• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nucleation of Boron-Nitrogen on Transition Metal Surface:A First-Principles Investigation

    2018-06-27 06:48:28DildarAhmedErjunKan
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年3期
    關(guān)鍵詞:維納濾波助聽(tīng)器頻點(diǎn)

    Dildar Ahmed,Erjun Kan

    Department of Applied Physics,and Institution of Energy and Microstructure,Nanjing University of Science and Technology,Nanjing 210094,China

    I.INTRODUCTION

    During the past decade,such as graphene and hexagonal boron nitride(h-BN),two-dimensional(2D)materials have attracted attentions of physicists and material scientists because of their unique electronic properties,high thermal conductivity,high electrical resistivity,and other promising future industrial and potential applications[1–5].Boron and nitrogen based 2D materials can be used in different future applications such as atomically thin capacitors,light emitting diodes and laser diodes[6,7],neutron detectors[8,9],coating[10]and other related technologies[11].Besides,in the case of 2D BN monolayer,the bulk compound has excellent properties,such as high-temperature stability,low dielectric constant,large thermal conductivity,and high mechanical strength[12].Boron and nitrogen have very similar radii as carbon and the lattice mismatch between hexagonal boron nitride(h-BN)and graphene is very small(<1.7%)[13,14].Thus,2D BN monolayer is a promising substrate for graphene electronics[15].Consequently,high-quality and large scale BN monolayer is necessary for all of these practical applications.

    Among the established methods of synthesizing these 2D materials,chemical vapor deposition(CVD)is the most promising method for the synthesis of high-quality 2D materials[16].Recently,intensive theoretical and experimental efforts have been made to synthesize 2D h-BN monolayer on various transition metals such as Ni[17–19],Ru[19,20],Cu[21],Pd[22],and Pt[23].Mostly for all transition metal substrates,recent density-functional theory(DFT)studies state that the N atom in the BN layer is repelled from the metal while the B is attracted toward the metal[24].Strong covalent sp2bonds in BN monolayer make it mechanically stronger[21].Experimental studies of deposition of hexagonal BN on the metals mentioned above show that Cu is a crucial substrate for the synthesis of BN films[25]which in turn are crucial ingredients in graphene-based devices[26].Also,Cu is attractive due to its high purity and relative cheapness.However,the atomic growth mechanisms of the 2D h-BN monolayer on various transition metals surfaces are still not well explored.

    To improve the quality of 2D materials by using CVD,it is necessary to have a theoretically deep understanding of nucleation mechanism of BN pairs with the stepwise increment on transition metals surfaces.Since Cu(111)and Ni(111)are broadly adopted as substrates to grow 2D materials,here,we will study the mechanism of BN pairs on such surfaces.Our findings will be very helpful for synthesizing BN monolayer on transition metal surface experimentally.

    II.MODELS AND THEORETICAL METHODS

    First-principles calculations were performed with the Vienna ab initio simulation package(VASP)[27],using the Perdew-Burke-Ernzerh of(PBE)exchange correlation functional[28].All structures were opti-mized by a conjugate gradient method until the force component on every atom was less than 0.01 eV/?A.The plane-wave basis kinetic energy cutoffs of 400 eV and convergence criterion of 10?5eV were used in all calculations[29].In order to accurately describe the van der Waals interactions(vdWs)between BN pairs and the metal surface,the vdWs correction(DFT-D2)has also been used[30].In this study,more than 3 layers of Cu atoms were used to build as substrates with 20?A vacuum slabs perpendicular to the surface.To investigate the nucleation of paired BN monolayer on Cu(111),we have considered various possible chain and ring structures which consist of 1-8 BN pairs.The Cu(111)slab was gradually expanded to make sure the distance between two neighboring BN clusters was more than 9?A with the size increasing of clusters.A climbing-image nudged elastic band method[31]was employed to predict the energy barrier of one BN pair diffusing on surfaces.

    III.RESULTS AND DISCUSSION

    First of all,a wise choice of the precursor is very important for the CVD process.Considering that on the surface of a transition metal substrate,B and N atoms are very easy to form BN monolayer.Here we choose the BN pairs as the precursor to study the CVD process of h-BN.To study the diffusion of BN pairs,which is important for the nucleation,we firstly consider the possible adsorptive sites of single BN pair on the surface of Cu(111)and Ni(111).By placing BN pair on various adsorption sites such as on hcp and fcc positions,we optimized the structures to find the optimal adsorptive positions.Through total energy calculations,we find that binding energy of BN pair is larger on Ni(111)surface,compared with Cu(111)surface.To gain more details of such interactions,we plotted the partial density of states(PDOS)of BN pair and the top surface.From FIG.1(a)and(b),one sees that,for one BN pair on Cu(111)surface,the main peaks of PDOS for BN pair are close to the Fermi level(around?1.5 eV)and those for Cu atoms are far away from the Fermi level(around?3 eV).While for the case of Ni(111)surface,the main peaks of PDOS for BN pair shift left in energy(around?4 eV)and those for Ni atoms shift right closer to the Fermi level(around?1 eV).These imply that the Ni(111)surface transfers more electrons to the BN pairs than the Cu(111)surface does.This can be understood that Ni has lower electronegativity than Cu.Due to this,a BN pair bindings stronger with the Ni(111)surface than the Cu(111)surface.Generally,the larger binding energy of precursors means that energy barrier of diffusion becomes higher.Consequently,it is unfavorable to the fast growth of large scale monolayer.

