• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Order-Disorder Transition of Carboxyl Terminated Chains in Polydiacetylenes Vesicles Probed by Second Harmonic Generation and Two-Photon Fluorescence

    2018-06-27 06:48:08ShunliChenXuefengZhuFngyunYngXuecongPnWeiGnbQunhuiYun
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年3期

    Shun-li Chen,Xue-feng Zhu,Fng-yun Yng,Xue-cong Pn,Wei Gnb,?,Qun-hui Yun

    a.Laboratory of Environmental Science and Technology,Xinjiang Technical Institute of Physics and Chemistry,Key Laboratory of Functional Materials and Devices for Special Environments,Chinese Academy of Sciences,Urumqi 830011,China

    b.School of Sciences,Harbin Institute of Technology(Shenzhen),Shenzhen 518055,China

    c.School of Materials Science and Engineering,Harbin Institute of Technology(Shenzhen),Shenzhen 518055,China

    I.INTRODUCTION

    Polydiacetylenes(PDAs)with π-conjugated backbone consisting of alternating ene-yne structures undergo colorimetric transitions with external stimuli.This effect has attracted much attention due to its potential applications in colorimetric sensing of chemical and biological targets[1?6].Understanding the physical mechanism of chromatic transitions is vital in the designing and controlling of the colorimetric properties of PDAs-based sensors.Researchers have probed the colorimetric properties of PDAs by UV-Vis absorption[1,2,7],FTIR[6,8],Raman[9,10],transient absorption spectroscopy[5,6],and so on.A number of studies revealed that the structural distortion in the alternating ene-yne backbone is responsible for the color change of PDAs[1,7,11?16].It was revealed that external stimuli induced changes in the conformation of the side chains attached to the polymer backbone and excited strain on the planar conjugated ene-yne backbone.This strain was then relieved by the breaking of the planarity of the polymer,which decreased its effective conjugation length and led to a blue shift in the electronic absorption maximum[10?12].It was also manifested that the blue and red phases differed in their short-and longrange structural order[17],and the phase transition was accompanied by the reorganization of the tilted side chains[18?22].

    Most studies on the change of PDAs structure in chromatic transitions were based on Langmuir or Langmuir-Blodgett(LB) films,or the bulk characteristics of vesicles in solution,while direct detection of the interfacial properties of PDAs vesicles was seldom reported.In this work,we intend to explore the interfacial structures of PDAs vesicles in aqueous solution using second-order nonlinear optical method bearing exquisite surface sen-sitivity.As a specific spectroscopic tool in surface/interface studies,second-order nonlinear optical methods,including second harmonic generation(SHG)and sum frequency generation(SFG),have been widely used to retrieve rich interfacial information including molecular orientation and conformation,moleculeinterface interaction,and reaction kinetics[23?33].Second harmonic scattering(SHS)[34?44]has been proven effective for detecting interfacial molecular adsorption or transport processes at the curved surfaces of centrosymmetric particles,droplets or vesicles of nanoto micro-meter size suspended in liquids.

    SHG measurements were also used to study the electronic structures[45?47]and chirality features[48]of PDA Langmuir or LB films in previous reports.It was verified that the dipole-forbidden state(Ag excitation state)of π-conjugated PDAs polymer could be observed by SHG spectra and the chirality of PDAs films was affected by the conformational change of PDAs chains due to metal ions.In this work,the variations of interfacial structures of PDAs vesicles during chromatic transitions were studied using SHS method.10,12-Pentacosadiynoic acid(PCDA)was used to prepare PDAs vesicles in aqueous solution with different forms(monomer,blue,purple and red phases)by controlling the irradiation time of UV-light.Then we measured the intrinsic second harmonic response from PDAs vesicle backbone,and detected the adsorption behaviors of charged molecules(4-(4-diethylaminostyry)-1-methylpyridinium iodide,D289)onto the surfaces of PDAs vesicles with SHS and zeta potential measurements.

    II.EXPERIMENTS

    A.Materials

    10,12-Pentacosadiynoic acid(PCDA,97%)and 4-(4-diethylaminostyry)-1-methyl-pyridinium iodide(D289,98%)were purchased from Sigma-Aldrich.Chloroform(AR grade)was purchased from Tianjin Damao Chemical Reagent Factory,China.Deionized water(18.2 M?·cm)was purified with water purification system(WP-UP-UV-20)from Sichuan Water Technology Development Co.Ltd,China.The structures of PCDA and D289 molecules are given in FIG.1.

    B.Vesicle preparation

    FIG.1 Structures of PCDA and D289 molecules.

    PCDA monomer was dissolved in chloroform(~400μL)and dried under vacuum for 30 min,followed by the addition of water to 0.5 mmol/L concentration.The solution was sonicated for 20 min(KQ-300DE,300 W,40 kHz,Kunshan ultrasonic instrument Co.Ltd.China)at the temperature of(80±5)?C.The vesicle solution was cooled down to room temperature and stored in the fridge at 4?C.The solution was filtrated three times by cellulose acetate membrane with pore size of 0.8μm to remove large aggregates before further treatment.The polymerization of vesicles was initiated using a low pressure mercury lamp(253.7 nm,Cnlight Co.Ltd,China)with power of 15 W at the distance of~12 cm.The photo-polymerization degree of vesicles was confirmed through the absorption spectra measured with a spectrophotometer(UV-1800,Shimadzu).The pH of the solution was measured to be 5.5±0.3.

    C.Electrophoretic mobility measurement and zeta potential calculation

    The electrophoretic mobility and the number mean diameter of vesicles were characterized by dynamic light scattering method(Nano-ZS90,Malvern)with the temperature set as(25±1)?C and the measuring direction as 90?C.All presented results were averaged data from three measurements.During the experiments the size of the vesicle kept relatively stable with standard deviation of the average diameter less than 10%,and the polydispersity index(PDI)less than 0.2.Zeta potential of vesicles was determined by the mobility values according to the Smoluchowski equation,which is normally applied at cases other than very low ionic strength[40,49].

    D.SHS measurement

    The setup for SHS measurement has been described in our previous work[39].In brief,a commercial Ti:sapphire oscillator laser(Mira-900F,Coherent)with pulse width of~130 fs and repetition rate of 76 MHz was used as the fundamental laser source with the central wavelength set at 810 nm.A cylindrical quartz cell with inner diameter of 13 mm was employed to hold vesicle solution with stirring at a constant speed to avoid the laser-induced heating effect.The horizontally propagating 810 nm laser through a high pass filter(>750 nm)was focused at the cell center.SHS signal centered at 405 nm from the vesicles collected at a relatively large spatial angle(~40?)range in the forward direction passed through a bandpass filter(BG39,300?600 nm)and focused into the slit with the width of 2 mm of a monochromator(SR-500I,Andor),and then detected with a photomultiplier tube(PMT,Hamamatsu R-1527p).The PMT output was connected to a preamplifier(SR445A,Stanford Research)with an amplification factor of 5 and analyzed by a photon counter(SR400,Stanford Research).The obtained photon counts were then recorded by a computer.The experiments were performed with the laser power at 300 mW and the PMT voltage of?900 V.The polarization of the fundamental laser was set with the direction of the electric field parallel to the horizontal plane.During the measurements,the ambient temperature was kept at(22±1)?C.

