| 免费在线观看日本一区| 男女下面进入的视频免费午夜| 亚洲欧美激情综合另类| 欧美最新免费一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 国产日本99.免费观看| 身体一侧抽搐| 国产高清有码在线观看视频| 午夜视频国产福利| 久久中文看片网| 极品教师在线视频| 大型黄色视频在线免费观看| 午夜老司机福利剧场| 特级一级黄色大片| 亚洲无线在线观看| 啦啦啦观看免费观看视频高清| 男女下面进入的视频免费午夜| 精品无人区乱码1区二区| 日本黄色视频三级网站网址| 精品免费久久久久久久清纯| 91在线观看av| 天堂√8在线中文| 又爽又黄a免费视频| 国产 一区精品| 能在线免费观看的黄片| 成人永久免费在线观看视频| 深夜a级毛片| 三级毛片av免费| 九九在线视频观看精品| 久久久久久久精品吃奶| 亚洲无线观看免费| 少妇的逼好多水| 在线播放国产精品三级| 自拍偷自拍亚洲精品老妇| 丝袜美腿在线中文| 成人精品一区二区免费| 在线免费观看的www视频| 又爽又黄无遮挡网站| 又粗又爽又猛毛片免费看| 国内精品宾馆在线| 三级男女做爰猛烈吃奶摸视频| 欧美日韩乱码在线| 午夜视频国产福利| 免费不卡的大黄色大毛片视频在线观看 | 精华霜和精华液先用哪个| 熟女人妻精品中文字幕| 国产视频一区二区在线看| 日本爱情动作片www.在线观看 | 蜜桃久久精品国产亚洲av| 97碰自拍视频| 午夜精品在线福利| 精品福利观看| 最近中文字幕高清免费大全6 | 此物有八面人人有两片| 桃红色精品国产亚洲av| 亚洲经典国产精华液单| 最近中文字幕高清免费大全6 | 国产三级在线视频| 亚洲最大成人av| 黄色丝袜av网址大全| 美女大奶头视频| 51国产日韩欧美| 久久久久久九九精品二区国产| 嫁个100分男人电影在线观看| 三级男女做爰猛烈吃奶摸视频| 久久亚洲真实| 免费无遮挡裸体视频| 欧美zozozo另类| 老司机深夜福利视频在线观看| 18禁在线播放成人免费| 欧美高清成人免费视频www| 黄片wwwwww| 成人二区视频| 无遮挡黄片免费观看| 亚洲成a人片在线一区二区| 日日啪夜夜撸| 国产精品精品国产色婷婷| 亚洲午夜理论影院| 中文亚洲av片在线观看爽| 69人妻影院| 国产探花极品一区二区| 欧美性猛交╳xxx乱大交人| 淫妇啪啪啪对白视频| 久久中文看片网| 午夜久久久久精精品| 国产蜜桃级精品一区二区三区| 欧美高清性xxxxhd video| 美女免费视频网站| 久久草成人影院| 国产 一区精品| 最近在线观看免费完整版| 国产精品久久久久久久电影| 亚洲精华国产精华精| 成年版毛片免费区| 免费观看人在逋| 国产伦在线观看视频一区| 最近视频中文字幕2019在线8| 小蜜桃在线观看免费完整版高清| 成年女人永久免费观看视频| 啦啦啦韩国在线观看视频| 日本精品一区二区三区蜜桃| 午夜久久久久精精品| 久久久久久伊人网av| 亚洲不卡免费看| 久久精品国产亚洲av香蕉五月| 亚洲男人的天堂狠狠| 欧美bdsm另类| 色av中文字幕| 人人妻,人人澡人人爽秒播| 很黄的视频免费| 国产三级中文精品| 精品人妻熟女av久视频| 两个人的视频大全免费| 国产欧美日韩一区二区精品| 999久久久精品免费观看国产| 日韩亚洲欧美综合| 国产精品一区二区性色av| 99久久精品国产国产毛片| 久久精品91蜜桃| 免费电影在线观看免费观看| 欧美色欧美亚洲另类二区| 午夜福利在线在线| 久久精品国产亚洲网站| 亚洲精品亚洲一区二区| 18禁黄网站禁片午夜丰满| 精品人妻偷拍中文字幕| 欧美xxxx性猛交bbbb| 日日啪夜夜撸| 欧美3d第一页| 精品久久久久久久久亚洲 | 日韩欧美 国产精品| videossex国产| 小说图片视频综合网站| 亚洲黑人精品在线| h日本视频在线播放| 亚洲五月天丁香| 亚洲av二区三区四区| 中国美女看黄片| 国产视频一区二区在线看| 免费观看的影片在线观看| 国内精品美女久久久久久| 成人av在线播放网站| 22中文网久久字幕| 欧美xxxx性猛交bbbb| 国产三级在线视频| 美女高潮的动态| 一级a爱片免费观看的视频| 色av中文字幕| 欧美bdsm另类| 人妻久久中文字幕网| 亚洲美女视频黄频| 欧美国产日韩亚洲一区| 色综合亚洲欧美另类图片| 99久久成人亚洲精品观看| 久久久久久伊人网av| 真实男女啪啪啪动态图| 免费不卡的大黄色大毛片视频在线观看 | 五月伊人婷婷丁香| 91精品国产九色| 久久精品国产自在天天线| 午夜福利成人在线免费观看| 一级a爱片免费观看的视频| 蜜桃亚洲精品一区二区三区| 午夜福利欧美成人| 亚洲国产精品久久男人天堂| 91麻豆精品激情在线观看国产| 国产大屁股一区二区在线视频| 美女大奶头视频| 成人亚洲精品av一区二区| 一区福利在线观看| 欧美国产日韩亚洲一区| 国产私拍福利视频在线观看| 国产成人a区在线观看| 99在线人妻在线中文字幕| 亚洲av中文字字幕乱码综合| 久久精品综合一区二区三区| 中文字幕高清在线视频| 欧美性猛交╳xxx乱大交人| 搞女人的毛片| 日本 欧美在线| 中文亚洲av片在线观看爽| 最后的刺客免费高清国语| 国内精品美女久久久久久| 久99久视频精品免费| 日本免费一区二区三区高清不卡| 美女 人体艺术 gogo| 亚洲欧美日韩无卡精品| 性欧美人与动物交配| 男女下面进入的视频免费午夜| 亚洲第一电影网av| 波多野结衣高清作品| 亚洲av中文字字幕乱码综合| 国产精品女同一区二区软件 | 一区二区三区四区激情视频 | 久9热在线精品视频| 又粗又爽又猛毛片免费看| 亚洲精品456在线播放app | 欧美极品一区二区三区四区| 免费av毛片视频| 国产色婷婷99| 久久久久久大精品| 老司机深夜福利视频在线观看| 亚洲五月天丁香| 午夜福利在线观看免费完整高清在 | 色5月婷婷丁香| 欧美在线一区亚洲| 999久久久精品免费观看国产| bbb黄色大片| 日本与韩国留学比较| 蜜桃久久精品国产亚洲av| 久久中文看片网| 精品久久久久久久人妻蜜臀av| 免费看美女性在线毛片视频| 亚洲色图av天堂| 久久久久国内视频| ponron亚洲| 免费看日本二区| 国产精品,欧美在线| a级一级毛片免费在线观看|