    To confirm the above conclusions,it is necessary to analyze one BN pair diffusing on Cu(111)and Ni(111)surface to see the behavior of nucleation process.Here,we explored the diffusion of a BN pair from one optimal adsorptive site to the nearest one on Cu(111)and Ni(111)surfaces by using climbing image-nudged elastic band calculations.The computed energy barrier is 0.50 and 0.66 eV for Cu(111)and Ni(111)surfaces,respectively.FIG.2(a)and(b)represent the transition barrier and relaxed geometries of initial state,transition state and final state on the Cu(111)and Ni(111)surfaces respectively.

    The computed energy barrier for Cu(111)substrate is lower as compared to Ni(111)substrate,which means that the process of diffusion on the surface of Cu(111)substrate is faster and easier than Ni(111)substrate,consistent with our former analysis.Note that,the BN pairs can also diffuse in the sublayers of the substrates,but this process is usually more difficult than that on the surface and the diffusion barrier is much larger.Thus in the present work,we mainly discuss the diffusion process on the surfaces.Our study shows that the BN monolayer atoms on the surface of Cu(111)are stable and have low energy barrier of 0.50 eV as compared to Ni(111).Here we can predict for experimental research that,during the deposition process,the metal substrate not only works as a catalyst to lower the energy barrier of the reaction but also determines the BN atoms deposition mechanism,which ultimately affects the quality of BN on a substrate.

    Next,we study the nucleation process of BN pairs.For each size of BN clusters on Cu(111)surface,various different configurations were explored,and the optimized structures with the lowest energy were taken as the ground state.By reviewing all these optimized structures,we find that they can be classified into two categories:(i)BN chains and(ii)BN rings.Our results demonstrate that 1D BN chains formation on a transition metal surface is favored when the size of BN clusters is small.As the size of BN cluster increases,the ground state structure transforms from 1D BN chain to the 2D BN ring.The critical point occurs at x=6,where x is the number of BN pairs forming a cluster.For quantitative analysis,we calculate the adsorption energy of each BN cluster with a step-wise increment of BN pair.The adsorption energy Eais presented as:

    where Etotalis the total energy of x(BN)adsorbed on Cu(111)surface,ECuand EBNare the energies of the isolated Cu substrate and BN pair respectively,and x denotes the number of BN pairs.The process of BN nucleation is considered to start by using a stepwise increment of BN pair on the surface of Cu(111)as shown in FIG.3.

    FIG.1 Projected density of states for one BN pair on(a)Cu(111)surface and(b)Ni(111)surface,respectively.

    FIG.2 (a)Minimum energy path for one BN pair on Cu(111)surface with an energy barrier of 0.50 eV,(b)minimum energy path for one BN pair on Ni(111)surface with an energy barrier of 0.66 eV.

    FIG.3 shows the representative chain and ring structures and their adsorption energies for BN clusters with different sizes,which shows that for x<6,the energetically optimized stable structure with the lowest adsorption energy is 1D BN chain structure,but when x≥6,the energetically optimized stable structure with the lowest adsorption energy is 2D BN ring structure.The most optimized stable structures of paired BN cluster with x≥6 always have a few(i.e.one to three)rings in their formation,which originates from the requirement to reduce the number of edge BN atoms.Atoms of one BN pair on the surface of Cu(111)have adsorption energy of 7.62 eV and distance between B and N is 1.346 ?A,while adsorption energy of two BN pairs on Cu(111)is 7.97 eV,the distance between two BN pairs is 1.341 ?A.The adsorption energy for two BN pairs is higher than one BN pair on Cu(111)surface but less than the summation of two isolated BN pair on Cu(111)surfaces.This means that as the number of BN pair increases,the surface of the substrate becomes more stable for the nucleation of BN.The two end atoms of boron and nitrogen chain bind to the hollow sites of Cu(111)surface strongly and stabilize the BN chain formation on the surface of a substrate.Interestingly,for 4 BN pairs,the adsorptive energy of ring structure is much smaller than the other cases.After carefully studying the structure,we found that the fourth BN pair added lowers the adsorptive energy which is due to the weak interaction with the other pairs.For BN atoms up to 5 pairs,the possible ring formation is unstable on Cu(111)surface as compared to the formation of a chain,which is stable and has lowest adsorption energy as compared to a ring structure.When the number of pairs exceeds 5,the ring structure becomes more favored than the chain structure.Further analysis showed that the stable ground state structure transformation from 1D BN chain to the 2D BN ring plays an important role in the nucleation of BN monolayer on Cu(111).Hence,during the nucleation step of BN growth on Cu(111)surface,a short BN chain is initially formed and then transformed into two-dimensional BN ring with the further increment of BN pair.With the deposition of paired BN atoms,BN rings act as a nucleation center and the number of rings will increase by the continuous increment of BN pair.In FIG.3 a few snapshots represent the growth of BN rings with the increment of those added pairs.

    For chain structures up to 6 pairs,we can see that BN atoms make a bridge on the surface of Cu(111)where boron and nitrogen atoms prefer the hcp and fcc sites respectively.In all configurations,up to 5 BN pairs,the chain configuration is favored over a ring configuration.On the other hand,if we analyze on the basis of single and double arch structure which are formed in the optimized structures from 3 to 8 BN pairs as shown inFIG.4.FIG.4(a)shows the graphical comparison of deposition of BN chain and ring structures on Cu(111)on the basis of formation energy and number of BN pairs.This means that up to 5(BN)all the chain configurations are dominant over the ring configurations.The transition of energetically stable configuration from chain to ring structure occurs when the number of BN pairs is greater than or equal to six.So,for BN pairs number greater than five,the BN ring configurations are dominant over chain configurations because of long unstable BN chain and dislocation centers.

