• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-Body Photodissociation of Thionyl Chloride

    2018-06-27 06:48:06BumliyAulimitiQioliHoChenQinMeiXingBingZhng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年3期

    Bumliy Aulimiti,Qio-li Ho,Chen Qin,Mei Xing?,Bing Zhng?

    a.College of Physics and Electronic Engineering,Xinjiang Normal University,Urumqi 830054,China

    b.State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,China

    I.INTRODUCTION

    Molecular dissociation is of significance in the chemistry of non-equilibrium environments.Most photoinitiated dissociation processes in the lower layers of the Earth’s atmosphere are two-body dissociation processes.Usually,dynamics of the two-body dissociation processes can be obtained through relatively straightforward experimental methods[1,2].However,in combustion,as well as in the stratosphere,interstellar space,and other lower-density environments,high-energy processes can readily induce a three-body dissociation of neutral molecules.Unfortunately,owing to the challenges in predicting the involved complex nonadiabatic dynamics and in observing multiple dissociation products simultaneously,the investigation of three-body dissociation has been proven to be a hard stone for theoreticians as well as experimentalists[3,4].So far,three body dissociation processes have been rarely explored,mainly because of the difficulty in getting a complete picture of these complex decay processes.

    Conventional photofragment translational spectroscopy(PTS)[5]has been used to investigate the three-body dissociation dynamics[6].Coincidence spectroscopy,which has been developed recently,can detect all fragments coincidentally[7]and is considered to be useful for investigating three-body dissociation process.However,such a technique is the most suitable for dissociative photoionization and dissociative photodetachment processes.In addition,coincidence spectroscopy constitutes a substantial experimental challenge.Femtosecond(fs)time-resolved spectroscopy[8,9]is also considered as a very useful technique,which provides an alternate means to investigate the three-body dissociation processes by monitoring the time evolution of the initial state,products and even intermediate.

    Numerous molecular systems became objects for the study of three-body photodissociation dynamics[10–14].Among them,acetone[15,16]is probably the best-studies molecule.Triazine[17],tetrazine[18],dimethyl sulfoxide[19,20],and phosgene[21]are other interesting systems that have also attracted extensive attention.Thionyl chloride(SOCl2)is also an interesting system that possesses many interesting aspects[22].Since the stepwise,synchronous concerted,or asynchronous concerted reactions are important processes in physics,biology,and chemistry,there has been a long history of debate to determine the dissociation is a stepwise or concerted for almost all of these molecules.It is also a hot topic for chemical dynamics to differentiate between the concerted and stepwise processes.

    SOCl2[23]is a Cspoint group non-planar molecule with a1A′ground state.The absorption spectrum is broad and extends into the spectral range where ultraviolet laser radiation can be easy to reach.The distinct shoulder at 40000 cm?1(250 nm)and the pronounced absorption maximum above 50000 cm?1(below 200 nm)are assigned to overlapping electronic transitions:the nSSCland nSSOtransitions from a non-bonding lone pair electron on the sulfur atom to the anti-bonding molecular orbitals of the S?Cl or the S?O bond.There have been several experimental studies on the photodissociation of SOCl2.With ultraviolet laser excitation,the two equivalent C?S bonds probably break,producing the fragments of Cl+SO+Cl.Like other molecular systems undergoing three-body dissociation,there has been a long history of controversy about whether the dissociation is stepwise or concerted.The photodissociation of SOCl2has previously been studied experimentally for the photolysis wavelengths of 248,235,and 193 nm.At 248 nm,PTS study[24]suggested that the two-body dissociation channel(SOCl2+hν→SOCl+Cl)becomes the main channel and the molecular elimination channel(SOCl2+hν→SO+Cl2)contributes only insignificantly to the dissociation process[25];however,no contribution of the three-body dissociation channel(SOCl2+hν→SO+2Cl)has been observed at this wavelength.These results agree well with the conclusions obtained by using microwave spectroscopy and laser-induced fluorescence(LIF)at the same wavelength[26].At 193 nm,however,the dissociation dynamics was remarkably different,a concerted threebody decay has been found to be the main dissociation channel by a PTS study[27].At 235 nm,a stateselective photofragment imaging experiment was carried out and showed bimodal kinetic energy distributions with a large contribution from the slow ground state Cl(2P3/2)fragments.This result hinted a competition between the two-body dissociation channel and the three-body one[28].A one-dimensional resonance enhanced multi-photon/time-of- flight technique(REMPI/TOF)has also been used to study the photodissociation dynamics of thionyl chloride at 235 nm[25].This study also observed the competition between the three-body and two-body dissociation channels,and indicated that the three-body decay was the most probably sequential.Three-dimensional(3D)imaging has been used to monitor the photofragments of SOCl2with a dissociation wavelength of 235 nm,which suggests that three-body decay channel was a sequential or asynchronously concerted decay[29].

