• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Network Modeling of Inflammatory Dynamics Induced by Biomass Smoke Leading to Chronic Obstructive Pulmonary Disease

    2018-06-27 06:48:32HaishanYuZhichaoPanJielouLiao
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年3期

    Hai-shan Yu,Zhi-chao Pan,Jie-lou Liao

    Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China

    I.INTRODUCTION

    Chronic obstructive pulmonary disease(COPD)is a progressive inflammatory condition characterized by air flow limitation due to small airway obstruction(bronchitis)and destruction of the lung parenchyma(emphysema)[1,2].COPD has currently become the third leading cause of death globally[2].There is no cure available for COPD and the present drug treatments are mainly effective in the improvement of symptoms and exacerbation but generally do not slow down the disease progression[3].The disease poses a huge public health burden worldwide.Thus,it is of great importance to elucidate the detailed mechanism of the disease for the development of effective therapies.

    Although inhalation of cigarette smoke(CS)is the primary cause of COPD(CS-COPD),a growing number of other risk factors such as exposure to air pollution particulate matter(PM)contribute to the pathology of the disease[4].In particular,PM2.5,defined as fine particulate matter with an aerodynamic diameter less than 2.5μm,plays a detrimental role in the pathogenesis of COPD,as it can readily penetrate into the small airway and alveoli of the lung[5].There are several sources including biomass smoke(BS),a major contributor to PM2.5[6],as more than 3 billion people use biomass fuel for cooking and heating worldwide[7].Exposure to BS has been widely recognized as a significant risk factor for COPD[1,8].BS-induced COPD(BS-COPD)has been considered mainly in developing regions of the world,but biomass burning is also recognized as a significant cause of the disease in industrialized countries[8].

    BS contains many compounds similar to those in CS[9].Both BS and CS activate inflammatory responses of the lung.The BS-and CS-induced inflammatory responses involve both innate and adaptive immunity,which are mediated through a complex network consisting of multiple immune cell types,molecular mediators,and lung tissues[1].It would be expected that BS induces an inflammatory pattern similar to that of CS[1,9].Recent studies,however,have shown that immune response caused by exposure to BS[10]appears to be different from that induced by CS in COPD patients[11].Clinical data have demonstrated that a set of patients with BS-COPD have higher levels of IL4-producing Th2 cells,which predominate over Th1 and Th17[10],while subjects with CS-COPD develop a proinflammatory Th17-type immune profile,in which the Th17 population is significantly higher than that of Th2[11].However,a more recent study showed that another set of patients with BS-COPD exhibited higher levels of proinflammatory biomarkers than healthy subjects similar to those with CS-COPD,and there was no predominant Th2-type inflammation observed in BSCOPD subjects[8].Although the discrepancies between these studies[8,10]might be attributable to the high heterogeneity of COPD and a different distribution of males and females in each COPD group selected[8],the underlying mechanism is not completely clear.

    FIG.1 Network model for BS-induced inflammatory response.The interactions between various nodes that represent immune cells,cytokines and tissues(TD)are depicted(see the main text for details).For clarity,only a few inhibitory interactions of IL-10 are shown(see details in Ref.[12]).

    In our previous study[12,13],a network model was proposed to describe the dynamics of CS-induced immune responses in COPD progression.This network model is then extended to study the immune response dynamics in the progression of ulcerative colitis[14].Our network model studies have identified several positive feedback loops(PFLs),activation of which plays a determinant role in several different mechanisms(endotypes)in COPD developments[12–14].Inhibition of key elements in the activated PFLs could provide a possible therapeutic approach for COPD treatment.Moreover,lessons learned from our previous study are that a similar clinical phenotype of COPD patients may originate from different endotypes.Therefore,it is suggested that personalized medicine is required for an effective treatment of COPD[12,13].Our previous modeling predictions[13]were in good agreement with the clinical data for CS-induced COPD,in which Th17 predominates over Th2[12].As COPD is essentially proinflammatory[1,12,13],how an inflammatory profile of a Th2-type,which is anti-inflammatory,is achieved in a subset of patients with BS-COPD has not been addressed in our previous study[12]and remains largely unclear so far.In the present work,the network model developed in our previous study[12]is applied to elucidate BS-induced inflammatory dynamics leading to COPD to address the above issue.

    II.MATERIALS AND METHO DS

    A.Network model

    The immune system associated with COPD is highly complex,involving many molecular mediators,immune cells,and lung tissues.For the sake of simplicity,a network model is developed by treating important components as network nodes[12].In this network model,there exist two types of inputs initiated from a node.A positive or an up-regulation input(denoted by→)represents that an increasing of the concentration of the tail node will result in an increasing of the head node or an up-regulation of the process when the input arrow ends at an edge between two nodes,and vice versa for a negative or a down-regulation(inhibition)input(denoted by?).

    The network model(FIG.1)used in this work is based on that presented in our previous study[12].Upon exposure to external stimuli such as BS,imma-ture macrophages(M0)are polarized to the inflammatory type,M1 macrophages,and initiate an inflammatory cascade[7].M1 produces inflammatory cytokines such as tumor necrosis factor-α(TNF-α),which activates M1 conversely,IL-6 and IL-12[15].M1 can cause tissue damage(TD)in the lung by releasing reactive oxygen species(ROS)leading to oxidative stress,proteases such as macrophage elastase and metalloproteases(MMPs)to ingest pathogens and apoptotic cells,and chemokines including IL-8 to recruit neutrophils into the lung[16–18].Neutrophils,which are short-lived and subsequently cleared by macrophages[19],contribute to TD in a manner similar to M1 macrophages[17].In addition,the inflammation in COPD is often described as neutrophilic[1].Furthermore,the tissues damaged by M1 can produce elastin fragments(EFs)as strong attractors to recruit monocytes(precursors of macrophages,M0)into the lung from circulation[19].Subsequently,these M0 cells are differentiated into M1,thus forming a positive feedback loop,M1→TD→M1.