    FIG.3 Optimized geometries and their respective adsorption energies(under each configuration)for chain and ring configuration for BN pairs on Cu(111)surface where x ranges from one to eight.

    Aside from the energetic comparison,FIG.4 also shows that from 3 BN pairs to 5 BN pairs chain configurations single arch shapes are formed and height of arch is also increased,while double arched shapes are formed for 7 and 8 BN pairs configurations.The transition of a single arch to double arch occurs because of lattice mismatch and dislocation between the substrate and deposition atoms as reported by Fan et al.[32].It states that the chain stability fluctuates as more atoms are added to the chain because additional dislocations are formed.Chain breakage and initiation of two-dimensional(2D)always start again at dislocation centers which can be clearly observed in FIG.4(b)for 7 and 8 BN pairs on Cu(111).During the formation of BN chain configurations,chain always grow along the direction on the surface of the substrate where the mismatch is minimal.In this work,the formation of BN chain structure in the shape of arch depends upon the bonding between BN atoms and substrate.The formation of an arch in chain configurations is just because of strong bonding between B and N as compared to the interaction between BN and Cu(111)substrate.BN atoms in the middle have weak interaction with the Cu substrate while strong boron and nitrogen bonds with the neighbor.In this scenario,arch formation in BN chains is expected to be a common feature in the growth of BN pairs on Cu(111)substrate or any other metal substrate.

    As we know that,similar to carbon,the sp2hybridizations in a BN compound are usually more stable than the sp hybridizations.As a consequence,an isolated 1D BN chain cannot exist theoretically while an isolated 2D BN monolayer can.But why the 1D BN chain is more favored than the 2D BN rings in a small size cluster on the Cu(111)surface?According to the above analysis,this can be understood that,although the sp2bond of BN is energetically more favored,whenthe size of BN cluster is small,the number of edged B and N atoms,that is to say,the number of dangling sp2bonds is too large compared to that of the saturated sp2bonds,which greatly reduces the stability of the sp2systems.While for the chain configurations,there are only two dangling bonds(start and end of the chain),which makes this sp system preferred to the sp2system.When the size of BN cluster increases,the ratio of dangling to saturated sp2bonds becomes small enough,then the sp2system will be more stable.

    FIG.4 (a)The formation energies per BN pair of 1D chains and 2D rings on Cu(111),(b)side views of optimized 1D BN chain structures with single and double arches on Cu(111),(c)top views of 2D BN rings structures on Cu(111).

    IV.CONCLUSION

    In this present work we carry out a systematic first principles study of an initial stage of paired BN monolayer nucleation on Cu(111)and Ni(111)substrates.Energetically stable structure transformation of the 1D chain of BN pair to 2D ring of BN-pair occurs at a critical number of pairs x≥6.Where boron(B)atoms prefer to bind at fcc surface sites and nickel(N)atoms prefer to bind at hcp surface sites.The most optimized stable structures of BN pair x≥6 always have a few(more than one)rings in their formation with the increment of BN pair.The edge atoms of BN monolayer strongly interact with the surface of Cu(111)substrate to form chain and ring structures respectively.Our calculations also revealed that,in the chain formation on Cu(111)surface transition of a single arch to double arch occurs because of lattice mismatch and dislocation between substrate and deposition atoms.

    Apart from Cu(111)substrate,we also compute,analyze and compare nucleation of only one BN pair on Ni(111)surface which shows the same behavior as Cu(111)but computed energy barrier for BN monolayer atoms diffusion on Ni(111)surface is higher as compared to Cu(111)surface.This means that Cu(111)substrate is good for BN deposition as compared to Ni(111)substrate.Thus,according to our results,we predict that high temperature is necessary to produce high-quality BN monolayer on Cu(111)substrate.We expect that our present theoretical findings will stimulate future experimental investigations.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.11774173),the Fundamental Research Funds for the Central Universities(No.30915011203),and New Century Excellent Talents in University(NCET-12-0628).We also acknowledge the support from the Shanghai Supercomputer Centre and Tianjin Supercomputer Centre.

    [1]K.S.Novoselov,V.I.Fal’ko,L.Colombo,P.R.Gellert,M.G.Schwab,and K.Kim,Nature 490,192(2012).

    [2]J.Gao,J.Yip,J.Zhao,B.I.Yakobson,and F.Ding,J.Am.Chem.Soc.133,5009(2011).

    [3]A.Lipp,K.A.Schwetz,and K.Hunold,J.Eur.Ceram.Soc.5,3(1989).

    [4]K.H.Lee,H.J.Shin,J.Lee,I.Y.Lee,G.H.Kim,J.Y.Choi,and S.W.Kim,Nano Lett.12,714(2012).

    [5]S.Liu,A.C.T.V Duin,D.M.V.Duin,B.Liu,and J.H.Edgar,ACS Nano.11,3585(2017).

    [6]K.Watanabe,T.Taniguchi,T.Niiyama,K.Miya,and M.Taniguchi,Nat.Photonics 3,591(2009).