    Unlike the other molecules that experience threebody dissociation,the photodissociation process of SOCl2has not been inquired with femtosecond timeresolved spectroscopy.To date,there has not been a general conclusion regarding the mechanistic photodissociation of SOCl2.These notable gaps in the knowledge warrant intensive study using the femtosecond time-resolved method to get a clear picture of the photodissociation of SOCl2.To our knowledge,this is a first femtosecond time-resolved study on the three-body dissociation of SOCl2.Femtosecond time-resolved mass spectroscopy is used in our study.And,in order to investigate the competition between the concerted and stepwise three-body dissociation processes under identical energy conditions,the pump wavelength is fixed at 235 nm.The photodissociation processes of SOCl2,subsequent to excitation by the absorption of a 235 nm photon,have been directly observed in real time.Of particular note,the distinction between the concerted and stepwise processes and the confirmation of the time scales for the three body dissociation processes are very important.

    II.EXPERIMENTS

    The experimental setup has been described in detail elsewhere[30].Briefly,the setup consisted of a pulsed molecular beam combined with a time-of- flight(TOF)mass spectrometer and a Ti:Sapphire regenerative amplified laser system(4.5 mJ,1 kHz,800 nm)(Coherent Inc.).The output light was split into two parts.One part was used to pump an optical parametric amplifier(OPA;Coherent Inc.TOPAS-C)to produce a pump pulse at 235 nm.Another fundamental output laser beam was converted to the probe pulse at 400 nm by a BBO(0.2-mm thickness)crystal.The probe pulse tracked the relaxation processes of SOCl2.Polarization vectors of the pump and probe lasers were aligned parallelly to each other and also set parallelly to the face of the detector.The pump-probe delay time was accurately controlled by a computer-controlled linear translation stage(PI,M-126.CG1).The two pulses were collinearly combined by a dichroic mirror then fused by a silica lens of f=400 mm on the thionyl chloride molecules.The employed apparatus[31],which consisted of a molecular-beam source chamber and an ionization- flight detection chamber,was similar to the apparatus designed by Eppink and Parker[32].The liquid sample(SOCl2,99.9%purity)5%in helium buffer gas at a background pressure of 2 atm was prepared at room temperature and was expanded through a pulsed valve to create a pulsed molecular beam.The generated molecular beam was further collimated by a skimmer in a source chamber and introduced into the ionizationflight detection chamber,where it was crossed perpendicularly with the pump and probe pulses.The photoelectrons thus produced were accelerated by electrostatic lens system parallel to the molecular beam,and then projected onto a dual microchannel plate backed by a phosphor screen.The signal from the phosphor screen was monitored by a photomultiplier tube in order to obtain the total photoelectron and ion intensities.A multilayerμ-metal tube was used for a field-free region(360 mm)of the TOF spectrometer in order to avoid disturbance of the stray field.