    Lung tissue damage triggers an early wounding healing process by producing IL-4 that alternatively activates macrophages(M2)[18,20,21].M2 secretes IL-10,which activates M2 inversely,and transforming growth factor,TGF-β[22].While IL-10 is a potent antiinflammatory cytokine that down-regulates almost all important proinflammatory and TD-related processes,TGF-β is a multi-functional growth factor.In the lung parenchyma,TGF-β down-regulates tissue damage through inhibition of MMP-12 and MMP-9,whereas in small airways,TGF-β is a potent inducer for extracellular matrix target genes such as collagens,and fibroblast proliferation and activation which both are key events in the fibrogenic process[23].

    Dendritic cells(DCs)are antigen-presenting,playing a critical role in linking the innate to the adaptive immune response[24].Immature dendritic cells(DC0)near the epithelial surface are activated directly by BS or dangerous signals generated from TD[1,11].DC undergoes a maturation process and migrates towards the local lymph nodes.Na?ve,quiescent T cells cannot enter the lung parenchyma.But once activated by matured DC[25,26],they can move into the lung and differentiate into Th1,Th2,Th17,T-regulatory(Treg)and CD8+T cells in their corresponding cytokine environments,e.g.,in the presence of IL-12 secreted by M1(as well as DC),na?ve CD4+T cells(Th0)differentiate into T helper 1(Th1)cells[27–29].Th1 secretes interferon-γ(IFN-γ)to up-regulate the polarization process from M0 to M1[30].A multi-node positive feedback loop,M1→IL12→Th1→IFN→γ→M1,is thus created.In contrast to Th1,Th2 is polarized from Th0 in the presence of IL-4.Release of IL-4 further enhances the production of IL-10 and TGF-β by M2(FIG.1).

    In the presence of TGF-β,Th0 cells differentiate into Treg,which secretes IL-10[31].TGF-β and IL-6 together induce Th17 differentiation,leading to the production of IL-17[32–35].While IL-17 acts on epithelial cells to recruit neutrophils to cause TD further,the activated epithelial cells in TD secrete IL-6,forming another positive feedback loop,IL-6→Th17→IL-17→TD→IL-6[27,35].Th17 cells also produce IL-21 for the differentiation of CD8+T cells from na?ve CD8+cytotoxic T lymphocytes(T0)[27,36].While CD8+T cells produce IFN-γ to enhance the M1 inflammatory activities,they also release granzyme B and perforins,causing apoptosis/necrosis of targeted cells and leading to TD further[27].In addition,IL-6 can downregulate the activation of Treg that secretes IL-10 inhibiting Th17[37].Consequently,a positive feedback loop,IL-6?Treg→IL-10?Th17→IL-17→TD→IL-6,is generated.The aforementioned molecular mediators,immune cells,and TD are then treated as nodes,and are integrated into the network model presented in FIG.1.

    In this network model M1,DC,Th1,Th17,and CD8+T with their associated cytokines,TNF-α,IL-6,IL-12,IFN-γ,and IL-17 form multiple proinflammatory pathways,whereas M2,Th2,and Treg with the related cytokines,IL-4,TGF-β,and IL-10,form antiinflammatory/regulatory pathways.The inflammatory and anti-inflammatory/regulatory pathways are interlinked with each other through several nodes representing molecular mediators such as IL-6,TGF-β,IL-10,IL-4,and IFN-γ(FIG.1).These pathways eventually converge at the TD node.As we focus on the immunologic aspects of BS-COPD,the TD node of the network is highly coarse-grained,involving neutrophil-induced tissue damage,epithelial cell injury and extracellular matrix degradation etc.[12].For example,epithelial cell injury in lung tissue(TD)can release molecular mediators including IL-4,IL-33 and thymic stromal lymphopoitin(TSLP)to up-regulate Th2 and type II innate lymphoid cells(ILCs),both of which secrete IL-4,IL-5,and IL-13[1,38].Dysregulated expressions of these cytokines in the airway smooth muscle are associated with asthma[1].For simplicity,ILCs and TSLP,IL-5,and IL-13 are not included in the present network model.

    B.Network dynamics

    FIG.2 Population dynamics of M1,M2and DCover a time period of(a)6000 days and(b)180 days(the dashed square region in(a))in BS-COPD progression.

    FIG.3 Population dynamics of Iα,I6,I12,I17,Iγ,I4,I10and Iβover a time period of(a)6000 days and(b)180 days(the dashed square region in(a))in BS-COPD progression.

    The above constructed network has a multiple timescale nature.For example,while cytokine regulation of cellular function via signal transduction usually takes place on a sub-second timescale,cell production of cytokines takes minutes to hours[39].Therefore,the cytokine regulation activity can be considered to be at steady state in the equation that describes the slow timescale activities of the cells.Thereby,a positive or a negative input can be modeled using an increasing or decreasing Hill function[12].In this work,we use a set of ordinary differential equations(ODEs),which are similar to those in our previous study[12],to describe the dynamics of the above network components(see text in Supplementary materials).These ODEs involve 18 variables,i.e.,M1,M2,DC,T1,T2,T8,T17,and Tgrepresent the densities of M1,M2,DC,Th1,Th2,CD8+,Th17,and Treg cells(in units of cell numbers in a cubic millimeter of tissue),respectively,whereas I4,I6,I10,I12,I17,I21,Iα,Iγ,and Iβdenote concentrations of the cytokines,IL-4,IL-6,IL-10,IL-12,IL-17,IL-21,TNF-α,IFN-γ,and TGF-β.The variable,TD,represents the tissue damage(in terms of a percentage)[12].Given the network model(FIG.1)as well as the ODEs(see text in the Supplementary materials),the values of the parameters in the ODEs determine the immune response dynamics and inflammatory profile of a subject exposed to BS.In the following discussion,the values of the parameters(Table S1 in the Supplementary materials)in the ODEs(see text in the Supplementary materials)were adopted or estimated from experimental data(Table S2 in the Supplementary materials).A subset of the parameters including k9(3.36×104/day),k26(8.00 pmol/(cell day))and k27(2.00 pmol/(cell day)),which govern the dynamics of Th2 and IL-4,respectively,have different values from their counterparts,k8(0.41×104/day),kI4,TD(1.56 pmol/(cell day))and kI4,T2(0.83 pmol/(cell day))in Table S1 in Ref.[12]for patients with CS-COPD studied previously.