    [7]H.X.Jiang and J.Y.Lin,Semicond.Sci.Technol.29,084003(2014).

    [8]K.Ahmed,R.Dahal,A.Weltz,J.Q.Lu,Y.Danon,and I.B.Bhat,Appl.Phys.Lett.109,113501(2016).

    [9]A.Maity,T.Doan,J.Li,J.Y.Lin,and H.X.Jiang,Appl.Phys.Lett.109,072101(2016).

    [10]L.H.Li,T.Xing,Y.Chen,and R.Jones,Adv.Mater.Interfaces 1,1300132(2014).

    [11]Z.Liu,Y.Gong,W.Zhou,L.Ma,J.Yu,J.C.Idrobo,J.Jung,A.H.MacDonald,R.Vajtai,J.Lou,and P.M.Ajayan,Nat.Commun.4,2541(2013).

    [12]Y.Shi,C.Hamsen,X.Jia,K.K.Kim,A.Reina,M.Hofmann,A.L.Hsu,K.Zhang,H.Li,Z.Y.Juang,M.S.Dresselhaus L.J.Li,and J.Kong,Nano Lett.10,4134(2010).

    [13]L.Ci,L.Song,C.Jin,D.Jariwala,D.Wu,Y.Li,A.Srivastava,Z.F.Wang,K.Storr,L.Balicas,F.Liu,and P.M.Ajayan,Nat.Mater.9,430(2010).

    維納濾波語(yǔ)音增強(qiáng)技術(shù)能有效改善語(yǔ)音質(zhì)量,抑制帶噪語(yǔ)音中的噪聲,但和大部分語(yǔ)音增強(qiáng)算法一樣,它并不能有效提高語(yǔ)音可懂度(Speech Intelligibility)。維納濾波算法增益函數(shù)依賴于語(yǔ)音各頻點(diǎn)的估計(jì)信噪比,大量的研究工作用于分析信噪比估計(jì)算法的性能對(duì)提升語(yǔ)音質(zhì)量和減少殘留噪聲的影響,而忽略了分析信噪比估計(jì)誤差對(duì)語(yǔ)音可懂度的影響。而助聽(tīng)器的主要目的是提高使用者的語(yǔ)音可懂度,因此對(duì)增強(qiáng)算法的研究需充分考慮增強(qiáng)算法對(duì)語(yǔ)音可懂度的影響。

    [14]Y.Liu,S.Bhowmick,and B.I.Yakobson,Nano Lett.11,3113(2011).

    [15]L.Britnell,R.V.Gorbachev,R.Jalil,B.D.Belle,F.Schedin,M.I.Katsnelson,L.Eaves,S.V.Morozov,A.S.Mayorov,N.M.R.Peres,A.H.C.Neto,J.Leist,A.K.Geim,L.A.Ponomarenko,and K.S.Novoselov,Nano Lett.12,1707(2012).

    [16]S.Bernard and P.Miele,Mater.Today 17,443(2014).

    [17]Y.Lee,K.Liu,A.Lu,C.Wu,C.Lin,W.Zhang,C.Su,C.Hsu,T.Lin,and K.Wei,RSC Adv.2,111(2011).

    [18]A.Ismach,H.Chou,D.A.Ferrer,Y.Wu,S.McDonnell,H.C.Floresca,A.Covacevich,C.Pope,R.Piner,and M.J.Kim,ACS Nano.6,6378(2012).

    [19]R.Zhao,X.Zhao,Z.Liu,F.Ding,and Z.Liu,Nanoscale 9,3561(2017).

    [20]J.Lu,P.S.E.Yeo,Y.Zheng,H.Xu,C.K.Gan,M.B.Sullivan,A.H.C.Neto,and K.P.Loh,J.Am.Chem.Soc.135,2368(2013).

    [22]A.Nagashima,N.Tejima,Y.Gamou,T.Kawai,and C.Oshima,Phys.Rev.Lett.75,3918(1995).

    [23]G.Kim,A.Jang,H.Y.Jeong,Z.Lee,D.J.Kang,and H.S.Shin,Nano Lett.13,1834(2013).

    [24]R.Laskowski,P.Blaha,and K.Schwarz,Phys.Rev.B 78,045409(2008).

    [25]L.Song,L.Ci,H.Lu,P.B.Sorokin,C.Jin,J.Ni,A.G.Kvashnin,D.G.Kvashnin,J.Lou,and B.I.Yakobson,Nano Lett.10,3209(2010).

    [26]M.Bokdam,P.A.Khomyakov,G.Brocks,Z.Zhong,and P.J.Kelly,Nano Lett.11,4631(2011).

    [27]P.E.Bl?chl,J.Phys.Condens.Matter.50,17953(1994).

    [28]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev.Lett.77,3865(1996).

    [29]P.Lacovig,M.Pozzo,D.Alf,P.Vilmercati,A.Baraldi,and S.Lizzit,Phys.Rev.Lett.103,166101(2009).

    [30]S.Grimme,J.Comput.Chem.27,1787(2006).

    [31]G.Henkelman,B.P.Uberuaga,and H.Jonsson,J.Chem.Phys.113,9901(2000).

    [32]W.Fan,X.G.Gong,and W.M.Lau,Phys.Rev.B 66,115418(2002).

