• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-Principles Microkinetic Study of Methanol Synthesis on Cu(221)and ZnCu(221)Surfaces

    2018-06-27 06:48:12ShshWngMinzhenJinHiynSuWeixueLi
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年3期

    Sh-sh Wng,Min-zhen Jin,Hi-yn Su,Wei-xue Li,?

    a.State Key Laboratory of Catalysis,State Key Laboratory of Molecular Reaction Dynamics,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 110623,China

    b.School of Chemistry and Materials Science,Hefei National Laboratory for Physical Sciences at Microscales,University of Science and Technology of China,Hefei 230026,China

    c.University of Chinese Academy of Sciences,Beijing 100049,China

    I.INTRODUCTION

    Methanol synthesis has attracted great interest owing to its significance in the chemical industry,where methanol can be used as liquid fuel and raw material to synthesize valuable chemical feedstock[1–3].Additionally,the CO2generated by using CH3OH as a liquid fuel can be recycled through the hydrogenation to CH3OH,which is believed to be promisingly to reduce CO2emissions.Industrially,Cu-Zn-Al catalysts is commonly used in methanol synthesis at 50?100 bar,200?300oC from a feed gas mixture of CO2,CO and H2[4].

    Because of the broad range of applications and the importance of this reaction,copper-based methanol synthesis catalysts have been widely studied,but the reaction mechanism and the interplay between the catalysts’surface properties and the feed gases is still uncertain[5–10].Several important open questions include the nature of the preferred carbon source for methanol-CO[11]or CO2[12]and that of active sites.CO has been assumed to be the source of carbon in methanol over Cu-based catalysts from CO/CO2mixtures,before the isotope labeling14C experiments showed the dominance of CO2hydrogenation[12–14].Recently,tracer experiment in13CO/12CO2/H2and DFT calculation suggests a CO2to CO shift in the dominant source of carbon in methanol with decreasing temperatures[15].

    The enormous advances have been also achieved with the understanding toward active site in methanol synthesis[16–19].Jong et al.have studied the influence of the Cu particle size smaller than 10 nm where variations in surface structures occur,under industrially relevant condition[18].They found a dramatic decrease of specific activity when Cu particles are smaller than 8 nm,and together with DFT studies,they propose that the reaction occurs at Cu surface sites with a unique atomic structure such as step-edge sites.Additionally,it was believed that the addition of Zn can largely increase the activity of Cu catalysts.Depending on the preparation method and pretreatment conditions,different structures such as metallic CuZn alloy and Cu/ZnO interface have been detected,and controversy exists about which structure is active site and the role of Zn[17,20,21].For instance,it has been implied that the turnover frequency(TOF)for methanol depends on the coverage of the coper surface with metallic Zn atoms,and the reducibility of ZnO component of the catalyst under reaction conditions prefers to decorate the low-coordinated coper sites(such as the step sites),and the terrace coor-dinated sites as Zn coverage increases[17,21].

    Theoretically,most mechanistic studies concentrate on the direct understanding of DFT-derived energy profiles,which gives a qualitative description of elementary pathways and relative energetics[16,22].However,it has been argued recently it is not sufficient to reliably assess the relative activities to methanol synthesis,and systematic kinetic study of DFT energy profile is called for[23,24].Herein,using DFT calculations and microkinetic simulations,we investigate CO and CO2hydrogenation to methanol on stepped Cu(221)and CuZn(221)(FIG.1)as observed by the high resolution transmission electron microscopy(HRTEM)under reaction conditions over Cu-ZnO catalyst[16].The fundamental understanding can provide insights into the carbon source and feed gas composition and alloy effect on reaction activity in methanol synthesis.

    II.COMPUTATIONAL METHODS

    A.DFT calculation

    Self-consistent DFT calculations were performed via Vienna ab initio Simulation Package(VASP)[25]code.The exchange-correlation interaction were described within the generalized gradient approximation(GGA)using van der Waals interaction reversed Perdew-Burke-Ernzerhof[26]with optPBE-vdW[27].The plane wave pseudopotential within the projected augmented wave(PAW)[28]method has a kinetic cuto ffenergy of 400 eV.Twelve-layer slab with(3×1)surface cell was performed to simulate stepped surface Cu(221).Surface alloy of CuZn(221)-(3×1)surface unit cell was simulated with copper atoms at step edge substituted by two Zn atoms[16,24].The surface Brillouin zone was described by a 5×5×1 grid mesh[29]for Cu(221)and CuZn(221).A vacuum region of 15?A was used to avoid interactions between the slabs along the z-direction.When optimizing the adsorption energies,top six layers of Cu(221),CuZn(221),and the adsorbates were allowed to relax,while the other atoms were fixed.The optimized lattice parameter for Cu was 3.64?A used throughout all calculations,which agreed closely with the experimental value(3.62?A)[30].

    The adsorption energies,?Eads,were calculated as:

    where Ead/subwas the total energy of the optimized adsorbate-substrate system.Eadand Esubwere the energy of adsorbed species and the clean slab,respectively.The reaction energies of the elementary steps,Er,was calculated as:

    FIG.1 The surface configurations of(a)Cu(221),(b)CuZn(221),and(c)the side view of CuZn(221).

    wherewere the adsorption energies of the reactants and products at infinite separation.?Egaswas the reaction energy in the gaseous phase.Therefore,negative and positive values of Ermeant exothermic and endothermic processes.The climbing-image nudged elastic band method[31]and force reversed method[32]were employed to determine the transition states for the elementary reactions,until the force on each ion was less than 0.05 eV/?A.Activation energies(Ea)and Erwere taken with respect to isolated reactants/products.Zero-point energies and corrections of entropy were not included in our calculations.