    As mentioned above,18 ODEs,which involve 18 variables,M1,M2,DC,T1,T2,T8,T17,Tg,I4,I6,I10,I12,I17,I21,Iα,Iγ,Iβ,and TD,are used to describe the network dynamics.These ODEs are listed in Supplementary materials.The system of ODEs is solved numerically using MATLAB(version R2013a Mathworks)with a variable order and multistep solver,ode15s,and the parameters used in the simulations are listed in Table S1.MATLAB is also used to plot the simulation data to generate the figures presented below.

    III.RESULTS

    A.Dynamics of BS-induced immune response and inflammatory profile

    FIG.4 Population dynamics of T1,T2,T8,T17,and Tgover a time period of(a)6000 days and(b)180 days(the dashed square region in(a))in BS-COPD progression.

    FIG.5 (a)TD dynamics.(b)Calculated results(red)for Th1,Th2,Th17,and Treg compared with clinical data(black)for BS-COPD.The clinical data are taken from Ref.[12].

    FIGs.2?4 present the population dynamics of the immune cells and cytokines in response to BS,respectively.The M1 population(FIG.2(b))along with TNF-α,IL-6,and IL-12(FIG.3(b))ascends to a peak after BS exposure for~13 days,and then goes downuntil day 20 due to the down-regulation of IL-10 mainly produced by M2(FIG.1(a)),exhibiting an acute inflammatory response to BS exposure.As discussed in the previous study,this time period is referred to as phase I in COPD progression[14].Thereafter,the IL-10 inhibitory effect on M1 is countervailed by the M1 production up-regulated by TNF-α,TD and IFN-γ(see FIG.1).M1 is then raised again up to day of 180.This time of period is referred to as phase II,which bridges the innate and adaptive immunity in the progression of COPD[14].During phase II,DC along with IL-12,IL-6,and TGF-β(FIG.3(b)),and IL-21(data not shown)increases slowly and gradually,leading to the slow productions of Th1,Th17,and CD8+,respectively.After phase II,TD(FIG.5(a))along with the immune cells and molecular mediators eventually reaches a steady state(stable COPD,see results in Table S2).Our modeling results are consistent with laboratory and clinical experiments(see Table S2 in the Supplementary materials).

    Our simulation results show that overall,BS-induced dynamic behaviors of the innate immune cells,M1 and DC(FIG.2)are similar to those induced by CS in COPD progression[12].However,there exist significant differences in the dynamics of some important network components including IL-4 and Th2 between these two cases.As shown in FIG.3 IL-4(I4)is increased dramatically compared to that in CS-COPD[14].Th2 is also significantly enhanced,predominating over Th1 and Th17,respectively,during the COPD progression(FIG.4).The BS-COPD patients,which were all female[12],studied in this work have an inflammatory profile in which the Th2 level is higher than that of Th17(FIG.5(b)),different from that of CSCOPD in which Th17 predominates over Th2[13,14](see FIG.S1 in this work).Here,our simulations results are in good agreement with the clinical data[12],as shown in FIG.5(b).Nevertheless,M1 still remains at a high level(FIG.2)similar to that of CS-COPD[14]as the host is persistently exposed to BS and the M1-involved PFLs are constantly activated.As a result,our modeling study has identified a subset of COPD patients whose immune dynamics is dominated by a mixed M1-and Th2-type response.

    FIG.6 Simulations of TD dynamics for in silico knockout of(a)an immune cell,M1(red),T1(green),T2(blue),T17(cyan),or T8(pink)and(b)a cytokine,Iα(red slashed line),I6(cyan),I17(pink),Iγ(green),or I4(blue).WT(wild-type)is represented by black solid line.

    B.Knockout simulations

    In the following discussion,in silico knockout simulations are performed to identify important network components for BS-COPD through deletion of a node by setting all parameters of the component and the rate to zero.The results for knockouts of the immune cells,M1,Th1,Th2,Th17,CD8+,and the cytokines,TNF-α,IL-6,IL-17,IFN-γ,and IL-4 are presented in FIG.6(a)and(b),respectively.

    FIG.6(a)shows that M1 knockout leads to a significant reduction in TD in spite of persistent exposure to BS.As discussed earlier,M1 not only produces proinflammatory cytokines such as IL-6 and IL-12 to activate the adaptive immune responses,but also induces TD by producing chemokines such as IL-8 to recruit neutrophils into the lung,ROS leading to oxidative stress,and elastolytic enzymes including MMPs.The M1 knockout result along with that shown in FIG.3 demonstrates that M1 predominates in the immune response,consistent with experiments in which M1 has a determinant role for BS-COPD[1]similar to the case of CS-COPD[40].While deletion of Th1 leads to a small change in BS-induced TD,knockouts of Th17 and CD8+result in a large amount of reduction in TD,respectively.Interestingly,deleting Th2 leads to an increase in TD(FIG.6(a)),which is consistent with knockout of Th2-produicng IL-4(FIG.6(b)).These results are not surprising as Th2 and IL-4 execute their anti-inflammatory and wound healing effects on TD.Our modeling study indicates that anti-IL-4/Th2 strategy may not be effective in the treatment of BSCOPD,although both Th2 and IL-4 are significantly enhanced that might be associated with coexisting asthma[41,42],in line with clinical experiments[38].

    Although the TNF-α level(FIG.3)is significantly increased in BS-COPD,no significant reduction in TD is found in the TNF-α knockout simulation(FIG.6(a)).This result is consistent with clinical data showing that TNF-targeted therapy is ineffective in COPD treatment[3,43].As shown in FIG.6(b),the deletions of IL-17 and IFN-γ lead to a relatively small decrease(<~10%)in TD,respectively.These low-level reductions are not contradictory to the effects of CD8+and Th17 knockouts,as the latter effects come from both cytokine deletion and elimination of the cytotoxicity of CD8+that produce granzyme B and perforins to cause TD further as discussed earlier.Despite a relatively low level of IL-6 in BS-COPD,the IL-6 knockout still results in a large reduction of TD at the steady state,demonstrating an important role of IL-6 in bridging the innate and adaptive immunity.Our knockout simulations indicate that IL-6 is a promising anti-inflammatory target for an effective treatment of COPD[3].