    Because part of the emitted SHG signal was absorbed by the vesicle solution,all the SHS intensity data shown in the next section were corrected based on the absorbance at the corresponding wavelength.In the experiments,the SHG signal passed through the bulk solution with a distance of 6.5 mm(d1);the cell thickness for the measurement of UV absorption(A)was 10 mm(d2),so the corrected SHG signal was calculated from the originally measured signal(I0)as:For the SHG measurement,the aqueous solution of PCDA vesicles was divided into 6-equal portions.Then,UV-irradiation with different time(0 s,20 s,1 min,5 min,15 min,30 min)was applied for each portion.The corresponding samples were named as PCDA,UV20s,UV1min,UV5min,UV15min,and UV30min,respectively.Then,these samples were used to collect the second-order scattering signal from the pure vesicles.Subsequently,D289 dye(2 mmol/L)was quickly added into these samples(3 mL)to achieve the desired concentration to probe the signal from D289.In the experiments D289 didn’t undergo UV-irradiation.The aqueous solution of D289 dye at concentrations≤100μmol/L was used.From the absorption spectra of the aqueous solution of PDAs vesicles in the presence of D289 at various concentrations,the aggregate effect of D289 dye could be ruled out in this work.

    III.RESULTS AND DISCUSSION

    A.UV-Vis absorption spectra,size and electrophoretic mobility analysis

    With the increase of the irradiation time with UV(253.7 nm)-light,the absorbance peak of PDAs vesicle solution appeared a gradual blue shifted trend with varied distribution of intensity between the multiple peaks.The spectra change was accompanied by the color conversion from colorless to blue-to-purple-to-red(FIG.2(a)).The subtle change in scattering may have some contributions to the decrease of the absorbance at short wavelength side with the increased UV irradiation.

    FIG.2 (a)Absorption spectra at the range of 350?850 nm of the aqueous solution of PDAs vesicles.The green line indicates the absorption spectrum of D289 aqueous solution at the concentration of 1.5μmol/L.(b)Number mean diameter of PDAs vesicles and zeta potential results for PDAs vesicles without and with saturated D289 adsorption(100μmol/L).

    For the PDAs vesicles before and after UV irradiation,the number mean diameter was relatively stable(120±13)nm,red curve in FIG.2(b)).This made the SHS intensity analysis relatively easy because the angular distribution of SHS intensity from particles showed strong size dependence[35,50].After saturated adsorption of D289 molecules,the vesicle size kept unchanged within the error range.Zeta potential values obtained from electrophoretic measurements for PDAs vesicles after UV-irradiation with different time were plotted in FIG.2(b)(blue curve).It was observed that the zeta potential values kept almost unchanged with an average value of(?56.0±1.6)mV for PDAs vesicles with different forms.Zeta potential values of PDAs vesicles with saturated D289 adsorption were(?17.8±0.4),(?20.7±0.3),(?19.6±1.0),(?21.8±0.5),(?24.2±0.5),and(?23.7±0.8)mV for PCDA,UV20s,UV1min,UV5min,UV15min and UV30min,respectively(green curve in FIG.2(b)).Based on the known Gouy-Chapman theory and the Graham equation[40,51,52],the interfacial charge density(Γ or σ)is the function of the zeta potential(?)and the total electrolyte concentration(I)as expressed by:Here e represents the elementary charge,εris the relative dielectric permittivity of the solvent,ε0is the dielectric permittivity in vacuum,kT is the thermal energy and z is the ion valence.Based on this equation,for PDAs vesicles with different forms,the estimated interfacial charge density was(0.006±0.0003)(?e/nm2)(Table I).For PDAs vesicles with saturated D289 adsorption,the corresponding interfacial charge density was listed in Table I.In this calculation the ionic strength of the vesicle solutions was estimated by comparing their conductivity with emulsions with NaCl at varied concentrations.

    TABLE I Estimated interfacial charge density(?e/nm2)of PDAs vesicles with different forms.

    B.Scattering spectra from vesicle backbone upon laser excitation

    Upon irradiation of 810 nm fundamental laser,the πconjugated backbone of PDAs vesicles produced weak second-order optical scattering signal at 405 nm as well as relatively strong two-photon excitation induced fluorescence(TPF)signal around 561 nm(FIG.3(a)).

    The intensity of the second-order scattering signal from aqueous solution of PDAs vesicles was only slightly higher than the hyper-Rayleigh scattering signal from water(inset of FIG.3(a)).This indicates that the intrinsic signal from vesicle backbone was relatively weak.So,it was directly subtracted to retrieve the much stronger resonant SHS signal(typically 1?2 orders of magnitude higher)from D289 adsorption to the vesicle surfaces as shown below.

    Besides,the blue,purple and red phases of PDAs vesicles displayed significant features of TPF emission.The intensity of TPF signal at 561 nm from PDAs vesicles was linearly proportional to the UV-light irradiation time(FIG.3(b)).

    C.Scattering spectra from D289 adsorbed to vesicle surface

    The fluorescence emissions of D289 molecules in pure water and the aqueous solution of PDAs vesicles are displayed in FIG.4.The fluorescence emission of D289 molecules around 581 nm is enhanced by 3000?6000 counts/s after D289 molecules were mixed with the aqueous solution of PDAs vesicles.That is,D289 dye presents enhanced fluorescence when binding to the vesicle membranes.The fluorescence intensity shows a basically decreasing trend with the increased UV irradiation(FIG.4(b)).

    FIG.3 (a)Spectra from 386 nm to 611 nm of optical scattering signal from PDAs vesicle aqueous solution with the wavelength step of 5 nm.(b)TPF signal at 561 nm from PDAs vesicle aqueous solution.

    It was observed that the SHS signal from D289 adsorbed to the surface of PDAs vesicles was much stronger than the signal from the solution of vesicles(FIG.4(a)).According to the adsorption isotherm curves as a function of D289 molecular concentration(FIG.5(a)),the adsorption free energy of D289 molecules to the vesicle interfaces can be resolved based on the Langmuir model[34,53].Although it has been demonstrated that a modified Langmuir model can be used to achieve both the adsorption free energy and the saturated adsorption density of molecules at relatively large interfaces in the colloids or emulsions[34,39,50],we failed to obtain both the two parameters in our fitting.Most possibly because of the relatively low number density of PDAs vesicles and/or low molecular density of D289 at the surface of PDAs vesicles,our fitting with the modified Langmuir model can only lead to a saturated D289 surface density close to zero.No reliable number can be deducted in the fitting.For this reason,we used the general Langmuir model in this work to retrieve the adsorption free energy of D289 molecules at the surface of PDAs vesicles.The achieved adsorption free energy firstly decreased monotonously as a function of UV irradiation time,then slowed down and leveled off after purple phase(FIG.5(b)).That is to say,the driving force to the vesicle surface for charged D289 molecules became weaker with the increase of UV irradiation dose.