    B.Microkinetic simulations

    The Eaand Erof elementary reactions obtained from DFT give the backward and forward rate constant.

    where k is the reaction rate constant in s?1;kB,T,~,Ea,QTSand Q,refer to the Boltzman constant,reaction temperature,Planck constant,the reaction barrier,the partition functions for the transition states and initial states,respectively.The pre-exponential factor of 1013s?1is used for the elementary reactions considered in the present work.

    The molecular adsorption rate constant is expressed as:

    where P,S refer to the partial pressure and the sticking coefficient(S=1 in this work).A′and m is the surface area of the adsorption site and the mass of the adsorbate.

    The rate constant for desorption is calculated by:

    where σ and θ are the symmetry number and the characteristic temperature for rotation,respectively[33].Edesis the desorption barrier,approximated by the absolute value of the binding energy.For each of the M components in the reaction network,corresponding differential equation is

    in which,kjis the rate constant of elementary reaction step j,is the stoichiometric coefficient of component i in elementary reaction step k,and ckis the concentration on surface.

    The reaction rate is calculated by MKMCXX program[34,35].The rates of the individual elementary reactions were calculated based on the steady-state coverages.The limited rate step can be analyzed by the degree of rate control(DRC)[36–38].For elementary step i,the degree of rate control XRC,iis

    where kiand Kiare the rate constants and the equilibrium constant for elementary step i,respectively,and r is the reaction rate.Furthermore,the DRC coefficients have to follow the summation rule[37]:

    A positive DRC for reaction step i indicates that corresponding step limits the rate of reaction,whereas negative values point to rate-inhibiting reaction steps.

    III.RESULTS AND DISCUSSION

    A.DFT calculations

    We first perform DFT calculations for CO and CO2hydrogenation to methanol on stepped Cu(221)and CuZn(221)surface.The sequential hydrogenation mechanism via intermediates such as HCO?,CH2O?and CH3O?is considered for the former reaction, and the well-established formate mechanism on low-coordinated Cu sites,CO2→HCOO→H2COO/HCOOH→H2COOH→CH2O→CH3O→CH3OH,is investigated for the latter reaction.The energetic including the adsorption energy?Eadsof various intermediates and the activation energy Eaand reaction heat Erof various elementary reaction are listed in Tables I and II.For CO hydrogenation to methanol,two main features can be found for the adsorption of intermediates in Table I(see FIG.2 for the favorable adsorption structure):(i)the intermediates adsorption do not exhibit strong composition preference,with the largest variation in binding energy by 0.19 eV for CH3O?between Cu(221)and CuZn(221).(ii)in general,the presence of Znweakens the species binding,with the exception of OH?and CH3O?.These results can be well understood since Zn and Cu are in the neighboring group,and both possess a d10electronic configuration,leading to the similar bond strength of species.The slightly weaker atomic/molecular binding on CuZn may arise from a combination of both geometric(such as bond length)and electronic effect.Based on many common electronic structure descriptors,such as lower d-band center and less charge transferred,etc.can lead to lower bond strength[39].The discussion about the role of Zn can also be found in recent study by Liao et al.[40].

    TABLE I Adsorption energies(?Eadsin eV)of intermediates involved in methanol synthesis from CO and CO2on stepped Cu(221)and CuZn(221).

    FIG.2 Optimized configurations of intermediates on Cu(221)(I)and CuZn(221)(II).(a)H,(b)CO,(c)HCO,(d)CH2O,(e)CH3O,(f)CH3OH,(g)HCOO,(h)H2COO,(i)HCOOH,(j)H2COOH,(k)OH,and(l)H2O.

    The structure insensitive intermediates adsorption leads to slight variation in reaction heat(Er)and activation energy(Ea)of elementary reaction between Cu(221)and CuZn(221).The hydrogenation of CH2O?with Erdiffering by at most 0.33 eV(Table II)isfound,as CH3O?depends most strongly on surface structure among the possible intermediates.The difference in Eagenerally falls in the range of 0.20?0.30 eV,and CuZn(221)has slightly higher Eathan Cu(221).Compared to HCO and CH2O hydrogenation,which have the modest Ea,CO,CH3O,and OH hydrogenation is more difficult(0.9?1.2 eV)on the two surfaces.These results are in consistent with previous report on Cu(211)and CuZn(211)[16].

    TABLE II Calculated activation energies(Eain eV),reaction energies(Erin eV)of the elementary reactions involved in methanol synthesis from CO and CO2on Cu(221)and CuZn(221).

    For CO2hydrogenation to methanol,generally,the presence of Zn slightly weakens the adsorption of intermediates,which is similar to CO hydrogenation.Interestingly,H2COO?binds more strongly on CuZn(221)than on Cu(221)by 0.29 eV.As shown in FIG.2(h),the adsorption configurations of H2COO?on the two surfaces are very similar,except that one of O atoms binds with Zn on CuZn(221)instead of Cu on Cu(221)at the step edge.Therefore,the enhancement role of CuZn(221)may originate from the stronger Zn?O bond as compared to Cu?O bond.We have previously classified the adsorption bond to ionic and covalent bond[39].As the decrease in energy level difference between metal and adsorbate,the strength of ionic bond gradually decreases whereas that of covalent bond gradually increases.In this context,the smaller energy difference between Zn and O may lead to stronger covalent bond.