    IV.DISCUSSION

    COPD is associated with chronic inflammation that affects predominantly the lung parenchyma and airways leading to airway limitation.This inflammation is amplified in patients with COPD and persists even after exposure to smoke is stopped[1].However,the precise mechanisms for the inflammatory amplification and persistence are not clear[1].Recently,we proposed a network model to probe the cellular and molecular mechanisms of CS-induced COPD[12].Our modeling study has identified several positive feedback loops,activations of which are responsible for such inflammatory amplification and persistence in COPD patients and have an important role in several distinct mechanisms(endotypes)by which clinical COPD phenotypes are developed[12].Our previous modeling results indicate that similar clinical phenotypes of COPD patients can come from different endotypes,suggesting that personalized medicine is required for COPD treatment.

    Recent clinical data have shown that a set of patients with BS-COPD have a Th2-type inflammatory profile,in which the levels of Th2 are higher than those of Th1 and Th17,respectively[10],significantly different from that with CS-COPD where Th17 predominates over Th2[11].As the immune response dynamics of CSCOPD was extensively studied in our previous work[12],the underlying mechanism by which BS-COPD patients develop a Th2-type inflammatory profile has remained elusive[1,9–11].In the present work,we employed the network model developedin our previous study[12]to investigate BS-induced inflammatory response in COPD progression.Our modeling study has identified a subset of patients with BS-COPD,whose immune response is of mixed M1-and Th2-type,in which M1 dominates M2,whereas Th2 predominates over Th1 and Th17,respectively,in good agreement with clinical data(FIG.5(b))[10].In silico knockout simulations in this work have demonstrated several important network components that have an important role in BS-COPD.

    It is of interest to note that BS-COPD occurs mostly in women[10]and while female BS-COPD patients have a Th2-type inflammatory profile[10],male patients with BS-COPD have an immune response similar to that of CS-COPD[8].This modeling study has identified a subset of COPD patients(i.e.,females)who are likely more sensitive to tissue damage in the lung and have developed a protective mechanism by which IL-4 is significantly enhanced in response to the signal from TD(see FIG.1)in the early phase as shown in FIG.3(b)[12].The positive feedback loop,IL-4→Th2→IL-4(FIG.1),is then activated so that the Th2 level is significantly enhanced,predominating over Th1 and Th17,respectively(see FIG.4).IL-4 also alternatively activates M2 that secretes TGF-β and IL-10.While TGF-β promotes tissue repair in the lung parenchyma as mentioned above,IL-10 attenuates the proinflammatory responses and reduces tissue damage.Intriguingly,in silico knockout of IL-4 or Th2 in this study leads to an increase of TD although IL-4 and Th2 are both significantly enhanced in patients with BS-COPD,implicating that anti-IL-4/Th2 therapy may not be effective in the treatment of BS-COPD.Our modeling study provides novel insight into the cellular and molecular mechanism of BS-COPD with a Th2 profile,providing a rationale for targeted therapy and the personalized medicine treatment of COPD in future.

    Supplementary materials:Equations(S1)?(S7)are given for the population dynamics of cytokines,Iα(TNF-α),I12(IL-12),Iγ(IFN-γ),I17(IL-17),I21(IL-21),I4(IL-4),and Iβ(TGF-β).FIG.S1 shows calculated results(red)for Th1,Th2,Th17,and Treg compared with clinical data(black)for CS-induced COPD.TABLE S1 lists parameters for the equations describing network dynamics of BS-induced immune response.TABLE S2 lists cell density and cytokine concentrations at the steady state from the simulations compared to experiments.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21273209).

    [1]P.J.Barnes,J.Allergy Clin.Immuno.138,16(2016).

    [2]S.I.Rennard and M.B.Drummond,Lancet 385,1778(2015).

    [3]P.J.Barnes,Nat.Rev.Drug Discov.12,543(2013).

    [4]F.He,B.Liao,J.Pu,C.Li,M.Zheng,L.Huang,Y.Zhou,D.Zhao,B.Li,and P.Ran,Sci.Rep.7,45666(2016).

    [5]S.L.Hwang,S.E.Guo,M.C.Chi,C.T.Chou,Y.C.Lin,C.M.Lin,and Y.L.Chou,Int.J.Environ.Res.13,366(2016).

    [6]J.L.Lopez-Campos,E.Marquez-Martin,and J.B.Soriano,Expert.Rev.Respir.Med.9,1(2016).

    [7]J.Olloquequi and R.O.Silva,Innate Immun.22,373(2016).

    [8]R.Golpe,I.Martín-Robles,P.Sanjuán-López,L.Pérezde-Llano,C.González-Juanatey,J.L.López-Campos,and E.Arellano-Orden,Int.J.COPD 12,2639(2017).

    [9]R.Silva,M.Oyarzún,and J.Olloquequi,Arch.Bronconeumol.51,285(2015).

    [10]H.Solleiro-Villavicencio,R.Quintana-Carrillo,R.Falfán-Valencia,and M.I.Vargas-Rojas,Clin.Immunol.161,150(2015).

    [11]M.I.Vargas-Rojas,A.Ramirez-Venegas,L.Limón-Camacho,L.Ochoa,R.Hernández-Zenteno,and R.H.Sansores,Respir.Med.105,1648(2011).

    [12]Z.Pan,H.Yu,and J.L.Liao,PLoS One 11,e0163192(2016).

    [13](a)J.L.Liao,J.Immuno.Biol.2,119(2017).(b)J.L.Liao,Immunotherapy 3,107(2017).

    [14]D.Wu,H.Shan,and J.L.Liao,Chin.J.Chem.Phys.2018(in press).

    [15]C.E.Boorsma,C.Draijer,and B.N.Melgert,Mediators Inflamm.2013,1(2013).

    [16]R.D.Hautamaki,D.K.Kobayashi,R.M.Senior,and S.D.Shapiro,Science 277,2002(1997).

    [17]A.F.Ofulue and M.Ko,Am.J.Physiol.277,L97(1999).

    [18]D.M.Mosser and J.P.Edwards,Nat.Rev.Immunol.8,958(2008).

    [19]R.A.Holloway and L.E.Donnelly,Curr.Opin.Pulm.Med.19,95(2013).

    [20]P.Loke,I.Gallagher,M.G.Nair,X.Zang,F.Brombacher,M.Mohrs,J.P.Allison,and J.E.Allen,J.Immunol.179,3926(2007).