    FIG.4 (a)Emission spectra of D289 mixed with the aqueous solution of PDAs vesicles upon laser excitation.The concentration of D289 molecules is 100μmol/L.The intensities are the corrected results with the background signal from vesicles subtracted.(b)TPF signal of the PDAs vesicles at 581 nm as a function of UV irradiation time.

    Besides,the resonant SHS signal from D289 adsorbed at the surface of vesicles decreased sharply with the increase of UV irradiation time(FIG.6).After 5 min’s-(blue phase)and 30 min’s-(red phase)UV irradiation,the signal intensity attenuated by more than 50%and 85%,respectively,compared with the initial signal intensity of PCDA vesicles with saturated D289 adsorption.In our experiment,the resonant SHS signal kept stable during~2 h after D289 with fixed concentration added into PDAs vesicle solution.That is to say,no permeability of D289 molecules was observed from the outer to the inner surface across the bilayer structure of PDAs vesicles.Hence,the effect of molecular transport on the attenuation of signal intensity was excluded.For the centrosymmetric system with probe molecules adsorbed on its surface,the intensity of SHS signal is proportional to the square of the product of surface coverage and microscopic hyper-polarizability with the ensemble average of all possible molecular orientations[34,54].Then,we will mainly discuss from these two aspects about what happened on vesicle surfaces under different UV irradiation dose which affected the intensity of SHS signal from D289 adsorption.

    FIG.5 (a)The SHG scattering of D289 molecules at the surface of PDAs vesicles in aqueous solution with varied bulk concentration.The solid lines indicate the Langmuir fittings.(b)Gibbs free energy of adsorbed D289 molecules at the surface of PDAs vesicles as a function of UV irradiation time.The hyper-Rayleigh scattering from the D289 and the weak intrinsic scattering signals from vesicles have been subtracted from the measured SHG intensity.

    IV.DISCUSSION

    In literatures,it was commonly accepted that the length of the conjugated framework in conjugated PDAs polymer increases with UV irradiation until the appearance of deep blue phase(max absorbance at~635 nm),and then it does not change much with further irradiation dose[2,55].The analysis in the following highlights a continuous change of interfacial conformation beyond the conjugated framework of PDAs vesicles with the increased UV irradiation.

    FIG.6 SHS signal from D289 molecules at the surface of PDAs vesicles in aqueous solution as a function of UV irradiation time.The data with D289 molecules at three concentrations(10,20,and 100μmol/L)are shown here.The data are the same as the data shown in FIG.5 and was only plotted differently so that we can make better comparison.

    Although the ionization constant of carboxyl head group in PDAs vesicle may decrease with the increase of polymerization degree due to its enhanced hydrophobicity[56,57],the blue curve in FIG.2(b)indicates that the interfacial charge density was almost the same(with an average value of(0.0062±0.0003)?e/nm2)for PDAs vesicles with different forms.After saturated D289 adsorption,the interfacial charge density displayed a monotonous increase trend with the increase of UV irradiation time,as shown in the zeta potential plot by the green curve in FIG.2(b).Compared with bare PDAs vesicles,the interfacial charge density of vesicles with saturated D289 adsorption decreased by(0.0032±0.0001),(0.0027±0.0001),(0.0029±0.0002),(0.0024±0.0001),(0.0020±0.0001),and(0.0021±0.0002)?e/nm2for PCDA,UV20s,UV1min,UV5min,UV15min,and UV30min,respectively.Assuming this variety in the interfacial charge density of vesicles is from the adsorbed positively charged D289 molecules,a decrease in the adsorption density of D289 molecules at the surface of PDAs vesicles is expected.However,the significant decrease in the SHG scattering from the PDAs vesicles after D289 adsorption shown in FIG.6 is not able to be explained only by this effect.If one simply estimates the intensity of SHS signal with the fact that the intensity is in proportional to the square of the surface coverage of the adsorbed dye molecules[34,54],the decrease of the SHS intensity is 29%±1%,18%±1%,44%±2%,61%±3%and 57%±5%for UV20s,UV1min,UV5min,UV15min and UV30min,respectively,compared with the intensity of PCDA vesicles with no UV irradiation.There is a significant discrepancy between this estimation and the experimental observation shown in FIG.6.

    This discrepancy indicates that the orientational order of the D289 molecules at the surface of PDAs vesicles also varied notably with the increased UV irradiation.Generally,the chromatic transition of PDAs from blue to red forms was attributed to the structural distortion in the alternating ene-yne backbone[1,7,11?16],which was accompanied by the reorganization of the tilted alkyl side chains and terminated chains[18?22].Because the carboxyl terminated groups of PDAs vesicles provide the interfacial adsorption sites for the D289 molecules,the reorganization process of the carboxyl chains of PDAs vesicles caused by the photo-induced backbone distortion may cause change in the orientation order of the D289 molecules.So,it is reasonable to attribute the significant decrease in the SHG scattering from the PDAs vesicles after D289 adsorption to the orientational variations of the adsorbed D289 molecules as illustrated in FIG.7.This illustration accorded with the side-chain disarray of PDAs vesicles during chromatic transitions based on the absorption spectra and Raman spectra studies on the bulk features of PDAs vesicles[7].From FIG.7 the overall order-disorder transition is accompanied by the tilt angle change of D289 molecules from closer to the surface normal to more parallel to the vesicle surface.The plot of the changed adsorption free energy of D289 molecules at the surface of PDAs vesicles shown in FIG.5(b)indicates that the driving force to the vesicle surface for charged D289 molecules became slightly weaker during chromatic transition process.This result can be understood by the weaker adsorption interaction and chain-chain interaction between the D289 molecules and the surface of PDAs vesicles with the increased UV irradiation.The geometric constrains[58?60]from the continuous order-disorder transition of the spatial conformation of the interfacial carboxyl chains sterically hinder the electrostatic attraction interaction between the positively charged D289 molecules and the negatively charged surface of PDAs vesicles due to the decrease in the adsorption density of D289 molecules at the surface of PDAs vesicles with the increased UV irradiation.Besides,the chain-chain interaction is known to significantly influence the molecular energetics at the interfaces[40,44].The interaction between the D289 molecules and the carboxyl chains of PDAs may be weakened by the ragged distortion and interleaving of the carboxyl chains in chromatic transitions from monomer to blue-to-purple-to-red forms as shown in FIG.7.