    The addition of Zn mildly lowers the Ea(by 0.10 eV at most)of the most elementary steps in hydrogenation of CO2(Table II,see the configuration of transitions states in FIG.3).Among the elementary steps,CO2and HCOOH?hydrogenation and H2COOH?decomposition are quite facile,with the Eaof no more than 0.85 eV on Cu(221)and CuZn(221).However,HCOOH?,H2COO?and H2COOH?formation are more difficult,and the Earanges from 1.07 eV to 1.74 eV on the two surfaces.Our calculations agree well with previous DFT study on Cu(211)and CuZn(211)[16]and metal doped Cu(111)[41].

    FIG.3 Optimized configurations of transition states of elementary reactions involved in methanol synthesis on Cu(221)(I)and CuZn(221)(II):

    B.Microkinetic simulations

    Having obtained the energetic for CH3OH synthesis from CO2and CO on Cu(221)and CuZn(221)surface,we will focus on the kinetics of the reaction in this section.How does Zn affect methanol yield?What is the carbon source of methanol synthesis?What is the key reaction step to determine the reaction activity?To provide insights into these questions,a microkinetic simulation was conducted at total pressure of 50 bar in 400?670 K,with different CO2ratios(CO/H2=1/4,CO/CO2/H2=1/1/9 and CO2/H2=1/4).

    FIG.4 Activity of methanol synthesis on(a)Cu(221)and(b)CuZn(221).(c)The carbon source in the feed gas of CO/CO2/H2as a function of temperatures at 50 bar total pressure.

    Microkinetic simulations predict the formation rate of methanol as a function of the reaction temperature.As shown in FIG.4(a),the composition of feed gas has a dramatic influence on the methanol formation rate,which follows the order of CO hydrogenation>CO/CO2hydrogenation>CO2hydrogenation on Cu(221)regardless of temperature.CuZn(221)follows the same order as on Cu(221),but having lower rate.As shown in FIG.4(b),compared to Cu(221),the presence of Zn greatly retards CO hydrogenation by 1.2×103?4.3×103times,CO/CO2hydrogenation by 1.2×103?7.4×104times and CO2hydrogenation by 40?300 times.Moreover,the activity difference of the three reactions on CuZn(221)is smaller than on Cu(221).The methanol formation rate generally increases with increasing temperatures on both Cu(221)and CuZn(221),which is caused by the rapid decrease of HCOO?coverage and increase of empty sites and the surface H coverage with temperature(see FIG.5).

    FIG.5 Coverage of main surface species for methanol synthesis as a function of temperatures on(a)Cu(221)and(b)CuZn(221)in CO/CO2/H2mixture feed gas(H2/CO/CO2=9/1/1).

    To provide insight into the carbon source in methanol synthesis,we separate the total conversion rate of CO/CO2hydrogenation to the rate of CO and CO2conversion.As shown in FIG.4(c),the apparent barrier of CO conversion(the slope)is lower than that of CO2conversion by 6.8 kJ/mol on Cu(221),and CO conversion is 7?6400 times faster than CO2conversion.However,the case is quite different from CuZn(221).The rate of CO2conversion is very close to that of CO conversion at the temperature region considered.Consequently,CO acts as the carbon source on Cu(221),while both CO and CO2contribute to carbon conversion on CuZn(221).

    FIG.6 Degree of rate control(DRC)of methanol synthesis as a function of temperatures on(a)Cu(221)and(b)CuZn(221)in CO/CO2/H2mixture feed gas(H2/CO/CO2=9/1/1).

    The reaction steps controlling carbon consumption can be decided by DRC for each elementary step considered(see Method Section for a more detailed description).As shown in FIG.6(a),on Cu(221)formate hydrogenation(HCOO?+H?→HCOOH?+?)primarily controls methanol synthesis rate at lower temperature(T<550 K)and CHO hydrogenation(HCO?+H?→CH2O?+?)controls the rate at the temperature above 550 K.This may be because that the surface is covered by HCOO at lower temperatures,which block the active sites for CH3OH formation.The increased HCOO hydrogenation rate can help remove HCOO species and in turn enhance the activity of carbon consumption.With increasing temperature,more empty sites are available and the HCO hydrogenation rate largely controls the methanol synthesis rate.However,on CuZn(221),formic acid hydrogenation(HCOOH?+H?→H2COOH?+?)controls the methanol formation rate at the temperature region considered(FIG.6(b)).This means the increase in HCOOH hydrogenation rate can improve methanol synthesis rate.

    According to the DFT and microkinetic simulation results,the rate of CO hydrogenation is higher than that of CO2hydrogenation on Cu(221).However,CuZn(221)retards dramatically the conversation rate of CO and CO2,especially for CO.To explain this,we note that the key elementary reactions for CO hydrogenation,such as CH2O formation,have lower barrier than those for CO2hydrogenation,such as CO2/HCOO hydrogenation on Cu(221).On the other hand,Zn doping generally increases the Eafor CO hydrogenation reactions,whereas slightly decreases those for CO2hydrogenation reactions.The distinct dependence of reactivity on feed gas also results in the variation in carbon source with a mix CO/CO2feed gas on Cu(221)and CuZn(221).Specifically,the carbon switches from CO on Cu(221)to both CO and CO2on CuZn(221).Our calculations agree well with previous experiment by Schl?gl et al.[24].They found higher TOF for CO hydrogenation than that of CO/CO2at 30 bar and 503 K with Cu supported on an inert MgO support,however,on CuZn catalyst,the reversed trend is observed.The DRC studies show that the key steps that determine the reaction activity of CO/CO2hydrogenation are HCO?and HCOO?hydrogenation on Cu(221),while HCOOH?hydrogenation on CuZn(221).The rate increase of these steps by interface can greatly enhance the reaction activity on the two surfaces.