    猜你喜歡
    維納濾波助聽(tīng)器頻點(diǎn)
    基于4G MR的大數(shù)據(jù)分析優(yōu)化EPSFB語(yǔ)音時(shí)延
    關(guān)于助聽(tīng)器您需要了解的知識(shí)
    中老年保健(2021年7期)2021-08-22 07:40:58
    多級(jí)維納濾波器的快速實(shí)現(xiàn)方法研究
    自適應(yīng)迭代維納濾波算法
    基于多窗譜估計(jì)的改進(jìn)維納濾波語(yǔ)音增強(qiáng)
    基于維納濾波器的去噪研究
    我是奶奶的“助聽(tīng)器”
    小布老虎(2016年12期)2016-12-01 05:47:08
    眼鏡助聽(tīng)器
    基于測(cè)量報(bào)告數(shù)據(jù)優(yōu)化CSFB頻點(diǎn)配置的方法
    載帶壓縮11頻點(diǎn)創(chuàng)新方案
    少妇熟女欧美另类| 亚洲国产日韩欧美精品在线观看| 久久精品久久久久久久性| 亚洲18禁久久av| 日韩一本色道免费dvd| 色尼玛亚洲综合影院| 久久6这里有精品| 国产成人a区在线观看| 亚洲婷婷狠狠爱综合网| 午夜a级毛片| 国产精品国产高清国产av| 特大巨黑吊av在线直播| 国产黄片视频在线免费观看| 又粗又爽又猛毛片免费看| 亚洲成av人片在线播放无| 午夜爱爱视频在线播放| 日韩中字成人| www.av在线官网国产| 亚洲国产精品国产精品| 国产亚洲av嫩草精品影院| 噜噜噜噜噜久久久久久91| 男人舔女人下体高潮全视频| 国产av码专区亚洲av| 亚洲av不卡在线观看| a级毛片免费高清观看在线播放| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av中文字字幕乱码综合| 亚洲一区高清亚洲精品| 欧美成人a在线观看| 亚洲国产欧洲综合997久久,| 久久欧美精品欧美久久欧美| 国产精品野战在线观看| 国产单亲对白刺激| 一级毛片我不卡| 97在线视频观看| 日韩欧美精品v在线| 少妇高潮的动态图| 日韩欧美国产在线观看| 成人午夜高清在线视频| av播播在线观看一区| 搞女人的毛片| 极品教师在线视频| 一区二区三区四区激情视频| 亚州av有码| 日韩欧美精品v在线| 我的老师免费观看完整版| www.av在线官网国产| 人妻少妇偷人精品九色| 精品午夜福利在线看| 麻豆久久精品国产亚洲av| 国产人妻一区二区三区在| 综合色av麻豆| 国产一区亚洲一区在线观看| 亚洲中文字幕日韩| 日韩一区二区视频免费看| 婷婷色av中文字幕| 国产亚洲av嫩草精品影院| 中国国产av一级| www.色视频.com| 日韩精品青青久久久久久| 亚洲最大成人中文| 亚洲av成人精品一区久久| 午夜激情福利司机影院| 一个人观看的视频www高清免费观看| 长腿黑丝高跟| 国产午夜精品久久久久久一区二区三区| 久久热精品热| 亚洲人成网站高清观看| 日韩一区二区三区影片| 69av精品久久久久久| 床上黄色一级片| 亚洲精品亚洲一区二区| 日韩国内少妇激情av| 99热6这里只有精品| 日韩成人av中文字幕在线观看| 日日撸夜夜添| 亚洲精品aⅴ在线观看| 少妇熟女欧美另类| 国产成人免费观看mmmm| 男人舔奶头视频| 国产高清不卡午夜福利| 亚洲精华国产精华液的使用体验| av线在线观看网站| 国产69精品久久久久777片| 日本一二三区视频观看| 亚洲欧美日韩卡通动漫| 国产一区二区亚洲精品在线观看| 在线观看一区二区三区| 国产乱人视频| 一级黄色大片毛片| 国产精品99久久久久久久久| 啦啦啦观看免费观看视频高清| 女的被弄到高潮叫床怎么办| 简卡轻食公司| 一级毛片我不卡| 欧美zozozo另类| 久久精品久久久久久噜噜老黄 | 日本wwww免费看| 91午夜精品亚洲一区二区三区| 精品久久久噜噜| 久久精品久久久久久久性| 能在线免费观看的黄片| 久久韩国三级中文字幕| 最近视频中文字幕2019在线8| 亚洲精品色激情综合| 亚洲伊人久久精品综合 | 天天躁夜夜躁狠狠久久av| 中文字幕制服av| 免费黄色在线免费观看| videossex国产| 日本免费a在线| 亚洲av免费在线观看| 久久精品国产自在天天线| 久久久午夜欧美精品| 成年女人看的毛片在线观看| 亚洲欧美日韩东京热| 欧美潮喷喷水| av在线老鸭窝| 中文乱码字字幕精品一区二区三区 | 国产淫语在线视频| 亚洲va在线va天堂va国产| 精品免费久久久久久久清纯| 久久久精品欧美日韩精品| 日本猛色少妇xxxxx猛交久久| 日韩大片免费观看网站 | 免费观看性生交大片5| 亚洲国产欧美人成| 亚洲av免费在线观看| 亚洲伊人久久精品综合 | 一个人免费在线观看电影| 免费不卡的大黄色大毛片视频在线观看 | 国产私拍福利视频在线观看| 久久久久国产网址| 韩国高清视频一区二区三区| 卡戴珊不雅视频在线播放| 热99re8久久精品国产| 18禁动态无遮挡网站| 97在线视频观看| 22中文网久久字幕| 欧美最新免费一区二区三区| 欧美人与善性xxx| 日韩欧美在线乱码| 亚洲在线自拍视频| 午夜视频国产福利| 人妻系列 视频| 国产在视频线精品| 看非洲黑人一级黄片| 日本午夜av视频| 亚洲中文字幕日韩| 国产伦一二天堂av在线观看| av专区在线播放| 中文字幕制服av| 国产亚洲一区二区精品| 亚洲欧美清纯卡通| 99久久无色码亚洲精品果冻| 精品免费久久久久久久清纯| 免费大片18禁| 中国国产av一级| 国产亚洲最大av| 最近最新中文字幕免费大全7| 国产极品精品免费视频能看的| 中文字幕av成人在线电影| 国产精品人妻久久久久久| 国产av一区在线观看免费| 别揉我奶头 嗯啊视频| av黄色大香蕉| 男女那种视频在线观看| 又黄又爽又刺激的免费视频.| 亚洲在线自拍视频| 国产精品电影一区二区三区| 亚洲欧美成人精品一区二区| 天堂影院成人在线观看| 亚洲精品一区蜜桃| 老女人水多毛片| 99久久成人亚洲精品观看| 久久精品国产鲁丝片午夜精品| 亚洲美女搞黄在线观看| 成人亚洲精品av一区二区| 亚洲av不卡在线观看| 特大巨黑吊av在线直播| 国产精品一区www在线观看| 亚洲精品影视一区二区三区av| 国产高清有码在线观看视频| 国产高清国产精品国产三级 | 国产精品国产三级专区第一集| 亚洲乱码一区二区免费版| 2021天堂中文幕一二区在线观| 精品人妻偷拍中文字幕| 亚洲激情五月婷婷啪啪| 黄片无遮挡物在线观看| 国产精品久久久久久精品电影| 日日啪夜夜撸| 在线观看av片永久免费下载| 男人舔奶头视频| 日韩欧美精品v在线| av国产免费在线观看| 日日啪夜夜撸| 国产亚洲5aaaaa淫片| 久久久午夜欧美精品| 国产av在哪里看| 亚洲欧美精品专区久久| 只有这里有精品99| 国产真实伦视频高清在线观看| 国产真实伦视频高清在线观看| 久久国产乱子免费精品| 国产不卡一卡二| 99热网站在线观看| 亚洲av免费在线观看| 亚洲内射少妇av| 舔av片在线| 观看美女的网站| 日本爱情动作片www.在线观看| 精品免费久久久久久久清纯| 卡戴珊不雅视频在线播放| 最后的刺客免费高清国语| 老司机影院成人| 99热全是精品| 久久草成人影院| 久久久久久久久久久丰满| 一级爰片在线观看| 91狼人影院| 搞女人的毛片| 国内精品一区二区在线观看| 日韩成人伦理影院| 日韩国内少妇激情av| 建设人人有责人人尽责人人享有的 | 久久久久久久久久黄片| 99在线人妻在线中文字幕| 变态另类丝袜制服| 麻豆国产97在线/欧美| 欧美一区二区国产精品久久精品| 日韩强制内射视频| 欧美zozozo另类| 亚洲综合精品二区| 美女cb高潮喷水在线观看| 成人av在线播放网站| 久久久国产成人精品二区| 欧美高清性xxxxhd video| 国产精品麻豆人妻色哟哟久久 | 欧美高清性xxxxhd video| 国产激情偷乱视频一区二区| 国产精品永久免费网站| 日韩在线高清观看一区二区三区| 高清午夜精品一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 捣出白浆h1v1| 男的添女的下面高潮视频| 美女脱内裤让男人舔精品视频| 欧美日韩一区二区视频在线观看视频在线| 国产精品 国内视频| 欧美bdsm另类| 国产男女内射视频| 一二三四中文在线观看免费高清| 精品一区二区三区视频在线| 丝袜在线中文字幕| 精品一品国产午夜福利视频| 精品酒店卫生间| 国产成人a∨麻豆精品| 又黄又粗又硬又大视频| 人妻系列 视频| 欧美成人午夜免费资源| 夜夜爽夜夜爽视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 啦啦啦视频在线资源免费观看| 一二三四中文在线观看免费高清| 婷婷色综合www| 亚洲av综合色区一区| tube8黄色片| 熟女av电影| 久久精品国产亚洲av涩爱| 女性生殖器流出的白浆| 少妇高潮的动态图| 一级,二级,三级黄色视频| 狠狠婷婷综合久久久久久88av| 99国产综合亚洲精品| 在线天堂最新版资源| 国产黄频视频在线观看| 99热网站在线观看| 9色porny在线观看| 五月天丁香电影| 婷婷成人精品国产| 精品国产一区二区三区四区第35| 夫妻性生交免费视频一级片| 亚洲国产精品一区二区三区在线| 国产亚洲午夜精品一区二区久久| 午夜激情av网站| 午夜老司机福利剧场| 天堂俺去俺来也www色官网| 免费人成在线观看视频色| 