    FIG.3 also shows that not only the red form,but also the blue and purple forms of PDAs vesicles have TPF emission.This result was different from the traditional view on the single-photon excitation induced fluorescence that the blue phase of PDAs chains, films and vesicles was non- fluorescent and only the red phase showed fluorescence[3,61?66].This result may be understood from several aspects:For TPF,the background signal is strongly suppressed due to the multiphoton absorption;Two-photon excitation typically uses near-infrared excitation light(810 nm for this work),which can minimize scattering in the vesicles and lead to an increased penetration depth[67,68];Besides,the relatively high peak power density(43±4 MW/cm2)of excitation source also contributes to the high emis-sion efficiency of TPF for all the forms of PDAs vesicles.In addition,the fluorescence intensity around 581 nm of D289 molecules shows a basically decreasing trend with the increase of UV irradiation(FIG.4(b)).Aminostyryl dyes are known to present enhanced fluorescence and emission shift when binding to membranes[69,70].So,this observation reveals that the interaction between D289 molecules and PDAs vesicles becomes weaker with the increase of UV irradiation,which accords with the decrease of SHG signal and Gibbs free energy of adsorbed D289 molecules and the order-disorder transitions of the PDAs chains at the surface of PDAs vesicles.

    FIG.7 Simple model for the continuous movement of carboxyl terminated chain affecting the orientation of adsorbed D289 molecules on the surface of PDAs vesicles in chromatic transitions from monomer to blue-to-purple-to-red forms.Because the estimated surface density of D289 is almost 0.0025(e/nm2)which is comparable to one D289 molecule per 400 nm2,the actual average distance between D289 molecules should be much larger than that shown here.

    V.CONCLUSION

    In this work,we inspected the interfacial conformation of PDAs vesicles in chromatic transitions by the adsorption behaviors of charged molecules on the bilayer surface with SHG and zeta potential measurements.The results revealed that the adsorption of D289 molecules on the bilayer surface of PDA vesicle was evidently influenced by the chromatic transitions from monomer-to-blue-to-purple-to-red forms.It was observed that the adsorption free energy of D289 molecules at the surface of PDAs vesicles decreased with the increased UV irradiation.Also,the SHG scattering from the adsorbed D289 significantly decreased with the increased UV irradiation.This decrease was not able to be completely explained by the slight decrease of the adsorption density of D289 molecules.This phenomenon was then explained by the idea that the orderdisorder transition significantly affected the orientation of adsorbed D289 molecules.The relatively smaller adsorption free energy,lower adsorption density and the less ordered D289 molecules at the surface of the PDAs vesicles support the fact that the monomer-to-blue-topurple-to-red chromatic transition of PDAs vesicles was also an order-disorder transition process of carboxyl terminated chains.

    VI.ACKNOWLEDGMENTS

    Shun-li Chen thanks Dr.Haibao Jin at University of North Carolina at Chapel Hill for helpful discussions.This work was supported by the National Natural Science Foundation of China(No.21403292,No.21403293,No.21473249,and No.21673285),and the funding from the Shenzhen city(No.JCYJ20170307150520453).

    [1]N.Mino,H.Tamura,and K.Ogawa,Langmuir 7,2336(1991).

    [2]S.Okada,S.Peng,W.Spevak,and D.Charych,Acc.Chem.Res.31,229(1998).

    [3]J.M.Kim,Y.B.Lee,D.H.Yang,J.S.Lee,G.S.Lee,and D.J.Ahn,J.Am.Chem.Soc.127,17580(2005).

    [4]H.Peng,X.Sun,F.Cai,X.Chen,Y.Zhu,G.Liao,D.Chen,Q.Li,Y.Lu,and Y.Zhu,Nat.Nanotechnol.4,738(2009).

    [5]J.Baek,J.F.Joung,S.Lee,H.Rhee,M.H.Kim,S.Park,and J.Yoon,J.Phys.Chem.Lett.7,259(2016).

    [6]J.F.Joung,J.Baek,Y.Kim,S.Lee,M.H.Kim,J.Yoon,and S.Park,Phys.Chem.Chem.Phys.18,23096(2016).

    [7]A.Potisatityuenyong,R.Rojanathanes,G.Tumcharern,and M.Sukwattanasinitt,Langmuir 24,4461(2008).

    [8]D.J.Ahn,E.H.Chae,G.S.Lee,H.Y.Shim,T.E.Chang,K.D.Ahn,and J.M.Kim,J.Am.Chem.Soc.125,8976(2003).

    [9]K.Itoh,T.Nishizawa,J.Yamagata,M.Fujii,N.Osaka,and I.Kudryashov,J.Phys.Chem.B 109,264(2005).

    [10]J.J.Schaefer,C.B.Fox,and J.M.Harris,J.Raman Spectrosc.43,351(2012).

    [11]D.S.Johnston,L.R.McLean,M.A.Whittam,A.D.Clark,and D.Chapman,Biochemistry 22,3194(1983).

    [12]A.Singh,R.B.Thompson,and J.M.Schnur,J.Am.Chem.Soc.108,2785(1986).

    [13]V.Dobrosavljevi?and R.M.Stratt,Phys.Rev.B 35,2781(1987).

    [14]J.S.Filhol,J.Deschamps,S.G.Dutremez,B.Boury,T.Barisien,L.Legrand,and M.Schott,J.Am.Chem.Soc 131,6976(2009).

    [15]L.Yu and S.L.Hsu,Macromolecules 45,420(2011).

    [16]N.Charoenthai,T.Pattanatornchai,S.Wacharasindhu,M.Sukwattanasinitt,and R.Traiphol,J.Colloid Interface Sci.360,565(2011).

    [17]A.Lio,A.Reichert,D.J.Ahn,J.O.Nagy,M.Salmeron,and D.H.Charych,Langmuir 13,6524(1997).

    [18]H.Tamura,N.Mino,and K.Ogawa,Thin Solid Films 179,33(1989).

    [19]H.G?bel,K.Kjaer,J.Als-Nielsen,and H.M?hwald,Thin Solid Films 179,41(1989).

    [20]D.Y.Sasaki,R.W.Carpick,and A.R.Burns,J.Colloid Interface Sci.229,490(2000).

    [21]R.W.Carpick,D.Y.Sasaki,M.S.Marcus,M.Eriksson,and A.R.Burns,J.Phys.:Condens.Matter 16,R679(2004).

    [22]Y.Lifshitz,Y.Golan,O.Konovalov,and A.Berman,Langmuir 25,4469(2009).

    [23]Y.R.Shen,Nature 337,519(1989).

    [24]K.B.Eisenthal,Chem.Rev.96,1343(1996).

    [25]Z.Chen,Y.R.Shen,and G.A.Somorjai,Annu.Rev.Phys.Chem.53,437(2002).