    IV.CONCLUSION

    The effect of alloying and feed gas composition on methanol synthesis is investigated by optPBE-vdWDFT and microkinetic simulation.The results show that both Cu(221)and CuZn(221)have higher carbon consumption rate for CO hydrogenation,followed by CO/CO2hydrogenation and CO2hydrogenation.Carbon comes from CO on Cu(221)whereas both CO and CO2on CuZn(221)for a mixed CO/CO2hydrogenation.The DRC studies show that the key steps that determine the reaction activity of CO/CO2hydrogenation are HCO?and HCOO?hydrogenation on Cu(221),rather than HCOOH?hydrogenation on CuZn(221).Further works should be done to unbiasedly estimate the various possible sites to get a reasonable and comprehensive knowledge of active sites,such as other types of low-coordinated copper sites,Cu/ZnO interface,and reaction mechanisms information.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Key R&D Program of China(No.2017YFB0602205,No.2017YFA0204800),the National Natural Science Foundation of China(No.91645202,No.91421315),the Chinese Academy of Sciences(No.QYZDJ-SSWSLH054,No.XDA09030101).

    [1]D.R.Palo,R.A.Dagle,and J.D.Holladay,Chem.Rev.107,3992(2007).

    [2]S.S.Wang,H.Y.Su,X.K.Gu,and W.X.Li,J.Phys.Chem.C 121,21553(2017).

    [3]G.A.Olah,Angew.Chem.Int.Ed.44,2636(2005).

    [4]K.Waugh,Catal.Today 15,51(1992).

    [5]M.Behrens,Angew.Chem.Int.Ed.55,14906(2016).

    [6]X.M.Liu,G.Lu,and Z.F.Yan,and J.Beltramini,Ind.Eng.Chem.Res.42,6518(2003).

    [7]K.Waugh,Catal.Lett.142,1153(2012).

    [8]P.L.Hansen,J.B.Wagner,S.Helveg,J.R.Rostrup-Nielsen,B.S.Clausen,and H.Topsoe,Science 295,2053(2002).

    [9]J.Nakamura,Y.Choi,and T.Fujitani,Top.Catal.22,277(2003).

    [10]M.Muhler,E.Tornqvist,L.P.Nielsen,B.S.Clausen,and H.Topsoe,Catal.Lett.25,1(1994).

    [11]K.Klier,V.Chatikavanij,R.Herman,and G.Simmons,J.Catal.74,343(1982).

    [12]G.C.Chinchen,P.J.Denny,D.G.Parker,M.S.Spencer,and D.A.Whan,Appl.Catal.30,333(1987).

    [13]K.Klier,Adv.Catal.31,243(1982).

    [14]G.C.Chinchen,P.J.Denny,J.R.Jennings,M.S.Spencer,and K.C.Waugh,Appl.Catal.36,1(1988).

    [15]Y.Yang,C.A.Mims,D.H.Mei,C.H.F.Peden,and C.T.Campbell,J.Catal.298,10(2013).

    [16]M.Behrens,F.Studt,I.Kasatkin,S.Kuehl,M.Haevecker,F.Abild-Pedersen,S.Zander,F.Girgsdies,P.Kurr,B.L.Kniep,M.Tovar,R.W.Fischer,J.K.Norskov,and R.Schloegl,Science 336,893(2012).

    [17]S.Kuld,M.Thorhauge,H.Falsig,C.F.Elkjaer,S.Helveg,I.Chorkendor ff,and J.Sehested,Science 352,969(2016).

    [18]R.van den Berg,G.Prieto,G.Korpershoek,L.I.van der Wal,A.J.van Bunningen,S.Laegsgaard-Jorgensen,P.E.de Jongh,and K.P.de Jong,Nat.Commun.7,13057(2016).

    [19]S.Kattel,P.J.Ramirez,J.G.Chen,J.A.Rodriguez,and P.Liu,Science 355,1296(2017).

    [20]T.Lunkenbein,J.Schumann,M.Behrens,R.Schloegl,and M.G.Willinger,Angew.Chem.Int.Ed.54,4544(2015).

    [21]S.Kuld,C.Conradsen,P.G.Moses,I.Chorkendorff,and J.Sehested,Angew.Chem.Int.Ed.53,5941(2014).

    [22]F.Studt,F.Abild-Pedersen,J.B.Varley,and J.K.N?rskov,Catal.Lett.143,71(2013).

    [23]L.C.Grabow and M.Mavrikakis,Acs Catal.1,365(2011).

    [24]F.Studt,M.Behrens,E.L.Kunkes,N.Thomas,S.Zander,A.Tarasov,J.Schumann,E.Frei,J.B.Varley,F.Abild-Pedersen,J.K.Norskov,and R.Schloegl,Chemcatchem 7,1105(2015).

    [25]G.Kresse and J.Furthmuller,Comput.Mater.Sci.6,15(1966).

    [26]J.P.Perdew,K.Burke,and M.Ernzerhof,Phy.Rev.Lett.77,3865(1996).

    [27]J.Klimes,D.R.Bowler,and A.Michaelides,Phy.Rev.B 83,195131(2011).

    [28]P.E.Blochl,Phy.Rev.B 50,17953(1994).

    [29]H.J.Monkhorst and J.D.Pack,Phy.Rev.B 13,5188(1976).

    [30]Y.Mishin,M.J.Mehl,D.A.Papaconstantopoulos,A.F.Voter,and J.D.Kress,Phy.Rev.B 63,224106(2001).

    [31]G.Henkelman,B.P.Uberuaga,and H.Jonsson,J.Chem.Phys.113,9901(2000).