    [21]E.Brandt,G.Woerly,A.B.Younes,S.Loiseau,and M.Capron,J.Leukoc.Biol.68,125(2000).

    [22]R.Faner,T.Cruz,and A.Agusti,Expert Rev.Clin.Immunol.9,821(2013).

    [23]M.K?nigsho ff,N.Kneidinger,and O.Eickelberg,Swiss Med.WKLY 139,554(2009).

    [24]P.Stoll,M.Ulrich,K.Bratke,K.Garbe,J.C.Virchow,and M.Lommatzsch,Respir.Res.16,19(2015).

    [25]G.R.Van Pottelberge,K.R.Bracke,I.K.Demedts,K.D.Rijck,S.M.Reinartz,C.M.van Drunen,G.M.Verleden,F.E.Vermassen,G.F.Joos,and G.G.Brusselle,Respir.Res.11,35(2010).

    [26]H.Torres-Aguilar,M.Blank,L.J.Jara,and Y.Shoenfeld,Autoimmun.Rev.10,8(2010).

    [27]P.J.Barnes,Nat.Rev.Immunol.8,183(2008).

    [28]G.Trinchieri,S.Pflanz,and R.A.Kastelein,Immunity 19,641(2003).

    [29]D.R.Milich,S.F.Wolf,J.L.Hughes,and J.E.Jones,Natl.Acad.Sci.USA 92,6847(1995).

    [30]P.J.Barnes,Am.J.Respir.Cell Mol.Biol.41,631(2009).

    [31]Y.Y.Wan and R.A.Flavell,Proc.Am.Thorac.Soc.4,271(2007).

    [32]A.Kimura and T.Kishimoto,Eur.J.Immunol.40,2830(2010).

    [33]E.Bettelli,Y.Carrier,W.Gao,T.Korn,T.B.Strom,M.Oukka,H.L.Weiner,and V.K.Kuchroo,Nature 441,235(2006).

    [34]P.R.Mangan,L.E.Harrington,D.B.O’Quinn,W.S.Helms,D.C.Bullard,C.O.Elson,R.D.Hatton,S.M.Wahl,T.R.Schoeb,and C.T.Weaver,Nature 441,231(2006).

    [35]H.Ogura,M.Murakami,Y.Okuyama,M.Tsuruoka,C.Kitabayashi,M.Kanamoto,M.Nishihara,Y.Iwakura,and T.Hirano,Immunity 29,628(2008).

    [36]M.C.Duan,Y.Huang,X.N.Zhong,and H.J.Tang,Mediators Inflamm.2012,1(2012).

    [37]M.Fujimoto,M.Nakano,F.Terabe,H.Kawahata,T.Ohkawara,Y.Han,B.Ripley,S.Serada,T.Nishikawa,A.Kimura,S.Nomura,T.Kishimoto,and T.Naka,J.Immunol.186,32(2011).

    [38]K.F.Chung,Lancet 386,1086(2015).

    [39]U.Alon,Math.Biosci.215,193(2008).

    [40]R.D.Hautamaki,D.K.Kobayashi,R.M.Senior,and S.D.Shapiro,Science 277,2002(1997).

    [41]R.Golpe,P.Sanjuán-López,E.Cano-Jiménez,O.Castro-A?nón,and L.A.Pérez-de-Llano,Arch.Bronconeumol.50,318(2014).

    [42]B.G.Cosio,J.B.Soriano,J.L.Lopez-Campos,M.Calle-Rubio,J.J.Soler-Cataluna,J.P.de-Torres,J.M.Marín,C.Martínez-Gonzalez,P.de Lucas,I.Mir,G.Peces-Barba,N.Feu-Collado,I.Solanes,I.Alfageme,and C.Casanova,Chest 149,45(2016).

    [43]M.A.Dentener,E.C.Creutzberg,H.J.Pennings,G.T.Rijkers,E.Mercken,and E.F.Wouters,Respiration 76,275(2008).