    III.RESULTS AND DISCUSSION

    FIG.1 shows the two color time-of- flight mass spectra recorded with the pump-probe configuration at?t=0(time-overlap).The peaks of the parent ion and fragment ions were observed in the spectrum.The peaks shown at m/z of 109,82,48,32,and 28 corresponded to theparent ion,SOCl+,SO+,Cl+and S+fragment ions,respectively.As shown in the mass spectra,not only the parent ion S,but also many fragment ions were observed.Furthermore,the SO+and SOCl+fragment ions were the dominant signals in the mass spectra.The mass spectra indicated that the parent ion probably underwent a photoinduced fragmentation process.

    FIG.2 Time-resolved SOCl2+and SOCl+transients at a 235 nm pump and 400 nm probe.Experimental data are indicated by circles,whereas the fitting results are shown with solid lines.

    FIG.2,FIG.3,and FIG.4 show the recorded timeresolved mass spectra ion signals of,SOCl+,SO+and Cl+as a function of the pump-probe delay time,respectively.Experimental data are indicated by circles,whereas the fitting results are shown with solid lines.The maximum pump-probe signal was more than 10 times larger than the one-color signals.The positive delay times in the time profiles meant that the pump laser(235 nm)arrived before the probe laser(400 nm),in turn,the negative delay times meant that the pump laser(235 nm)arrived after the probe laser(400 nm).At the small pump-probe delay time,the parent and all fragment ions time profiles show strongly enhanced pump-probe signals;after a pump-probe delay time of approximately 300 fs,the enhanced pump-probe signal disappeared quickly especially for the parent ion,although weaker enhanced signals remained for at least 20 ps for the fragment ions SO+and Cl+.The signal of the S+fragment ion was too weak to extract the time-resolved ion signal.Since the experimental results obtained in our study reveal the time evolution of the initial state,intermediate(SOCl),and final products(SO,Cl)for the three-body dissociation of SOCl2at 235 nm,the different signal profiles of the parent and fragment ions indicated a different decay behavior of the fragment ions compared with the parent ion.

    FIG.3 Time-resolved SO+transients at 235 nm pump and 400 nm probe(a)from?2 ps to 20 ps and(b)?1 ps to 5 ps,Experimental data are indicated by circles,whereas the fitting results are shown with solid lines.

    FIG.4 Time-resolved Cl+transients at 235 nm pump and 400 nm probe,Experimental data are indicated by circles,the fitting results are shown with solid lines.

    FIG.2(a)shows that the parent ion signal ofdecayed in a few hundred femtoseconds after the initial instantaneous rise.The parent ion signal could be fitted by an exponential decay function of 166 fs convoluted with the instrument response function of a Gaussian.Since the time resolved parent ion intensity reflected the excitation and decay processes of the excited states of SOCl2,it was acceptable to assign a lifetime constant of 166 fs to the decay dynamics of the initially excited states.Roth et al.[33]observed that the photodissociation of SOCl2at 235 nm proceeded through two potential-energy surfaces A′′and A′.According to their previous study,the femtosecond pump laser at 235 nm launched a nuclear wave packet on the 3A′′and 3A′surfaces.The repulsive nature of the 3A′′and 3A′states also suggested that the dissociation dynamics may occur rapidly.Thus,the parent time profile observed in our study immediately suggested that the excited states(3A′′and 3A′states)excited by 235 nm are very shortlived,that is,approximately 166 fs.This conlusion also agrees with the fact that the absorption spectrum in the 3A′′and 3A′states region was broad and diffuse.

    The decay profiles of intermediate SOCl+(FIG.2(b))were fitted to two decay components with lifetimes of 230 fs and 8.7 ps convoluted with the instrument response function of a Gaussian.These two components indicated that there were two different channels for the production of the SOCl+ions.First,we consider the the fast decay time component of 230 fs.This component had a similar trend to the parention time profile.It was reasonable to assign this component to the dissociation of theions after the pumpprobe ionization.The parent molecule populated on the 3A′′and 3A′excited states could be ionized to form the parent ion by absorbing the 400 nm probe light.Then dissociation occurred in the parent ion,which generated the fragment ions of SOCl+and Cl+.The long-time component suggested that a fraction of the SOCl was long-lived.We proposed that the second component of 8.7 ps could be attributed to a stepewise dissociation process.Dissociation could occur on the 3A′′or 3A′surface of SOCl2and the neutral fragment SOCl could be easily ionized by absorbing probe photons to form the long lifetime fragment ions of SOCl+.Since the SOCl+transients reflected the temporal evolution of the SOCl intermediate,the 8.7 ps component was consistent with the decay of hot SOCl produced in the stepwise pathway.This assignment was in agreement with the previous studies,which suggested that the photodissociation of SOCl2at 235 nm underwent a stepwise dissociation process and produced the fragement of Cl with quite high quantum yield[34,35].