    [32]K.Sun,Y.Zhao,H.Y.Su,and W.X.Li,Theor.Chem.Acc.131,1118(2012).

    [33]A.P.J.Jansen,An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions,Eindhoven:Springer 856(2012).

    [34]I.A.Filot,R.A.van Santen,and E.J.Hensen,Angew.Chem.Int.Ed.53,12746(2014).

    [35]I.A.Filot,R.J.Broos,J.P.van Rijn,G.J.van Heugten,R.A.van Santen,and E.J.Hensen,ACS Catal.5,5453(2015).

    [36]C.T.Campbell,Top.Catal.1,353(1994).

    [37]C.T.Campbell,J.Catal.204,520(2001).

    [38]C.Stegelmann,A.Andreasen,and C.T.Campbell,J.Amer.Chem.Soc.131,8077(2009).

    [39]H.Y.Su,K.Sun,W.Q.Wang,Z.Zeng,F.Calle-Vallejo,and W.X.Li,J.Phy.Chem.Lett.7,5302(2016).

    [40]F.Liao,X.P.Wu,J.Zheng,M.M.J.Li,A.Kroner,Z.Zeng,X.Hong,Y.Yuan,X.Q.Gong,and S.C.E.Tsang,Green Chem.19,270(2017).

    [41]Y.Yang,M.G.White,and P.Liu,J.Phy.Chem.C 116,248(2011).