    国产av不卡久久| 18+在线观看网站| 日韩欧美免费精品| 一级a爱片免费观看的视频| 国产欧美日韩精品一区二区| 欧美性猛交╳xxx乱大交人| 嫩草影视91久久| 在线国产一区二区在线| 直男gayav资源| 在线观看美女被高潮喷水网站 | 桃色一区二区三区在线观看| 久久久成人免费电影| 中文资源天堂在线| 1024手机看黄色片| 国产精品av视频在线免费观看| 久久久久久久久中文| 一级作爱视频免费观看| 久久精品国产亚洲av香蕉五月| 激情在线观看视频在线高清| 免费黄网站久久成人精品 | 老司机福利观看| 欧美在线一区亚洲| 他把我摸到了高潮在线观看| 亚洲经典国产精华液单 | 国产视频一区二区在线看| 免费看日本二区| 最后的刺客免费高清国语| 婷婷六月久久综合丁香| 欧美激情国产日韩精品一区| 性欧美人与动物交配| 极品教师在线免费播放| 久久精品人妻少妇| 真人做人爱边吃奶动态| 精品午夜福利视频在线观看一区| 高清毛片免费观看视频网站| 欧美bdsm另类| 亚洲色图av天堂| 日本在线视频免费播放| 国产三级黄色录像| 日本与韩国留学比较| 日本黄色片子视频| 亚州av有码| 欧美潮喷喷水| 两人在一起打扑克的视频| 成人午夜高清在线视频| 欧美黄色片欧美黄色片| 日韩中文字幕欧美一区二区| 欧美中文日本在线观看视频| www.999成人在线观看| 欧美区成人在线视频| 国产白丝娇喘喷水9色精品| 老司机福利观看| 欧美zozozo另类| 亚洲综合色惰| 欧美绝顶高潮抽搐喷水| 内地一区二区视频在线| 91在线精品国自产拍蜜月| 国产男靠女视频免费网站| 91在线观看av| 午夜福利成人在线免费观看| a在线观看视频网站| 久久人人爽人人爽人人片va | 亚洲人成网站在线播放欧美日韩| 别揉我奶头 嗯啊视频| a级毛片免费高清观看在线播放| 日本黄大片高清| 日本熟妇午夜| 国产色婷婷99| 成年女人毛片免费观看观看9| 高清毛片免费观看视频网站| 少妇的逼好多水| 中文字幕人成人乱码亚洲影| 熟女电影av网| 日韩大尺度精品在线看网址| 国产日本99.免费观看| 欧美zozozo另类| 国产一区二区激情短视频| 亚洲美女黄片视频| 三级男女做爰猛烈吃奶摸视频| 小蜜桃在线观看免费完整版高清| 亚洲久久久久久中文字幕| 在线看三级毛片| 男插女下体视频免费在线播放| 免费高清视频大片| 亚洲精品在线观看二区| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久久中文| 精品久久久久久成人av| 99精品久久久久人妻精品| 一个人观看的视频www高清免费观看| 色综合站精品国产| 香蕉av资源在线| 日韩中字成人| 嫩草影视91久久| 国产午夜福利久久久久久| 91九色精品人成在线观看| 亚洲在线观看片| 亚洲人成网站在线播| 国产美女午夜福利| 麻豆国产97在线/欧美| 我的老师免费观看完整版| 91狼人影院| 久久久久九九精品影院| www.999成人在线观看| 欧美区成人在线视频| 91九色精品人成在线观看| 精品一区二区三区av网在线观看| 久久草成人影院| 亚洲av免费高清在线观看| av在线天堂中文字幕| 国产成人福利小说| 久久99热这里只有精品18| 久久久久亚洲av毛片大全| 久久香蕉精品热| 国产熟女xx| 久久精品国产亚洲av天美| 国产高清有码在线观看视频| 男女下面进入的视频免费午夜| 成人国产一区最新在线观看| 内射极品少妇av片p| 国产精品一区二区免费欧美| 亚洲成a人片在线一区二区| 男人和女人高潮做爰伦理| 欧美激情在线99| a级毛片免费高清观看在线播放| www日本黄色视频网| 身体一侧抽搐| 搡老熟女国产l中国老女人| 真实男女啪啪啪动态图| 亚洲av不卡在线观看| 欧美xxxx性猛交bbbb| 久久久久九九精品影院| 性插视频无遮挡在线免费观看| 舔av片在线| 91麻豆精品激情在线观看国产| 久久精品国产自在天天线| 亚洲自偷自拍三级| 日本 av在线| av在线蜜桃| 在线天堂最新版资源| av福利片在线观看| 久久国产精品影院| 国产亚洲精品久久久久久毛片| 99久久九九国产精品国产免费| 成人国产综合亚洲| 日本熟妇午夜| 国产亚洲精品综合一区在线观看| 亚洲午夜理论影院| 可以在线观看毛片的网站| 欧美最黄视频在线播放免费| 久久久久久久亚洲中文字幕 | 国内精品美女久久久久久| 亚洲最大成人中文| 一个人看视频在线观看www免费| 中文字幕av在线有码专区| 夜夜躁狠狠躁天天躁| 最近最新中文字幕大全电影3| 欧美另类亚洲清纯唯美| 亚洲一区高清亚洲精品| 国产69精品久久久久777片| 99在线视频只有这里精品首页| 久久午夜亚洲精品久久| 两个人视频免费观看高清| 一夜夜www| 一区二区三区四区激情视频 | 亚洲综合色惰| 午夜福利欧美成人| 久久这里只有精品中国| 国内揄拍国产精品人妻在线| 国产真实伦视频高清在线观看 | 国内揄拍国产精品人妻在线| 久久精品国产亚洲av涩爱 | 在线播放国产精品三级| 日韩欧美在线二视频| 亚洲精品乱码久久久v下载方式| 国产精品久久久久久久久免 | 免费观看精品视频网站| 久久伊人香网站| 亚洲久久久久久中文字幕| 一级av片app| 中文字幕免费在线视频6| 亚洲国产精品久久男人天堂| 国产日本99.