    [26]H.F.Wang,W.Gan,R.Lu,Y.Rao,and B.H.Wu,Int.Rev.Phys.Chem.24,191(2005).

    [27]S.Nihonyanagi,J.A.Mondal,S.Yamaguchi,and T.Tahara,Annu.Rev.Phys.Chem.64,579(2013).

    [28]H.F.Wang,Prog.Surf.Sci.91,155(2016).

    [29]R.J.Feng,L.Lin,Y.Y.Li,M.H.Liu,Y.Guo,and Z.Zhang,Biophys.J.112,2173(2017).

    [30]W.Wang and S.Ye,Phys.Chem.Chem.Phys.19,4488(2017).

    [31]S.L.Chen,L.Fu,W.Gan,and H.F.Wang,J.Chem.Phys.144,(2016).

    [32]S.L.Chen,L.Fu,Z.A.Chase,W.Gan,and H.F.Wang,J.Chem.Phys.C 120,25511(2016).

    [33]H.M.Chase,S.Chen,L.Fu,M.A.Upshur,B.Rudshteyn,R.J.Thomson,H.F.Wang,V.S.Batista,and F.M.Geiger,Chem.Phys.Lett.683,199(2017).

    [34]H.F.Wang,E.C.Y.Yan,Y.Liu,and K.B.Eisenthal,J.Phys.Chem.B 102,4446(1998).

    [35]J.I.Dadap,J.Shan,K.B.Eisenthal,and T.F.Heinz,Phys.Rev.Lett.83,4045(1999).

    [36]S.H.Jen,H.L.Dai,and G.Gonella,J.Chem.Phys.C 114,4302(2010).

    [37]W.Gan,B.Xu,and H.L.Dai,Angew.Chem.Int.Ed.50,6622(2011).

    [38]C.Lütgebaucks,C.Macias-Romero,and S.Roke,J.Chem.Phys.146,044701(2017).

    [39]Y.J.Sang,F.Y.Yang,S.L.Chen,H.B.Xu,S.Zhang,Q.H.Yuan,and W.Gan,J.Chem.Phys.142,224704(2015).

    [40]F.Yang,W.Wu,S.Chen,and W.Gan,Soft Matter 13,638(2017).

    [41]A.Srivastava and K.B.Eisenthal,Chem.Phys.Lett.292,345(1998).

    [42]Y.You,A.Bloom field,J.Liu,L.Fu,S.B.Herzon,and E.C.Yan,J.Am.Chem.Soc.134,4264(2012).

    [43]H.Fang,W.Wu,Y.Sang,S.Chen,X.Zhu,L.Zhang,Y.Niu,and W.Gan,Rsc Advances 5,23578(2015).

    [44]W.Wu,H.Fang,F.Yang,S.Chen,X.Zhu,Q.Yuan,and W.Gan,J.Phys.Chem.C 120,6515(2016).

    [45]T.Manaka,T.Yamada,H.Hoshi,K.Ishikawa,H.Takezoe,and A.Fukuda,Jpn.J.Appl.Phys.35,L832(1996).

    [46]T.Manaka,T.Yamada,H.Hoshi,K.Ishikawa,H.Takezoe,and A.Fukuda,Synth.Met.84,963(1997).

    [47]T.Manaka,T.Yamada,H.Hoshi,K.Ishikawa,and H.Takezoe,Synth.Met.95,155(1998).

    [48]G.Zou,T.Manaka,D.Taguchi,and M.Iwamoto,Colloids Surf.A:Physicochem.Eng.Aspects 284,424(2006).

    [49]M.Antonietti and L.Vorwerg,Colloid Polym.Sci.275,883(1997).

    [50]S.H.Jen,G.Gonella,and H.L.Dai,J.Phys.Chem.A 113,4758(2009).

    [51]J.C.Berg,An Introduction to Interfaces&Colloids:the Bridge to Nanoscience,Singapore:World Scientific,(2010).

    [52]K.Marinova,R.Alargova,N.Denkov,O.Velev,D.Petsev,I.Ivanov,and R.Borwankar,Langmuir 12,2045(1996).

    [53]H.F.Wang,T.Troxler,A.G.Yeh,and H.L.Dai,Langmuir 16,2475(2000).

    [54]H.M.Eckenrode,S.H.Jen,J.Han,A.G.Yeh,and H.L.Dai,J.Phys.Chem.B 109,4646(2005).

    [55]D.Dini,M.R.J.Calvete,and M.Hanack,Chem.Rev.116,13043(2016).

    [56]X.Zhu,P.Duan,L.Zhang,and M.Liu,Chem.A Euro.J.17,3429(2011).

    [57]T.A.Villarreal,S.R.Russell,J.J.Bang,J.K.Patterson,and S.A.Claridge,J.Am.Chem.Soc.139,11973(2017).

    [58]W.K.Olson and P.J.Flory,Biopolymers 11,1(1972).

    [59]K.A.Melzak,C.S.Sherwood,R.F.Turner,and C.A.Haynes,J.Colloid Interface Sci.181,635(1996).

    [60]J.E.DeLorbe,J.H.Clements,M.G.Teresk,A.P.Benfield,H.R.Plake,L.E.Millspaugh,and S.F.Martin,J.Am.Chem.Soc.131,16758(2009).

    [61]J.Olmsted III and M.Strand,J.Phys.Chem.87,4790(1983).

    [62]R.Lécuiller,J.Berréhar,C.Lapersonne-Meyer,and M.Schott,Phys.Rev.Lett.80,4068(1998).

    [63]R.Carpick,T.M.Mayer,D.Y.Sasaki,and A.R.Burns,Langmuir 16,4639(2000).

    [64]T.Guillet,J.Berréhar,R.Grousson,J.Kovensky,C.Lapersonne-Meyer,M.Schott,and V.Voliotis,Phys.Rev.Lett.87,087401(2001).

    [65]D.J.Ahn and J.M.Kim,Acc.Chem.Res.41,805(2008).

    [66]D.E.Wang,L.Zhao,M.S.Yuan,S.W.Chen,T.Li,and J.Wang,ACS Appl.Mater.Interf.8,28231(2016).

    [67]W.Denk,J.H.Strickler,and W.W.Webb,Science 248,73(1990).

    [68]F.Helmchen and W.Denk,Nat.Methods 2,932(2005).

    [69]L.M.Loew,L.B.Cohen,J.Dix,E.N.Fluhler,V.Montana,G.Salama,and W.Jian-young,J.Membrane Biol.130,1(1992).

    [70]J.E.González and R.Y.Tsien,Chem.Biol.4,269(1997).