    久久人人爽av亚洲精品天堂| 欧美激情高清一区二区三区 | 校园人妻丝袜中文字幕| 美女午夜性视频免费| 性少妇av在线| 欧美av亚洲av综合av国产av | 人人妻人人爽人人添夜夜欢视频| 国产精品亚洲av一区麻豆 | 久久久久久伊人网av| 999久久久国产精品视频| 视频在线观看一区二区三区| 婷婷色综合www| 精品国产露脸久久av麻豆| 国产成人a∨麻豆精品| 成人黄色视频免费在线看| www.av在线官网国产| 久久精品国产亚洲av天美| 久久久久网色| 精品少妇久久久久久888优播| 亚洲国产欧美在线一区| 亚洲精品自拍成人| 国产一区二区激情短视频 | 国产片特级美女逼逼视频| 中文字幕色久视频| av在线观看视频网站免费| 国产精品一区二区在线观看99| 久久婷婷青草| 女人被躁到高潮嗷嗷叫费观| 国产免费视频播放在线视频| 国产亚洲欧美精品永久| 亚洲天堂av无毛| 亚洲一码二码三码区别大吗| 成年人免费黄色播放视频| 男女无遮挡免费网站观看| 飞空精品影院首页| 婷婷色综合www| 午夜免费鲁丝| 大码成人一级视频| 日本午夜av视频| 成人毛片a级毛片在线播放| 国产在线视频一区二区| 国产深夜福利视频在线观看| 九色亚洲精品在线播放| av在线播放精品| √禁漫天堂资源中文www| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品日韩在线中文字幕| 一级毛片黄色毛片免费观看视频| av视频免费观看在线观看| 伊人久久国产一区二区| 在线免费观看不下载黄p国产| 嫩草影院入口| 黄片播放在线免费| 日韩欧美精品免费久久| 黄片播放在线免费| 日本vs欧美在线观看视频| 欧美精品一区二区免费开放| 男女免费视频国产| 国产白丝娇喘喷水9色精品| 亚洲第一青青草原| 国产野战对白在线观看| 国产精品久久久久久精品古装| av不卡在线播放| 欧美少妇被猛烈插入视频| 国产一区二区激情短视频 | 少妇精品久久久久久久| 国产男人的电影天堂91| 精品国产一区二区三区四区第35| 亚洲精品久久午夜乱码| 精品国产乱码久久久久久男人| 最近2019中文字幕mv第一页| 亚洲国产av影院在线观看| 波多野结衣av一区二区av| 亚洲成国产人片在线观看| 欧美精品一区二区大全| videosex国产| 在线观看一区二区三区激情| 国产男人的电影天堂91| 亚洲一码二码三码区别大吗| 不卡视频在线观看欧美| 午夜免费男女啪啪视频观看| 丝瓜视频免费看黄片| 亚洲av综合色区一区| 亚洲av免费高清在线观看| 精品少妇内射三级| 啦啦啦在线免费观看视频4| 青春草亚洲视频在线观看| 国产一区二区在线观看av| 黄片无遮挡物在线观看| 亚洲欧美一区二区三区黑人 | 亚洲精品国产一区二区精华液| 亚洲美女视频黄频| 国产黄色免费在线视频| 久久精品国产亚洲av高清一级| 亚洲av电影在线进入| 91精品三级在线观看| 成年女人在线观看亚洲视频| 亚洲第一av免费看| 国产日韩欧美亚洲二区| 女的被弄到高潮叫床怎么办| 亚洲国产精品成人久久小说| 啦啦啦视频在线资源免费观看| 成人18禁高潮啪啪吃奶动态图| 在线观看三级黄色| 少妇人妻 视频| 18在线观看网站| 人成视频在线观看免费观看| 肉色欧美久久久久久久蜜桃| 国产精品一区二区在线观看99| 日本黄色日本黄色录像| 1024香蕉在线观看| 国产又色又爽无遮挡免| 日本欧美视频一区| 国产精品久久久av美女十八| 久久精品国产a三级三级三级| 在线亚洲精品国产二区图片欧美| 亚洲精品中文字幕在线视频| 亚洲精品成人av观看孕妇| 97人妻天天添夜夜摸| 丰满少妇做爰视频| 午夜91福利影院| 一本久久精品| 嫩草影院入口| 精品少妇内射三级| 免费观看性生交大片5| 1024视频免费在线观看| 色吧在线观看| 久久ye,这里只有精品| 久久国产亚洲av麻豆专区| 大陆偷拍与自拍| 久久精品熟女亚洲av麻豆精品| 香蕉精品网在线| 国产一级毛片在线| 青春草国产在线视频| 高清欧美精品videossex| 一二三四中文在线观看免费高清| 成人18禁高潮啪啪吃奶动态图| 亚洲国产欧美网| 男女国产视频网站| 日韩伦理黄色片| 91国产中文字幕| 亚洲av国产av综合av卡| 大陆偷拍与自拍| 色94色欧美一区二区| 久久av网站| 人妻 亚洲 视频| 男女无遮挡免费网站观看| 在线观看人妻少妇| 蜜桃国产av成人99| 日韩中文字幕欧美一区二区 | 极品少妇高潮喷水抽搐| 建设人人有责人人尽责人人享有的| 亚洲国产欧美网| 在线观看免费高清a一片| 久久青草综合色| 久久精品久久精品一区二区三区| 丝袜人妻中文字幕| 国产有黄有色有爽视频| 国产成人精品在线电影| 亚洲国产精品国产精品| 97人妻天天添夜夜摸| 午夜久久久在线观看| 女人精品久久久久毛片| av免费观看日本| 欧美bdsm另类| 成人国语在线视频| 日韩精品免费视频一区二区三区| 美女中出高潮动态图| 国产淫语在线视频| 两个人免费观看高清视频| 久久精品aⅴ一区二区三区四区 | 国产白丝娇喘喷水9色精品| 成人亚洲精品一区在线观看| 成年人免费黄色播放视频| 国产在线免费精品| 国产高清不卡午夜福利| 国产福利在线免费观看视频| 国产极品天堂在线| 欧美日韩一级在线毛片| 国产成人91sexporn| www.