免费观看| 麻豆av噜噜一区二区三区| 在线看三级毛片| 国产精品亚洲av一区麻豆| 最新在线观看一区二区三区| 老司机午夜福利在线观看视频| 亚洲成a人片在线一区二区| 婷婷丁香在线五月| 中文字幕免费在线视频6| 精品久久久久久成人av| 国产精品久久电影中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 高清在线国产一区| 免费观看精品视频网站| 91九色精品人成在线观看| 亚洲va日本ⅴa欧美va伊人久久| 女同久久另类99精品国产91| 老熟妇仑乱视频hdxx| 午夜免费成人在线视频| 搡老岳熟女国产| 高清日韩中文字幕在线| 久久精品影院6| 露出奶头的视频| 欧美性感艳星| 中亚洲国语对白在线视频| 精品一区二区三区视频在线| 午夜激情福利司机影院| 女人被狂操c到高潮| 亚洲国产精品久久男人天堂| 脱女人内裤的视频| 午夜日韩欧美国产| 亚洲色图av天堂| 国产亚洲精品久久久久久毛片| 午夜福利高清视频| 人人妻人人澡欧美一区二区| 国产午夜精品久久久久久一区二区三区 | 国产视频内射| 亚洲人与动物交配视频| 国产成人欧美在线观看| 日韩欧美在线二视频| 男女那种视频在线观看| 啦啦啦观看免费观看视频高清| 真人做人爱边吃奶动态| 国产伦一二天堂av在线观看| 内射极品少妇av片p| 久久香蕉精品热| 午夜福利在线在线| 亚洲av一区综合| 最后的刺客免费高清国语| 美女cb高潮喷水在线观看| 欧美日韩福利视频一区二区| 桃色一区二区三区在线观看| 蜜桃久久精品国产亚洲av| 国内精品久久久久精免费| 脱女人内裤的视频| 国产成+人综合+亚洲专区| 免费看光身美女| 小说图片视频综合网站| 欧美一区二区精品小视频在线| 2021天堂中文幕一二区在线观| 草草在线视频免费看| 欧美精品国产亚洲| 欧美日韩中文字幕国产精品一区二区三区| 国产一区二区三区在线臀色熟女| 91久久精品国产一区二区成人| 日本一二三区视频观看| 99热6这里只有精品| 欧洲精品卡2卡3卡4卡5卡区| 日本一本二区三区精品| av专区在线播放| 性插视频无遮挡在线免费观看| 久久久久性生活片| 国产亚洲欧美在线一区二区| 少妇丰满av| 国产野战对白在线观看| 无遮挡黄片免费观看| 久久久成人免费电影| 国产亚洲欧美在线一区二区| 欧美成人性av电影在线观看| 亚洲成av人片免费观看| 两人在一起打扑克的视频| 别揉我奶头 嗯啊视频| 免费一级毛片在线播放高清视频| 国产精品国产高清国产av| 成人特级黄色片久久久久久久| 亚洲av成人av| 乱人视频在线观看| 桃红色精品国产亚洲av| 色视频www国产| 亚洲美女搞黄在线观看 | 国产精品久久久久久亚洲av鲁大| 自拍偷自拍亚洲精品老妇| 久久精品国产自在天天线| 在线免费观看的www视频| 国产一区二区三区在线臀色熟女| 毛片一级片免费看久久久久 | 婷婷六月久久综合丁香| 亚洲狠狠婷婷综合久久图片| 午夜福利视频1000在线观看| 在线看三级毛片| 午夜久久久久精精品| 国产午夜精品论理片| 小说图片视频综合网站| 亚洲 国产 在线| 国产蜜桃级精品一区二区三区| АⅤ资源中文在线天堂| 亚洲av熟女| 精品熟女少妇八av免费久了| 久久精品国产亚洲av天美| 99久久99久久久精品蜜桃| 成年女人看的毛片在线观看| 少妇被粗大猛烈的视频| 亚洲国产欧美人成| 国产成人影院久久av| 热99re8久久精品国产| 亚洲国产精品久久男人天堂| 99久久精品一区二区三区| 少妇高潮的动态图| 欧美日韩黄片免| 亚洲美女黄片视频| 在线免费观看的www视频| 超碰av人人做人人爽久久| 日本精品一区二区三区蜜桃| 免费观看人在逋| 精品一区二区三区视频在线| 成人无遮挡网站| 嫁个100分男人电影在线观看| 观看美女的网站| 亚洲精品影视一区二区三区av| 欧美极品一区二区三区四区| 可以在线观看毛片的网站| 欧美乱色亚洲激情| 欧美成狂野欧美在线观看| 久久九九热精品免费| 精品99又大又爽又粗少妇毛片 | 又爽又黄a免费视频| 欧美日韩国产亚洲二区| 小说图片视频综合网站| 亚洲精品日韩av片在线观看| 变态另类丝袜制服| bbb黄色大片| 成年免费大片在线观看| 国产大屁股一区二区在线视频| 国产伦在线观看视频一区| 1000部很黄的大片| 国产蜜桃级精品一区二区三区| 90打野战视频偷拍视频| 中国美女看黄片| 精品午夜福利视频在线观看一区| 看片在线看免费视频| 在线观看免费视频日本深夜| 中文字幕人成人乱码亚洲影| 麻豆国产97在线/欧美| 在现免费观看毛片| 精品久久久久久久久久久久久| 国产伦一二天堂av在线观看| 国产乱人视频| 亚洲精品粉嫩美女一区| 成年人黄色毛片网站| 国内久久婷婷六月综合欲色啪| 老司机深夜福利视频在线观看| 在线观看av片永久免费下载| 亚洲18禁久久av| 午夜免费激情av| 国产在视频线在精品| 亚洲av二区三区四区| 2021天堂中文幕一二区在线观| 国产一区二区激情短视频| 男人和女人高潮做爰伦理| 国产又黄又爽又无遮挡在线| 欧美精品啪啪一区二区三区| 亚洲精品一区av在线观看| 国产一区二区亚洲精品在线观看| 久久九九热精品免费| 久久国产精品人妻蜜桃| 国产精品98久久久久久宅男小说| 亚洲精品成人久久久久久| 51午夜福利影视在线观看| 91麻豆av在线| 黄色一级大片看看| 国产一区二区在线观看日韩| 精品免费久久久久久久清纯| 国产精品久久久久久久久免 | 亚洲成人免费电影在线观看| 午夜影院日韩av| 欧美性猛交╳xxx乱大交人| 免费看日本二区| 99久久九九国产精品国产免费| 日韩欧美精品v在线| 欧美成人性av电影在线观看| 日本黄色片子视频| 韩国av一区二区三区四区| 亚洲 国产 在线| 欧美性猛交黑人性爽| 在线看三级毛片| 两性午夜刺激爽爽歪歪视频在线观看| 村上凉子中文字幕在线| 午夜亚洲福利在线播放| 午夜激情福利司机影院| 91在线观看av| 大型黄色视频在线免费观看| 精品午夜福利在线看| 久久午夜亚洲精品久久| 国产伦精品一区二区三区四那| 每晚都被弄得嗷嗷叫到高潮| 九色成人免费人妻av| 国产人妻一区二区三区在| 国产精品野战在线观看| 日韩免费av在线播放| 国产精品一区二区三区四区久久| 桃红色精品国产亚洲av| 午夜福利成人在线免费观看| 在线十欧美十亚洲十日本专区| 久久精品91蜜桃| 精品国产三级普通话版| 欧美成人一区二区免费高清观看| 午夜久久久久精精品| 亚洲中文字幕一区二区三区有码在线看| 91麻豆精品激情在线观看国产| 国产亚洲av嫩草精品影院| 窝窝影院91人妻| 此物有八面人人有两片| 舔av片在线| 美女高潮的动态| 亚洲最大成人中文| 国产欧美日韩一区二区三| 亚洲五月婷婷丁香| 