    亚洲一级一片aⅴ在线观看| 国产精品免费一区二区三区在线| 色综合亚洲欧美另类图片| av在线播放精品| 精品久久久久久久人妻蜜臀av| 亚洲综合色惰| 久久精品国产99精品国产亚洲性色| 亚洲成人精品中文字幕电影| 天堂√8在线中文| 国内揄拍国产精品人妻在线| 成人午夜精彩视频在线观看| 欧美变态另类bdsm刘玥| 最近中文字幕高清免费大全6| 欧美精品一区二区大全| 欧美潮喷喷水| 日本黄色片子视频| 亚洲av第一区精品v没综合| 九九在线视频观看精品| 精品无人区乱码1区二区| 亚洲五月天丁香| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久久中文| 成人鲁丝片一二三区免费| 亚洲四区av| 大型黄色视频在线免费观看| 十八禁国产超污无遮挡网站| 国产淫片久久久久久久久| 免费大片18禁| 亚洲精品久久久久久婷婷小说 | 啦啦啦韩国在线观看视频| 久久久久网色| 高清日韩中文字幕在线| 两性午夜刺激爽爽歪歪视频在线观看| 蜜桃亚洲精品一区二区三区| 91久久精品国产一区二区三区| 久久热精品热| 久久久欧美国产精品| 国产中年淑女户外野战色| 国产黄片视频在线免费观看| 欧美bdsm另类| 精品熟女少妇av免费看| 啦啦啦观看免费观看视频高清| 午夜激情福利司机影院| 色哟哟·www| 久久这里只有精品中国| 国产伦精品一区二区三区四那| 麻豆一二三区av精品| 国产伦一二天堂av在线观看| 国产午夜精品一二区理论片| 18+在线观看网站| 久久鲁丝午夜福利片| av天堂中文字幕网| 免费av不卡在线播放| 亚洲第一区二区三区不卡| 1000部很黄的大片| 亚洲第一区二区三区不卡| 亚洲av中文av极速乱| 亚洲精品成人久久久久久| 99久久精品热视频| 国产精品久久久久久精品电影| 日韩三级伦理在线观看| 久久人人爽人人爽人人片va| 淫秽高清视频在线观看| 一个人免费在线观看电影| 好男人视频免费观看在线| 午夜福利在线观看吧| 麻豆成人午夜福利视频| 晚上一个人看的免费电影| 亚洲久久久久久中文字幕| 欧美最黄视频在线播放免费| 97超碰精品成人国产| 久久久久国产网址| 欧美潮喷喷水| 人人妻人人看人人澡| 老女人水多毛片| 色视频www国产| 91精品国产九色| 亚洲国产色片| 成年免费大片在线观看| 极品教师在线视频| 欧洲精品卡2卡3卡4卡5卡区| 国产色爽女视频免费观看| 午夜久久久久精精品| 欧美一级a爱片免费观看看| 中国美白少妇内射xxxbb| 内射极品少妇av片p| 婷婷精品国产亚洲av| 亚洲av二区三区四区| 22中文网久久字幕| 最新中文字幕久久久久| 听说在线观看完整版免费高清| 成人无遮挡网站| 成熟少妇高潮喷水视频| 成人综合一区亚洲| 黄色欧美视频在线观看| 欧美人与善性xxx| 美女脱内裤让男人舔精品视频 | 国产精品久久久久久精品电影| 卡戴珊不雅视频在线播放| 成人二区视频| 国产成人午夜福利电影在线观看| 身体一侧抽搐| 久久中文看片网| 91久久精品国产一区二区成人| 国产精品久久久久久精品电影小说 | 免费人成视频x8x8入口观看| 久久精品国产鲁丝片午夜精品| 国产黄片美女视频| 久久精品影院6| 国产精品久久久久久精品电影小说 | 啦啦啦观看免费观看视频高清| 不卡一级毛片| 久久久久久久午夜电影| 丰满乱子伦码专区| 亚洲av熟女| 一夜夜www| 欧美人与善性xxx| 日韩强制内射视频| 日韩av在线大香蕉| 哪个播放器可以免费观看大片| 亚洲成人精品中文字幕电影| 亚洲精品成人久久久久久| 久久精品国产亚洲av香蕉五月| a级毛片免费高清观看在线播放| 久久久久久大精品| av在线播放精品| 亚洲aⅴ乱码一区二区在线播放| 午夜爱爱视频在线播放| 精品日产1卡2卡| 国产欧美日韩精品一区二区| 亚洲av中文字字幕乱码综合| 国产黄片美女视频| 永久网站在线| 国产高清激情床上av| 男女边吃奶边做爰视频| 丝袜美腿在线中文| 麻豆精品久久久久久蜜桃| 丝袜喷水一区| kizo精华| 联通29元200g的流量卡| 亚洲精华国产精华液的使用体验 | 久久国产乱子免费精品| 日本成人三级电影网站| 18禁在线播放成人免费| 长腿黑丝高跟| av在线天堂中文字幕| 日本一二三区视频观看| 亚洲人成网站在线播| 国产亚洲av片在线观看秒播厂 | 亚洲精品乱码久久久v下载方式| 亚洲欧美日韩卡通动漫| 日本色播在线视频| 午夜福利在线在线| 国产午夜精品久久久久久一区二区三区| 国产av在哪里看| 97超视频在线观看视频| 欧美在线一区亚洲| 麻豆国产av国片精品| 一本久久精品| 春色校园在线视频观看| 国产麻豆成人av免费视频| 天堂影院成人在线观看| 搞女人的毛片| 免费观看a级毛片全部| 国产国拍精品亚洲av在线观看| 69av精品久久久久久| 中国美女看黄片| 精品久久久久久成人av| 国产在线男女| 啦啦啦韩国在线观看视频| 老熟妇乱子伦视频在线观看| 精品一区二区三区人妻视频| avwww免费| 黑人高潮一二区| 日韩亚洲欧美综合| 春色校园在线视频观看| 中文字幕免费在线视频6| 欧美+日韩+精品| 久久精品国产亚洲av涩爱 | 精品久久久久久久久av| 中文精品一卡2卡3卡4更新| 免费电影在线观看免费观看| 床上黄色一级片| 婷婷六月久久综合丁香| 青青草视频在线视频观看| 亚洲四区av| 狂野欧美白嫩少妇大欣赏| 观看免费一级毛片| 国产色婷婷99| 欧美变态另类bdsm刘玥| 午夜福利在线在线| 超碰av人人做人人爽久久| 亚洲成人久久爱视频| 亚洲精品乱码久久久v下载方式| 国产精品蜜桃在线观看 | 天堂av国产一区二区熟女人妻| 午夜久久久久精精品| 久久久久久久亚洲中文字幕| 天天一区二区日本电影三级| 只有这里有精品99| 色综合亚洲欧美另类图片| 日本爱情动作片www.