精华液| 久久午夜综合久久蜜桃| 国产视频首页在线观看| 日韩成人av中文字幕在线观看| av卡一久久| 欧美人与性动交α欧美软件| 欧美精品亚洲一区二区| 韩国高清视频一区二区三区| 欧美日韩亚洲高清精品| 老女人水多毛片| 一区二区日韩欧美中文字幕| 久久精品国产亚洲av涩爱| 黑丝袜美女国产一区| 亚洲一码二码三码区别大吗| 国产精品无大码| 亚洲欧洲国产日韩| 日韩一卡2卡3卡4卡2021年| 各种免费的搞黄视频| 亚洲欧洲日产国产| 亚洲精品久久午夜乱码| 亚洲av免费高清在线观看| 在线免费观看不下载黄p国产| 美女视频免费永久观看网站| 涩涩av久久男人的天堂| 欧美变态另类bdsm刘玥| 黄色配什么色好看| 成人毛片60女人毛片免费| 成人手机av| 女人精品久久久久毛片| 精品第一国产精品| 又黄又粗又硬又大视频| 久久精品夜色国产| 纯流量卡能插随身wifi吗| 日韩精品免费视频一区二区三区| 1024香蕉在线观看| 美女脱内裤让男人舔精品视频| 男女边摸边吃奶| 亚洲美女视频黄频| 成人影院久久| 亚洲精品国产av成人精品| 亚洲精品第二区| 国产亚洲av片在线观看秒播厂| 久久毛片免费看一区二区三区| 欧美激情极品国产一区二区三区| 中文天堂在线官网| 69精品国产乱码久久久| 国产97色在线日韩免费| 青青草视频在线视频观看| 99九九在线精品视频| 欧美成人午夜精品| 老熟女久久久| 欧美老熟妇乱子伦牲交| 国产有黄有色有爽视频| 黄片无遮挡物在线观看| 美女国产视频在线观看| 两个人看的免费小视频| 日韩免费高清中文字幕av| 性色av一级| 久久狼人影院| 成人毛片a级毛片在线播放| 波多野结衣一区麻豆| 精品国产一区二区久久| 日本猛色少妇xxxxx猛交久久| 91在线精品国自产拍蜜月| 国产片特级美女逼逼视频| 亚洲图色成人| 在线观看一区二区三区激情| 赤兔流量卡办理| 五月开心婷婷网| 日韩一本色道免费dvd| 亚洲欧洲国产日韩| 国产激情久久老熟女| 午夜日韩欧美国产| 狂野欧美激情性bbbbbb| 欧美成人午夜精品| 亚洲国产精品国产精品| 欧美老熟妇乱子伦牲交| 国产白丝娇喘喷水9色精品| 亚洲av欧美aⅴ国产| 婷婷色综合大香蕉| 99久久中文字幕三级久久日本| √禁漫天堂资源中文www| 国产成人免费无遮挡视频| 免费在线观看视频国产中文字幕亚洲 | 性高湖久久久久久久久免费观看| 久久av网站| 亚洲国产日韩一区二区| 亚洲欧美一区二区三区黑人 | 王馨瑶露胸无遮挡在线观看| 精品国产超薄肉色丝袜足j| 亚洲三区欧美一区| 亚洲少妇的诱惑av| 欧美黄色片欧美黄色片| 久久99一区二区三区| 最新中文字幕久久久久| 中文精品一卡2卡3卡4更新| 人人澡人人妻人| 天天躁日日躁夜夜躁夜夜| 精品少妇一区二区三区视频日本电影 | 黄片小视频在线播放| 老汉色av国产亚洲站长工具| 久久人妻熟女aⅴ| av福利片在线| 亚洲欧洲精品一区二区精品久久久 | 亚洲精华国产精华液的使用体验| videosex国产| 香蕉国产在线看| 一级毛片电影观看| 热99国产精品久久久久久7| 丝瓜视频免费看黄片| 亚洲国产日韩一区二区| 日韩av不卡免费在线播放| 各种免费的搞黄视频| 国产成人a∨麻豆精品| 久久久久久免费高清国产稀缺| 成年女人在线观看亚洲视频| 欧美日韩综合久久久久久| 青草久久国产| 亚洲精品国产色婷婷电影| 日韩欧美精品免费久久| 狠狠精品人妻久久久久久综合| 国产成人精品一,二区| 亚洲第一青青草原| 男的添女的下面高潮视频| 26uuu在线亚洲综合色| 国产一区二区 视频在线| 免费日韩欧美在线观看| 丝瓜视频免费看黄片| 亚洲国产精品999| 免费观看av网站的网址| 男人操女人黄网站| 午夜久久久在线观看| 国产精品久久久久成人av| 三上悠亚av全集在线观看| 亚洲视频免费观看视频| 午夜福利网站1000一区二区三区| 人人妻人人澡人人看| av在线播放精品| 天堂俺去俺来也www色官网| 久热这里只有精品99| 欧美日韩一区二区视频在线观看视频在线| 日本wwww免费看| 最近中文字幕高清免费大全6| 麻豆乱淫一区二区| 日韩电影二区| 亚洲第一区二区三区不卡| 日韩制服骚丝袜av| 亚洲精品av麻豆狂野| 久久久久久免费高清国产稀缺| 久久久精品免费免费高清| 满18在线观看网站| 各种免费的搞黄视频| 99久久综合免费| 香蕉精品网在线| 日本黄色日本黄色录像| 午夜av观看不卡| 久久久久久久精品精品| 三级国产精品片| 亚洲视频免费观看视频| 亚洲精品自拍成人| 大码成人一级视频| 久久国内精品自在自线图片| 亚洲欧美色中文字幕在线| 日本免费在线观看一区| 少妇被粗大猛烈的视频| 国产一区二区 视频在线| 成人二区视频| 国产精品二区激情视频| 欧美日韩精品成人综合77777| 综合色丁香网| 免费看av在线观看网站| 午夜免费观看性视频| 成年美女黄网站色视频大全免费| 各种免费的搞黄视频| 欧美人与性动交α欧美软件| 亚洲国产精品国产精品| 黑丝袜美女国产一区| 国产成人免费观看mmmm| 日韩欧美精品免费久久| 自线自在国产av| 国产成人精品福利久久| 又大又黄又爽视频免费| 亚洲婷婷狠狠爱综合网| 亚洲伊人色综图| 久久国产精品大桥未久av| 日韩一卡2卡3卡4卡2021年| 日韩免费高清中文字幕av| av在线老鸭窝| 狠狠婷婷综合久久久久久88av| 精品久久蜜臀av无| 国产乱来视频区| 久久av网站| 欧美人与性动交α欧美精品济南到 | 日本午夜av视频| 亚洲,一卡二卡三卡| 精品99又大又爽又粗少妇毛片| 国产免费现黄频在线看| 日韩精品有码人妻一区| 精品卡一卡二卡四卡免费| 精品亚洲成a人片在线观看| 你懂的网址亚洲精品在线观看| 国产精品人妻久久久影院| 亚洲av免费高清在线观看| 成年女人在线观看亚洲视频| 视频在线观看一区二区三区| 天堂8中文在线网| 成年av动漫网址| 精品国产一区二区三区久久久樱花| 美女国产视频在线观看| 不卡av一区二区三区| 亚洲三级黄色毛片| 国产免费现黄频在线看| 国产麻豆69| 9191精品国产免费久久| 欧美在线黄色| 永久免费av网站大全| 一边亲一边摸免费视频| 欧美精品亚洲一区二区| 国产精品不卡视频一区二区| 国产精品一国产av| 久久99热这里只频精品6学生| 国产黄色视频一区二区在线观看| 日韩制服丝袜自拍偷拍| 亚洲,欧美精品.