    The fitting results of the time-resolved SO+signals are shown in FIG.3.The fitting was consistent with our experimental data.The time resolved SO+transients could be well- fitted to one rise component of trise=63 fs and one decay component of tdecay=2.7 ps convoluted with the instrument response function.The fast rise time of 63 fs obtained by fitting the SO+transients indicated that there was a very fast channel which can produce SO+.First,we considered that ion dynamics may be responsible for the femtosecond time scale appearance of SO+.Hence,the 63 fs time constant was shorter than that we obtained from the parent ion time profile,so we propose that ion dynamics were not responsible for the 63 fs constant.Another two possible mechanisms,including the molecular elimination channel and concerted three-body photodissociation channel,were considered to account for the 63 fs constant.The molecular elimination channel has been observed in the previous studies[36,37].Usually,molecular elimination channel occurs in the ground state with a very high barrier.Therefore,molecular elimination channel is estimated to arise very slowly.Moreover,as far as we know molecular elimination channel has not been observed in previous PTS experiments with more universal detection methods for the photodissociation of SOCl2at 235 nm excitation[24].Therefore,we excluded the possibility of a molecular elimination channel responsible for the nearly instantaneous rise component of 63 fs.The other possible mechanism for the instantaneous rise component 63 fs was concerted threebody dissociation.This channel involves instantaneous breaking of the two equivalent Cl?S bonds which may be broken by a concerted fashion or in rapid succession within approximately 63 fs.If the initially excited dissociation state surface involved is repulsive along the twobond dissociation coordinate,the two Cl?S bonds can break instantaneously by a concerted fashion or a rapid succession.In the previous study it was also suggested that concerted three-body dissociation is an important channel for 235 nm excitation[29].Thus,a concerted three-body dissociation,which involved the almost simultaneous breaking of two Cl?S bonds,was probably responsible for the fast rise of the fragment ion SO+in 63 fs.However,it is necessary to explain here that our observation in this study does not distinguish whether the concerted three-body dissociation is a synchronous concerted or asynchronous concerted mechanism.The bond breaking may occur in an asymmetric fashion.It is possible that the dissociating intermediate SO?Cl,is under the influence of the leaving counter fragment Cl,and hence the dynamics of the entire dissociating complex,Cl?SO?Cl,is governed by the three-body potential.

    To account for the decay component tdecay=2.7 ps,two possible mechanisms were considered.The first was the molecular elimination channel,which we considered above for the fast rise time of 63 fs.As mentioned above,molecular elimination channels were estimated to arise quite slowly.Unfortunately,molecular elimination channel has not been observed in previous PTS experiments with more universal detection methods for the photodissociation of SOCl2at 235 nm excitation[24].We therefore ignored this channel.The second possible mechanism was a cascaded dissociation of hot SOCl produced in the stepwise pathway.However,the time constant was 8.7 ps for the stepwise three-body dissociation pathways,as discussed earlier by the temporal evolution of the SOCl intermediate.The time constant(2.7 ps)was slightly shorter than the value(8.7 ps)obtained from the temporal evolution of SOCl.With regard to the time constant tdecay=2.7 ps,a possible explanation was that both the stepwise pathway and ion dynamics possibly contributed to this time constant.This assignment was consistent with FIG.5,which indicated that the ion dynamics were observed in this study.

    FIG.5 Time resolved parent ion SOCl+and fragments ion SOCl+and SO+intensity.