在线观看| 久久久久久大精品| 久久综合国产亚洲精品| 综合色丁香网| 亚洲人与动物交配视频| 天堂影院成人在线观看| 国内精品一区二区在线观看| 亚洲欧美成人精品一区二区| h日本视频在线播放| 久久精品久久久久久久性| 国产视频内射| 高清在线视频一区二区三区 | 国产片特级美女逼逼视频| 秋霞在线观看毛片| 精品久久久久久久久久免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 人妻制服诱惑在线中文字幕| 日韩欧美 国产精品| 久久精品久久久久久噜噜老黄 | 热99在线观看视频| 日韩三级伦理在线观看| 午夜亚洲福利在线播放| 日本欧美国产在线视频| 在线免费十八禁| 国产精品久久久久久久久免| 99精品在免费线老司机午夜| 伦精品一区二区三区| 级片在线观看| 看黄色毛片网站| 欧美日韩国产亚洲二区| 精品熟女少妇av免费看| 成人鲁丝片一二三区免费| 中文字幕熟女人妻在线| 男人和女人高潮做爰伦理| 日日干狠狠操夜夜爽| 天天躁日日操中文字幕| 亚洲第一电影网av| 99热精品在线国产| 高清毛片免费看| 国产大屁股一区二区在线视频| 国产在视频线在精品| 亚洲av不卡在线观看| 深夜a级毛片| 国产精品国产三级国产av玫瑰| 国产视频首页在线观看| av卡一久久| 久久久久网色| a级一级毛片免费在线观看| 亚洲中文字幕日韩| 伦精品一区二区三区| 久久精品人妻少妇| 亚洲国产欧美在线一区| 中国美女看黄片| av黄色大香蕉| 寂寞人妻少妇视频99o| 久久久久久伊人网av| 联通29元200g的流量卡| 亚洲欧美成人精品一区二区| 免费看光身美女| 九九在线视频观看精品| 五月伊人婷婷丁香| 丰满乱子伦码专区| 搡女人真爽免费视频火全软件| 精品不卡国产一区二区三区| 天堂影院成人在线观看| 免费观看精品视频网站| 大又大粗又爽又黄少妇毛片口| 看免费成人av毛片| www.av在线官网国产| 寂寞人妻少妇视频99o| 有码 亚洲区| 草草在线视频免费看| 搞女人的毛片| 五月玫瑰六月丁香| 国产成人aa在线观看| 麻豆精品久久久久久蜜桃| 国产午夜精品一二区理论片| 亚洲经典国产精华液单| 国产爱豆传媒在线观看| 久久精品国产自在天天线| 我的女老师完整版在线观看| av在线老鸭窝| 亚洲av不卡在线观看| 中文字幕人妻熟人妻熟丝袜美| 乱码一卡2卡4卡精品| 精品久久久噜噜| 成人二区视频| 美女高潮的动态| 午夜精品一区二区三区免费看| 内射极品少妇av片p| 国产精品乱码一区二三区的特点| 久久久久国产网址| 三级经典国产精品| 青春草视频在线免费观看| 日本熟妇午夜| 精品不卡国产一区二区三区| 精品熟女少妇av免费看| 日韩欧美 国产精品| 亚洲熟妇中文字幕五十中出| 亚洲高清免费不卡视频| 亚洲人成网站在线播| 日本-黄色视频高清免费观看| 一级毛片电影观看 | 久久久久久久久大av| 搡老妇女老女人老熟妇| 99久久人妻综合| 免费看光身美女| 91久久精品电影网| 国产国拍精品亚洲av在线观看| 欧美在线一区亚洲| 乱码一卡2卡4卡精品| 成人永久免费在线观看视频| kizo精华| 村上凉子中文字幕在线| 丝袜美腿在线中文| 99热这里只有精品一区| 国产精品1区2区在线观看.| 久久久久久伊人网av| 淫秽高清视频在线观看| 久久久国产成人免费| 久久久久久久久中文| av在线观看视频网站免费| 嫩草影院精品99| 亚洲av电影不卡..在线观看| 搞女人的毛片| 国产精品一及| 久久久精品欧美日韩精品| 国产成人a∨麻豆精品| 亚洲一区高清亚洲精品| 青春草视频在线免费观看| 2022亚洲国产成人精品| 最好的美女福利视频网| 亚洲欧美日韩卡通动漫| 日本在线视频免费播放| 免费人成在线观看视频色| av天堂在线播放| 一个人免费在线观看电影| 最近的中文字幕免费完整| 在线播放无遮挡| 久久99热这里只有精品18| 成人性生交大片免费视频hd| 国产大屁股一区二区在线视频| 22中文网久久字幕| 久久精品影院6| 欧美xxxx性猛交bbbb| 国产精品不卡视频一区二区| 日韩欧美精品v在线| a级毛片免费高清观看在线播放| 亚洲精品成人久久久久久| 国产一区二区三区在线臀色熟女| 麻豆av噜噜一区二区三区| 欧美日本视频| 免费看a级黄色片| 天天躁日日操中文字幕| 成熟少妇高潮喷水视频| 全区人妻精品视频| 婷婷六月久久综合丁香| 99riav亚洲国产免费| 国内精品久久久久精免费| 边亲边吃奶的免费视频| 舔av片在线| 亚洲精品456在线播放app| 国产毛片a区久久久久| 中文字幕av成人在线电影| 精品免费久久久久久久清纯| 精品人妻一区二区三区麻豆| 天堂中文最新版在线下载 | 国产国拍精品亚洲av在线观看| 人妻少妇偷人精品九色| 日韩成人伦理影院| 国产高清视频在线观看网站| 国产精品伦人一区二区| 日本黄色视频三级网站网址| 日韩强制内射视频| 成人鲁丝片一二三区免费| 成人毛片60女人毛片免费| 91久久精品国产一区二区三区| 99热这里只有精品一区| 国语自产精品视频在线第100页| 欧美精品国产亚洲| 国产成人影院久久av| 色5月婷婷丁香| 国产精品无大码| 亚洲欧美清纯卡通| 国产伦一二天堂av在线观看| 久久精品国产清高在天天线| 简卡轻食公司| 人人妻人人看人人澡| avwww免费| 国产淫片久久久久久久久| 精品少妇黑人巨大在线播放 | 深夜精品福利| 久99久视频精品免费| 九草在线视频观看| 丰满的人妻完整版| 亚洲欧美中文字幕日韩二区| 国产午夜精品论理片| 精品国产三级普通话版| 亚洲欧美中文字幕日韩二区| 99久久九九国产精品国产免费| 精品午夜福利在线看| 最近的中文字幕免费完整| 日日摸夜夜添夜夜添av毛片| 99久久精品热视频| 亚洲人与动物交配视频| 国产精品一区二区在线观看99 | 国产精品久久电影中文字幕| 九九在线视频观看精品| 久久久精品欧美日韩精品| 免费观看的影片在线观看| 国产又黄又爽又无遮挡在线| 日产精品乱码卡一卡2卡三| 亚洲va在线va天堂va国产| 青春草视频在线免费观看| 精华霜和精华液先用哪个| 日本欧美国产在线视频| av在线亚洲专区| 亚洲国产欧美在线一区| 99久国产av精品| 国内精品美女久久久久久| 亚洲高清免费不卡视频| 国产精品.