永久免费av网站大全| 欧美国产精品va在线观看不卡| 97超碰精品成人国产| 日韩电影二区| 国产免费又黄又爽又色| 国产欧美另类精品又又久久亚洲欧美| 免费观看a级毛片全部| 18禁裸乳无遮挡动漫免费视频| 两个人看的免费小视频| 国产精品久久久久成人av| 一本久久精品| 男人爽女人下面视频在线观看| 免费黄网站久久成人精品| 亚洲久久久国产精品| 男女免费视频国产| 香蕉国产在线看| 免费不卡的大黄色大毛片视频在线观看| 狂野欧美激情性xxxx在线观看| 一区二区三区四区激情视频| 亚洲人与动物交配视频| 国产又爽黄色视频| 天堂中文最新版在线下载| 观看av在线不卡| 久久午夜综合久久蜜桃| 亚洲国产精品成人久久小说| 丝袜喷水一区| 亚洲成av片中文字幕在线观看 | 亚洲欧美日韩另类电影网站| 国产精品免费大片| 在线观看国产h片| 熟女人妻精品中文字幕| 欧美成人精品欧美一级黄| 免费看不卡的av| 九草在线视频观看| 中文字幕人妻丝袜制服| 边亲边吃奶的免费视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 少妇人妻精品综合一区二区| 黄色视频在线播放观看不卡| 国产成人aa在线观看| 午夜福利影视在线免费观看| 久久精品国产综合久久久 | 亚洲丝袜综合中文字幕| 亚洲国产看品久久| 日本欧美视频一区| 人妻 亚洲 视频| 亚洲欧美成人精品一区二区| 亚洲精品第二区| 老司机影院成人| av电影中文网址| 丰满饥渴人妻一区二区三| 好男人视频免费观看在线| 老司机亚洲免费影院| 亚洲精品国产av成人精品| 卡戴珊不雅视频在线播放| 成人国产av品久久久| 亚洲经典国产精华液单| 捣出白浆h1v1| 久久久久久久久久成人| 日本欧美视频一区| 亚洲国产毛片av蜜桃av| 免费黄频网站在线观看国产| 欧美精品高潮呻吟av久久| 欧美精品高潮呻吟av久久| 狠狠精品人妻久久久久久综合| 热re99久久精品国产66热6| 大香蕉久久网| 蜜臀久久99精品久久宅男| 欧美精品亚洲一区二区| 天天影视国产精品| 在线观看免费日韩欧美大片| 美女内射精品一级片tv| 亚洲丝袜综合中文字幕| 日韩av免费高清视频| 美女视频免费永久观看网站| 在线天堂最新版资源| 亚洲精品av麻豆狂野| 极品少妇高潮喷水抽搐| 国产福利在线免费观看视频| 最近中文字幕高清免费大全6| 国产精品不卡视频一区二区| 十分钟在线观看高清视频www| 熟女人妻精品中文字幕| 两个人免费观看高清视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品国产三级国产专区5o| 波野结衣二区三区在线| 国产成人免费无遮挡视频| 国产又爽黄色视频| 又大又黄又爽视频免费| 自线自在国产av| 亚洲国产精品一区二区三区在线| 国产精品久久久久久av不卡| 日韩视频在线欧美| 香蕉国产在线看| 99九九在线精品视频| 精品人妻在线不人妻| 久久久国产一区二区| 欧美3d第一页| 插逼视频在线观看| 成人国产av品久久久| 亚洲精品一二三| 如日韩欧美国产精品一区二区三区| 夜夜骑夜夜射夜夜干| 久久久a久久爽久久v久久| 国产精品国产三级专区第一集| 天堂8中文在线网| 国产深夜福利视频在线观看| 国产欧美日韩综合在线一区二区| 国产片特级美女逼逼视频| 欧美日本中文国产一区发布| 婷婷色综合大香蕉| 丰满少妇做爰视频| 两个人免费观看高清视频| 免费在线观看黄色视频的| 国产在视频线精品| 免费av不卡在线播放| 在线观看国产h片| 纯流量卡能插随身wifi吗| 久久99精品国语久久久| 秋霞在线观看毛片| 日韩一本色道免费dvd| 国产免费一区二区三区四区乱码| 日韩在线高清观看一区二区三区| 亚洲国产av新网站| 丁香六月天网| 成人毛片a级毛片在线播放| 97人妻天天添夜夜摸| 天天操日日干夜夜撸| 亚洲,一卡二卡三卡| 国产精品一区二区在线观看99| 伦理电影免费视频| 亚洲,欧美精品.| 日韩三级伦理在线观看| h视频一区二区三区| 国产欧美日韩综合在线一区二区| 欧美日韩亚洲高清精品| 精品国产乱码久久久久久小说| 黑人高潮一二区| 婷婷成人精品国产| 成人黄色视频免费在线看| 国产 一区精品| 免费人成在线观看视频色| 欧美变态另类bdsm刘玥| 人成视频在线观看免费观看| 91国产中文字幕| 久久久久视频综合| 一本久久精品| 午夜福利视频在线观看免费| 中文字幕另类日韩欧美亚洲嫩草| 桃花免费在线播放| 超碰97精品在线观看| 蜜桃在线观看..| 免费高清在线观看视频在线观看| 成人影院久久| 激情视频va一区二区三区| 亚洲,欧美精品.