    The fitting results of the time-resolved Cl+signals are shown in FIG.4.The fitting was consistent with our experimental data.The ion intensity of the Cl fragment could be well- fitted to a biexponential decay function(tdecay=977 fs and tdecay=200.3 ps)convoluted with the instrument response function.The Cl transients revealed that there were at least two major Cl product components:a“medium Cl component”that decayed in approximately 977 fs and a“slow Cl component”that decayed much slower in approximately 200.3 ps.The primary Cl?S direct dissociation process,secondary Cl?S dissociation by stepwise process,and ion dynamics processes all produce Cl+ions.Hence,there were a lot of possible processes that could produce the Cl photofragment.Since these are probably very complex dynamic processes,it was difficult to resolve the possible processes only by a curve- fitting of the Cl ion signal.The two components were possibly a combination of the lifetimes of these possible processes.

    FIG.5 shows the time-resolved ion intensity of the parent ionand its fragments SOCl+and SO+.The most important feature of FIG.5 was the time shift between the SOCl+and SO+transients,where the time shift was 125 fs.The lines correspond to the fits of an exponential decay convoluted with a Gaussian that described the instrument response function.Time zero was defined as the pump-probe delay time corresponding to the instantaneous rise of the exponential decay function used to fit the corresponding parent ion transient.We propose that the time shift of ion intensity observed were a reflection of the ion dynamics on the SOCl+surface.It is possible if the excited state of SOCl+was repulsive or was crossed by a dissociative state in the first few eV.In this case,the excited state underwent a fast dissociation to generate the observed ionic fragment SO+.Unfortunately,no time shifts were observed between the parent ion SOCl2+and the fragment ion SOCl+intensity,although we even observed SOCl+signals from the photodissociation of the SOCl2ion.The fs pump laser excited SOCl2to an excited state in the spectral region at approximately 235 nm.The initially excited state prepared by 235 nm continues to absorb at least two probe photons of 400 nm to ionize.Since pump probe total energy 11.47 eV was 1.2 eV above the SOCl2adiabatic ionization potential(IP)of 10.27 eV.However,it may be possible that the excited state ofwas repulsive and underwent a very fast dissociation and the fast ion dissociation process was not observed with our experimental resolution.

    IV.CONCLUSION

    Ultrafast photodissociation of thionyl chloride initiated by the pump pulses of 235 nm has been directly followed with the probe pulses of 400 nm.Upon absorbing one photon of 235 nm,the thionyl chloride molecule were excited to the 3A′′and 3A′states,which decay in 166 fs.In particular,the competition between the concerted three-body dissociation process and the stepwise one has been monitored.The concerted three-body dissociation is determined to approximately 63 fs,whereas the stepwise one was measured to be 8.7 ps.In addition,an ion dissociation process is also observed on the SOCl+ion surface after 125 fs.This work demonstrates that the femtosecond time-resolved mass spectroscopy is useful for unraveling complex dissociation reactions.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.11564040,No.21763027,No.11204264,No.11464045),the Natural Science Foundation of Xinjiang(No.2017D01B36),“13th Five-Year”Plan for Key Discipline Physics Bidding Project(No.17SDKD0602),Xinjiang Normal University and Science Foundation for Doctorate Research of Xinjiang Normal University(XJNUBS1511,XJNUBS1408),Teaching research and reform program of Xinjiang Normal University(No:SDJG2016C8).

    [1]M.Lucas,Y.Liu,R.Bryant,J.Minor,and J.S.Zhang,Chem.Phys.Lett.619,18(2015).

    [2]S.M.Poullain,P.C.Samartzis,T.N.Kitsopoulos,M.G.Gonzalez,L.R.Lago,and L.Banares,Phys.Chem.Chem.Phys.17,29958(2015).

    [3]C.Maul and K.H.Gericke,Int.ReV.Phys.Chem.16,1(1997)

    [4]C.Maul and K.H.Gericke,J.Phys.Chem.A 104,2531(2000).