免费在线观看日本一区| 婷婷精品国产亚洲av在线| 亚洲av第一区精品v没综合| 欧美高清性xxxxhd video| 网址你懂的国产日韩在线| 精品一区二区免费观看| 十八禁人妻一区二区| 99热这里只有是精品50| av在线蜜桃| 女生性感内裤真人,穿戴方法视频| 免费在线观看成人毛片| 欧美激情国产日韩精品一区| 久久精品夜夜夜夜夜久久蜜豆| 色精品久久人妻99蜜桃| 色尼玛亚洲综合影院| av福利片在线观看| 欧美精品国产亚洲| 99热这里只有是精品在线观看 | 成年女人永久免费观看视频| bbb黄色大片| 久久久久国产精品人妻aⅴ院| 国产精品,欧美在线| 国产精品嫩草影院av在线观看 | 一进一出抽搐动态| 91在线观看av| 3wmmmm亚洲av在线观看| 亚洲五月婷婷丁香| 中文字幕久久专区| 人人妻人人澡欧美一区二区| 超碰av人人做人人爽久久| 国产av一区在线观看免费| 国产一级毛片七仙女欲春2| 高清日韩中文字幕在线| 成年人黄色毛片网站| 99久久精品一区二区三区| 日韩成人在线观看一区二区三区| 一区二区三区免费毛片| 亚洲欧美激情综合另类| 搡老熟女国产l中国老女人| 久久中文看片网| 成年免费大片在线观看| 成人特级黄色片久久久久久久| 18禁在线播放成人免费| 别揉我奶头 嗯啊视频| 久久欧美精品欧美久久欧美| 午夜福利在线观看吧| 欧美高清成人免费视频www| www.色视频.com| 桃色一区二区三区在线观看| 中文亚洲av片在线观看爽| 亚洲性夜色夜夜综合| 日本在线视频免费播放| 99国产极品粉嫩在线观看| www.www免费av| 特级一级黄色大片| 精品乱码久久久久久99久播| 久久99热6这里只有精品| 动漫黄色视频在线观看| 亚洲av一区综合| 99热精品在线国产| 国产主播在线观看一区二区| 三级毛片av免费| 亚洲专区国产一区二区| 欧美性感艳星| 人妻丰满熟妇av一区二区三区| 午夜福利欧美成人| 热99re8久久精品国产| 女同久久另类99精品国产91| 天美传媒精品一区二区| 精品国内亚洲2022精品成人| 久久这里只有精品中国| 国产成人av教育| 亚洲精品在线美女| 日韩av在线大香蕉| 久久久久久久久中文| 91麻豆精品激情在线观看国产| 夜夜夜夜夜久久久久| 日本黄大片高清| 国产高清有码在线观看视频| 99久久精品一区二区三区| 精品国产三级普通话版| 成年免费大片在线观看| 精品一区二区三区人妻视频| 日韩av在线大香蕉| 日韩欧美在线乱码| 长腿黑丝高跟| 国产av一区在线观看免费| 18禁黄网站禁片免费观看直播| 可以在线观看的亚洲视频| 国产精品亚洲一级av第二区| 日日干狠狠操夜夜爽| 色综合婷婷激情| 亚洲自偷自拍三级| 亚洲自偷自拍三级| 国产精品伦人一区二区| 男人舔奶头视频| 日韩亚洲欧美综合| 精品不卡国产一区二区三区| 日本a在线网址| 日韩欧美在线乱码| 国产国拍精品亚洲av在线观看| 国产精品伦人一区二区| 波多野结衣高清无吗| 亚洲国产色片| 夜夜看夜夜爽夜夜摸| av视频在线观看入口| 国产午夜精品论理片| 色综合站精品国产| 成人美女网站在线观看视频| www.色视频.com| 亚洲人成网站在线播| 国产真实伦视频高清在线观看 | 国产精华一区二区三区| 国产白丝娇喘喷水9色精品| 国内毛片毛片毛片毛片毛片| 精品久久久久久久久久免费视频| 午夜福利高清视频| 欧美激情在线99| 看黄色毛片网站| 中文字幕人成人乱码亚洲影| 成人av在线播放网站| 久久香蕉精品热| 69av精品久久久久久| 18+在线观看网站| 美女高潮喷水抽搐中文字幕| 国产视频内射| 国产精品国产高清国产av| av欧美777| 久久6这里有精品| 美女高潮的动态| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩国产亚洲二区| 欧美日本亚洲视频在线播放| 国产淫片久久久久久久久 | 丁香欧美五月| 欧美3d第一页| 亚洲精品一区av在线观看| 午夜激情福利司机影院| 在线观看av片永久免费下载| 国产淫片久久久久久久久 | 久久婷婷人人爽人人干人人爱| 色综合欧美亚洲国产小说| 亚洲美女黄片视频| 亚洲人成伊人成综合网2020| 大型黄色视频在线免费观看| 久久久色成人| 永久网站在线| 久久久色成人| 三级国产精品欧美在线观看| 亚洲最大成人手机在线| 小说图片视频综合网站| 18美女黄网站色大片免费观看| 99久久九九国产精品国产免费| 一区二区三区四区激情视频 | 一个人看视频在线观看www免费| 久久人人爽人人爽人人片va | 亚洲经典国产精华液单 | 国产成+人综合+亚洲专区| 国产精品精品国产色婷婷| 免费av观看视频| 色综合站精品国产| 波多野结衣巨乳人妻| 久久久久久国产a免费观看| 国产伦精品一区二区三区四那| 天堂动漫精品| 欧美最黄视频在线播放免费| 国产国拍精品亚洲av在线观看| 免费在线观看日本一区| 久久人人爽人人爽人人片va | 亚洲 欧美 日韩 在线 免费| 男人的好看免费观看在线视频| 在线天堂最新版资源| a在线观看视频网站| 日韩中文字幕欧美一区二区| 亚洲欧美清纯卡通| 精品国产亚洲在线| 给我免费播放毛片高清在线观看| 亚洲成人免费电影在线观看| 国产成人影院久久av| 成人特级黄色片久久久久久久| a在线观看视频网站| 中文亚洲av片在线观看爽| 十八禁人妻一区二区| 国产视频一区二区在线看| 男插女下体视频免费在线播放| 亚洲国产高清在线一区二区三| 毛片女人毛片| av在线蜜桃| 精品人妻熟女av久视频| 又粗又爽又猛毛片免费看| 夜夜夜夜夜久久久久| 国产高清激情床上av| 欧美色欧美亚洲另类二区| 亚洲精品在线观看二区| 国产精品亚洲av一区麻豆| 美女大奶头视频| 特大巨黑吊av在线直播| av欧美777| 午夜久久久久精精品| 九九久久精品国产亚洲av麻豆| 国产在视频线在精品| 亚洲自偷自拍三级| 国产伦精品一区二区三区四那| 露出奶头的视频| 国产精品99久久久久久久久| 久久6这里有精品|