| 只有这里有精品99| 精品少妇久久久久久888优播| 亚洲av男天堂| 亚洲精品成人av观看孕妇| 寂寞人妻少妇视频99o| 丝袜脚勾引网站| h视频一区二区三区| 丰满迷人的少妇在线观看| 免费黄频网站在线观看国产| 色吧在线观看| 午夜福利乱码中文字幕| 少妇的丰满在线观看| 午夜视频国产福利| 777米奇影视久久| av视频免费观看在线观看| 大香蕉久久成人网| 亚洲av在线观看美女高潮| 99久久中文字幕三级久久日本| 国产成人欧美| 国产成人91sexporn| 中文字幕制服av| 国产一区二区在线观看av| 飞空精品影院首页| 日韩大片免费观看网站| 国产爽快片一区二区三区| 一本—道久久a久久精品蜜桃钙片| 欧美日韩亚洲高清精品| 亚洲精品乱久久久久久| av线在线观看网站| 国产男人的电影天堂91| 伊人久久国产一区二区| 男女边吃奶边做爰视频| 国产精品麻豆人妻色哟哟久久| 日本猛色少妇xxxxx猛交久久| 伊人久久国产一区二区| 天天操日日干夜夜撸| 色婷婷久久久亚洲欧美| 中文字幕人妻丝袜制服| 中文字幕av电影在线播放| 日韩在线高清观看一区二区三区| 伦理电影免费视频| 国产成人精品福利久久| 看免费av毛片| 色94色欧美一区二区| 免费观看性生交大片5| 国产又色又爽无遮挡免| 久久97久久精品| 欧美激情国产日韩精品一区| 日本vs欧美在线观看视频| 日韩一区二区视频免费看| 99久久中文字幕三级久久日本| av视频免费观看在线观看| 国产激情久久老熟女| 又黄又爽又刺激的免费视频.| 久久午夜综合久久蜜桃| av视频免费观看在线观看| 日日摸夜夜添夜夜爱| 中国美白少妇内射xxxbb| 91精品国产国语对白视频| 不卡视频在线观看欧美| 亚洲欧洲精品一区二区精品久久久 | 精品国产国语对白av| 国产在线视频一区二区| 中文字幕最新亚洲高清| 18+在线观看网站| 色吧在线观看| 丝袜喷水一区| 久久ye,这里只有精品| 国产午夜精品一二区理论片| 日本wwww免费看| 80岁老熟妇乱子伦牲交| 一级a做视频免费观看| 99国产精品免费福利视频| 亚洲欧洲精品一区二区精品久久久 | 国产女主播在线喷水免费视频网站| 99热6这里只有精品| 天天躁夜夜躁狠狠久久av| av女优亚洲男人天堂| 午夜av观看不卡| 丰满饥渴人妻一区二区三| 我的女老师完整版在线观看| 一个人免费看片子| 一区在线观看完整版| 国产精品麻豆人妻色哟哟久久| 女人精品久久久久毛片| 熟女av电影| 免费av中文字幕在线| 大香蕉久久网| 精品少妇内射三级| 欧美人与善性xxx| 99久国产av精品国产电影| 免费女性裸体啪啪无遮挡网站| 欧美丝袜亚洲另类| 亚洲精品自拍成人| 最近的中文字幕免费完整| 天天躁夜夜躁狠狠久久av| 国产 精品1| 免费在线观看黄色视频的| 亚洲精品456在线播放app| 777米奇影视久久| 国产又爽黄色视频| 亚洲情色 制服丝袜| 插逼视频在线观看| 99久久综合免费| 亚洲精品自拍成人| 国产黄色视频一区二区在线观看| 亚洲欧洲国产日韩| av线在线观看网站| 中国国产av一级| 久久精品aⅴ一区二区三区四区 | 黄片无遮挡物在线观看| 在线免费观看不下载黄p国产| 99热网站在线观看| 在线观看一区二区三区激情| av在线播放精品| 国产午夜精品一二区理论片| av卡一久久| 精品国产露脸久久av麻豆| 18禁在线无遮挡免费观看视频| 2022亚洲国产成人精品| 国产精品99久久99久久久不卡 | 欧美成人午夜免费资源| 超色免费av| 免费黄频网站在线观看国产| 各种免费的搞黄视频| 亚洲久久久国产精品| 色视频在线一区二区三区| a级片在线免费高清观看视频| 99九九在线精品视频| 大陆偷拍与自拍| 人妻系列 视频| 男的添女的下面高潮视频| 国产在线一区二区三区精| 黑人欧美特级aaaaaa片| 欧美xxⅹ黑人| 亚洲欧美清纯卡通| 亚洲熟女精品中文字幕| 一区二区日韩欧美中文字幕 | 国产欧美日韩一区二区三区在线| 少妇的逼好多水| 国产av一区二区精品久久| 精品卡一卡二卡四卡免费| 久久久久久久久久久久大奶| 99热全是精品| 一本色道久久久久久精品综合| 亚洲国产看品久久| 久久午夜福利片| 久久久亚洲精品成人影院| 99热全是精品| 中文精品一卡2卡3卡4更新| 赤兔流量卡办理| 一区二区三区乱码不卡18| 街头女战士在线观看网站| 18禁观看日本| 我的女老师完整版在线观看| 亚洲三级黄色毛片| 亚洲欧洲精品一区二区精品久久久 | 只有这里有精品99| 99热6这里只有精品| av又黄又爽大尺度在线免费看| 伊人久久国产一区二区| 免费久久久久久久精品成人欧美视频 | 成年人免费黄色播放视频| 18禁在线无遮挡免费观看视频| 亚洲美女黄色视频免费看| 欧美xxxx性猛交bbbb| 国产欧美另类精品又又久久亚洲欧美| 精品酒店卫生间| 一本大道久久a久久精品|