久久久| 超碰av人人做人人爽久久| 国产免费男女视频| 日韩强制内射视频| 亚洲无线观看免费| 久久精品综合一区二区三区| 国产精品电影一区二区三区| 国产av不卡久久| 成人欧美大片| 亚洲无线在线观看| 午夜视频国产福利| 亚洲精品国产成人久久av| 亚洲丝袜综合中文字幕| 久久精品影院6| 国产色爽女视频免费观看| 黑人高潮一二区| 一本精品99久久精品77| 男女做爰动态图高潮gif福利片| 国产v大片淫在线免费观看| 精品久久久久久久久亚洲| 如何舔出高潮| 亚洲综合色惰| 国产综合懂色| 国产精品一区二区在线观看99 | 亚洲不卡免费看| 22中文网久久字幕| 青青草视频在线视频观看| 特大巨黑吊av在线直播| 亚洲成人久久性| 国产成人影院久久av| 青春草国产在线视频 | 色噜噜av男人的天堂激情| 能在线免费观看的黄片| 国产精品1区2区在线观看.| 美女xxoo啪啪120秒动态图| 真实男女啪啪啪动态图| 国产 一区精品| 性色avwww在线观看| 免费av观看视频| 日日撸夜夜添| 午夜精品国产一区二区电影 | 人体艺术视频欧美日本| 97超视频在线观看视频| 校园春色视频在线观看| 一区二区三区高清视频在线| 一个人免费在线观看电影| 91午夜精品亚洲一区二区三区| 蜜桃久久精品国产亚洲av| 亚洲,欧美,日韩| 亚洲国产欧美人成| av专区在线播放| 久久久久久伊人网av| 狂野欧美白嫩少妇大欣赏| 国内精品一区二区在线观看| 亚洲精品国产成人久久av| 国产探花在线观看一区二区| 国产亚洲91精品色在线| 亚洲精品456在线播放app| 人人妻人人澡欧美一区二区| 国产69精品久久久久777片| 亚洲一区二区三区色噜噜| 99久久精品国产国产毛片| 国产精品人妻久久久久久| 亚洲欧美精品专区久久| 一边摸一边抽搐一进一小说| 成人午夜精彩视频在线观看| 亚洲av成人av| 简卡轻食公司| 熟妇人妻久久中文字幕3abv| 欧美性感艳星| 国产激情偷乱视频一区二区| 色哟哟哟哟哟哟| 老司机影院成人| 熟女电影av网| 在线观看午夜福利视频| a级一级毛片免费在线观看| 一区福利在线观看| 免费看日本二区| 中文欧美无线码| 欧美色欧美亚洲另类二区| 国产三级中文精品| 亚洲成人久久爱视频| 一进一出抽搐gif免费好疼| 国产精品一区www在线观看| 12—13女人毛片做爰片一| 国内精品宾馆在线| 中文亚洲av片在线观看爽| 日本一二三区视频观看| 91久久精品电影网| 非洲黑人性xxxx精品又粗又长| 久久久午夜欧美精品| 国产日本99.免费观看| 国产三级在线视频| 免费看av在线观看网站| 97人妻精品一区二区三区麻豆| 国产精品久久久久久久久免| 免费观看a级毛片全部| 晚上一个人看的免费电影| avwww免费| 久久精品国产鲁丝片午夜精品| 久久中文看片网| 亚洲人成网站在线观看播放| 国产成人a∨麻豆精品| 久久热精品热| 亚洲精品乱码久久久v下载方式| 国产精品三级大全| 老熟妇乱子伦视频在线观看| 99久国产av精品国产电影| 国产精品福利在线免费观看| 国产高清三级在线| 日韩成人av中文字幕在线观看| 欧美日韩一区二区视频在线观看视频在线 | 免费观看的影片在线观看| 国产三级在线视频| 亚洲av成人精品一区久久| 欧美日韩乱码在线| 色哟哟哟哟哟哟| 国产精品蜜桃在线观看 | 午夜久久久久精精品| 青春草亚洲视频在线观看| .国产精品久久| 韩国av在线不卡| 菩萨蛮人人尽说江南好唐韦庄 | 国内精品一区二区在线观看| 简卡轻食公司| 亚洲美女视频黄频| 波多野结衣巨乳人妻| 久久午夜福利片| 神马国产精品三级电影在线观看| 久久久久久久久久久丰满| 国产精品日韩av在线免费观看| 欧美人与善性xxx| 日韩av在线大香蕉| 亚洲精品亚洲一区二区| 在线播放国产精品三级| 亚洲无线在线观看| 插逼视频在线观看| 国产单亲对白刺激| 国产精品一及| 一个人看视频在线观看www免费| 成人无遮挡网站| 自拍偷自拍亚洲精品老妇| 亚洲人成网站高清观看| av在线播放精品| 中文字幕av成人在线电影| 国产av一区在线观看免费| 一级二级三级毛片免费看| 久久精品91蜜桃| 国产精品,欧美在线| 蜜桃久久精品国产亚洲av| 又粗又硬又长又爽又黄的视频 | 日韩精品有码人妻一区| 99久久人妻综合| 国产一级毛片七仙女欲春2| 熟女人妻精品中文字幕| 五月伊人婷婷丁香| 联通29元200g的流量卡| 欧美成人a在线观看| 国产亚洲5aaaaa淫片| 一级黄片播放器| 亚州av有码| 日韩,欧美,国产一区二区三区 | 亚洲第一区二区三区不卡| 国内精品美女久久久久久| 亚洲精品亚洲一区二区| 欧美性猛交黑人性爽| 观看免费一级毛片| 日韩欧美一区二区三区在线观看| 亚洲欧美日韩卡通动漫| 欧美激情国产日韩精品一区| av视频在线观看入口| 欧美+日韩+精品| a级毛片a级免费在线| 性色avwww在线观看| 一级毛片aaaaaa免费看小| 国产蜜桃级精品一区二区三区| 晚上一个人看的免费电影| 精品人妻偷拍中文字幕| 免费观看的影片在线观看| 国产毛片a区久久久久| 最近中文字幕高清免费大全6| 国产在线男女| 色综合站精品国产| 嘟嘟电影网在线观看| 2021天堂中文幕一二区在线观| 国产中年淑女户外野战色| 亚洲欧美精品自产自拍| 国产精品嫩草影院av在线观看| 黄色配什么色好看| 亚洲婷婷狠狠爱综合网| 身体一侧抽搐| 可以在线观看的亚洲视频| 黄片无遮挡物在线观看|