| 男人操女人黄网站| 看免费av毛片| 久久久久久久大尺度免费视频| 成人免费观看视频高清| 国产97色在线日韩免费| 午夜激情av网站| 欧美激情 高清一区二区三区| 日本色播在线视频| 一区二区三区乱码不卡18| 秋霞伦理黄片| 波多野结衣一区麻豆| 色播在线永久视频| 国产精品麻豆人妻色哟哟久久| 精品福利永久在线观看| 成人影院久久| 999精品在线视频| 性高湖久久久久久久久免费观看| 日韩大片免费观看网站| 国产黄色视频一区二区在线观看| 深夜精品福利| av免费观看日本| 人妻人人澡人人爽人人| 久热这里只有精品99| 丝袜人妻中文字幕| 天堂8中文在线网| 亚洲美女搞黄在线观看| 亚洲一码二码三码区别大吗| 97在线视频观看| 女人被躁到高潮嗷嗷叫费观| 久久精品人人爽人人爽视色| 大码成人一级视频| 好男人视频免费观看在线| 国产乱人偷精品视频| 在线看a的网站| 两个人看的免费小视频| 九九爱精品视频在线观看| 色网站视频免费| 亚洲美女视频黄频| 国产精品99久久99久久久不卡 | av线在线观看网站| 永久免费av网站大全| 亚洲国产精品一区三区| 国产深夜福利视频在线观看| 国产精品av久久久久免费| 91久久精品国产一区二区三区| 亚洲精品中文字幕在线视频| 人体艺术视频欧美日本| 欧美国产精品一级二级三级| 香蕉精品网在线| 十八禁高潮呻吟视频| 老司机影院成人| 久久久久人妻精品一区果冻| 哪个播放器可以免费观看大片| 男女免费视频国产| 男女边吃奶边做爰视频| 欧美 日韩 精品 国产| 一级毛片黄色毛片免费观看视频| 国产视频首页在线观看| 久久精品国产a三级三级三级| 午夜福利在线观看免费完整高清在| 亚洲欧洲精品一区二区精品久久久 | 国产av一区二区精品久久| 国产一区二区三区av在线| 9191精品国产免费久久| kizo精华| 免费观看a级毛片全部| 丰满少妇做爰视频| kizo精华| 免费不卡的大黄色大毛片视频在线观看| 一级a爱视频在线免费观看| 欧美人与善性xxx| 少妇的丰满在线观看| 国产乱来视频区| 99精国产麻豆久久婷婷| 亚洲国产精品一区三区| 91成人精品电影| 日本av免费视频播放| 成年人午夜在线观看视频| 日韩,欧美,国产一区二区三区| 大码成人一级视频| 亚洲精品中文字幕在线视频| 免费观看av网站的网址| 人人澡人人妻人| 男人添女人高潮全过程视频| 99热国产这里只有精品6| 国产精品99久久99久久久不卡 | 精品一品国产午夜福利视频| 五月伊人婷婷丁香| 国产精品99久久99久久久不卡 | 考比视频在线观看| 桃花免费在线播放| 成人二区视频| 久久久久久久久免费视频了| 欧美亚洲日本最大视频资源| 亚洲精品aⅴ在线观看| 久久 成人 亚洲| 久久精品熟女亚洲av麻豆精品| 免费观看a级毛片全部| 2021少妇久久久久久久久久久| 国产探花极品一区二区| 啦啦啦在线观看免费高清www| 麻豆精品久久久久久蜜桃| 国产av码专区亚洲av| 亚洲精品国产一区二区精华液| 国产欧美日韩一区二区三区在线| 国产精品 国内视频| 久久 成人 亚洲| 在线观看免费视频网站a站| 日韩中字成人| 免费日韩欧美在线观看| 性高湖久久久久久久久免费观看| 国产精品免费大片| 丝瓜视频免费看黄片| 只有这里有精品99| 成年人午夜在线观看视频| 性高湖久久久久久久久免费观看| www.熟女人妻精品国产| 亚洲少妇的诱惑av| 亚洲精品日韩在线中文字幕| av卡一久久| 午夜福利,免费看| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品在线美女| 最近最新中文字幕大全免费视频 | 亚洲国产看品久久| 看非洲黑人一级黄片| 欧美日韩精品网址| 国产精品av久久久久免费| av在线播放精品| 亚洲人成网站在线观看播放| 性少妇av在线| 国产无遮挡羞羞视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 成人18禁高潮啪啪吃奶动态图| 久久精品熟女亚洲av麻豆精品| 亚洲伊人久久精品综合| 亚洲成人一二三区av| 亚洲av欧美aⅴ国产| 亚洲综合精品二区| 美女高潮到喷水免费观看| 搡老乐熟女国产| 国产色婷婷99| 免费播放大片免费观看视频在线观看| 一级a爱视频在线免费观看| 在线天堂最新版资源| 男男h啪啪无遮挡| 亚洲精品美女久久av网站| 欧美少妇被猛烈插入视频| 成年av动漫网址| 欧美人与性动交α欧美精品济南到 | 久久精品国产综合久久久| 女人久久www免费人成看片| 成人18禁高潮啪啪吃奶动态图| 波多野结衣av一区二区av| 国产成人91sexporn| 在线亚洲精品国产二区图片欧美| 国产极品天堂在线| 97人妻天天添夜夜摸| 久久久久久久久久久久大奶| 五月天丁香电影| 香蕉丝袜av| av电影中文网址| 人体艺术视频欧美日本| 中文字幕av电影在线播放| 久久久久精品人妻al黑| 日韩成人av中文字幕在线观看| 高清视频免费观看一区二区| 丰满乱子伦码专区| 日韩一区二区视频免费看| 少妇的丰满在线观看| 欧美在线黄色| 各种免费的搞黄视频| 亚洲欧美色中文字幕在线| 18禁裸乳无遮挡动漫免费视频| 丝瓜视频免费看黄片| 菩萨蛮人人尽说江南好唐韦庄| 日韩制服丝袜自拍偷拍| 看非洲黑人一级黄片| 蜜桃国产av成人99| 欧美日韩视频精品一区| 国产一级毛片在线| 欧美精品一区二区免费开放| 亚洲av综合色区一区| av免费观看日本| 中文字幕亚洲精品专区| 看非洲黑人一级黄片| 国产精品蜜桃在线观看| 国产熟女午夜一区二区三区| 黄色 视频免费看| 搡女人真爽免费视频火全软件| 日日啪夜夜爽| 99热网站在线观看| 国产在线一区二区三区精| 亚洲av男天堂| 亚洲av在线观看美女高潮| 日本vs欧美在线观看视频| 伊人久久国产一区二区| 色婷婷av一区二区三区视频| 国产日韩欧美亚洲二区| 成人国产av品久久久| 国产精品国产三级专区第一集| 一级a爱视频在线免费观看| 一级,二级,三级黄色视频| 人妻系列 视频| 91aial.com中文字幕在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲综合色惰| 波多野结衣av一区二区av| 国产成人精品婷婷| 一区福利在线观看| 亚洲欧洲精品一区二区精品久久久 |