    [5]Y.R.Lee,C.C.Chen,and S.M.Lin,J.Chem.Phys.120,1223(2004).

    [6]J.D.Savee,V.A.Mozhayskiy,J.E.Mann,A.I.Krylov,and R.E.Continetti,Science 321,826(2008).

    [7]R.E.Continetti,Annu.Rev.Phys.Chem.52,165(2001).

    [8]T.Horio,J.R.Spesyvtsev,and T.Suzuki,J.Chem.Phys.145,044306(2016).

    [9]J.R.Spesyvtsev,T.Horio,and T.Suzuki,J.Chem.Phys.143,014302(2015).

    [10]E.Tapavicza,I.Tavernelli,and U.Rothlisberger,Phys.Rev.Lett.98,023001(2007).

    [11]E.Tapavicza,I.Tavernelli,U.Rothlisberger,C.Filippi,and M.E.Casida,J.Chem.Phys.129,124108(2008).

    [12]S.I.Bokarev,E.K.Dolgov,V.A.Bataev,and I.A.Godunov,Int.J.Quant.Chem.109,569(2009).

    [13]H.Xu and J.H.Kiefer,Int.J.Chem.Kinet.42,211(2010).

    [14]S.H.Lee,C.H.Chin,and C.Chaudhuri,Chem.Phys.Chem.12,753(2011).

    [15]W.K.Chen,J.W.Ho,and P.Y.Cheng,J.Phys.Chem.A 109,6805(2005).

    [16]E.W.G.Diau,C.Kotting,and A.H.Zewail,Chem.Phys.Chem.2,273(2001).

    [17]V.A.Mozhayskiy,J.D.Savee,J.E.Mann,R.E.Continetti,and A.I.Krylov,J.Phys.Chem.A 112,12345(2008)

    [18]X.Li,S.Anand,Millamy,J.M.Millamy,and H.B.Schlegel,Phys.Chem.Chem.Phys.4,2554(2002).

    [19]J.W.Ho,W.K.Chen,and P.Y.Cheng,J.Chem.Phys.A 112,10453(2008).

    [20]J.W.Ho,W.K.Chen,and P.Y.Cheng,J.Am.Chem.Soc.129,3748(2007).

    [21]Y.W.Wang,Q.S.Li,X.B.Chen,and W.H.Fang,Acta Chim.Sin.61,1343(2003).

    [22]C.Maul and K.H.Gericke,Int.Rev.Phys.Chem.16,1(1997).

    [23]M.Kawasaki,K.Kasatani,H.Sato,H.Shinohara,N.Nishi,H.Ohtoshi,and I.Tanaka,Chem.Phys.91,285(1984).

    [24]G.Baum,C.S.E ff enhauser,P.Felder,and J.R.Huber,J.Phys.Chem.96,756(1992).

    [25]M.Roth,C.Maul,and K.H.Gericke,Phys.Chem.Chem.Phys.4,2932(2002).

    [26]H.Wang,X.Chen,and B.R.Weiner,J.Phys.Chem.97,12260(1993).

    [27]M.Kawasaki,K.Kasatani,H.Sato,H.Shinohara,N.Nishi,H.Ohtoshi,and I.Tanaka,Chem.Phys.91,285(1984).

    [28]M.Kawasaki,K.Suto,Y.Sato,Y.Matsumi,and R.Bersohn,J.Phys.Chem.100,19853(1996).

    [29]A.Chichinin,T.S.Einfeld,K.H.Gericke,J.Grunenberg,C.Maul,and L.V.Schaefer,Phys.Chem.Chem.Phys.7,301(2005).

    [30]Z.M.Liu,Y.M.Wang,and B.Zhang,Chin.J.Chem.Phys.29,53(2016).

    [31]C.C.Qin,Y.Z.Liu,S.Zhang,Y.M.Wang,Y.Tang,and B.Zhang,Phys.Rev.A 83,033423(2011).

    [32]A.T.J.B.Eppink and D.H.Parker,Rev.Sci.Instrum.68,3477(1997).

    [33]M.Roth,C.Maul,and K.H.Gericke,Phys.Chem.Chem.Phys.4,2932(2002).

    [34]G.M.Thorson,C.M.Cheatum,M.J.Coffey,and F.F.Crim,J.Chem.Phys.110,10843(1999).

    [35]G.A.Pino,I.Torres,G.A.Amaral,F.J.Aoiz,and L.Banares,J.Phys.Chem.A 108,8048(2004).

    [36]W.H.Green,C.B.Moore,and W.F.Polik,Annu.Rev.Phys.Chem.43,591(1992).

    [37]H.A.Scheld,A.Furlan,and J.R.Huber,J.Chem.Phys.111,923(1999).

    久久亚洲国产成人精品v| 成人免费观看视频高清| 大陆偷拍与自拍| 夫妻性生交免费视频一级片| 国产av码专区亚洲av| 欧美区成人在线视频| 亚洲第一区二区三区不卡| 91久久精品电影网| 黄片wwwwww| 黑人高潮一二区| 蜜臀久久99精品久久宅男| 久久精品久久久久久噜噜老黄| av免费在线看不卡| 国产男女内射视频| 久久久久久久精品精品| 亚洲精品国产av成人精品| 国内精品宾馆在线| 色视频在线一区二区三区| 久久午夜福利片| 亚洲精品国产av成人精品| 天堂俺去俺来也www色官网| 亚洲国产精品国产精品| 一级毛片aaaaaa免费看小| 一个人看视频在线观看www免费| 亚洲丝袜综合中文字幕| 人妻夜夜爽99麻豆av| 日日撸夜夜添| 一级毛片 在线播放| 国产欧美另类精品又又久久亚洲欧美| 在线a可以看的网站| 哪个播放器可以免费观看大片| 激情五月婷婷亚洲| 免费黄色在线免费观看| 午夜免费观看性视频| 欧美xxⅹ黑人| 亚洲自偷自拍三级| 在线观看免费高清a一片| 极品教师在线视频| www.av在线官网国产| av播播在线观看一区| 亚洲内射少妇av| 亚洲av免费高清在线观看| 在线观看人妻少妇| 人人妻人人澡人人爽人人夜夜| 亚洲精品成人久久久久久| 偷拍熟女少妇极品色| 亚洲人与动物交配视频| 赤兔流量卡办理| 午夜福利高清视频| 国产一区二区亚洲精品在线观看| 亚洲av成人精品一二三区| 成人漫画全彩无遮挡| 一级黄片播放器| 午夜免费男女啪啪视频观看| 2022亚洲国产成人精品| 深爱激情五月婷婷| 国产69精品久久久久777片| 在线播放无遮挡| 国产黄色免费在线视频| 青春草亚洲视频在线观看| 少妇人妻精品综合一区二区| 国产精品不卡视频一区二区| 国产精品成人在线| 午夜免费鲁丝| 久久久久久久国产电影| 白带黄色成豆腐渣| 九九久久精品国产亚洲av麻豆| 性插视频无遮挡在线免费观看| 干丝袜人妻中文字幕| 日日摸夜夜添夜夜添av毛片| 久久久久久九九精品二区国产| 国产国拍精品亚洲av在线观看| 大香蕉97超碰在线| 欧美97在线视频| av网站免费在线观看视频| 有码 亚洲区| 最近2019中文字幕mv第一页| 91精品一卡2卡3卡4卡| 亚洲精品日韩在线中文字幕| 一级二级三级毛片免费看| 久久99热6这里只有精品| 亚洲精品一二三| 一区二区三区精品91| 激情 狠狠 欧美| 日韩一区二区三区影片| 伊人久久精品亚洲午夜| 国产精品秋霞免费鲁丝片| 国产精品久久久久久av不卡| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩综合久久久久久| 久久99热这里只有精品18| 欧美xxxx黑人xx丫x性爽| 久久精品国产鲁丝片午夜精品| 国产高清不卡午夜福利| 精品午夜福利在线看| 老司机影院成人| 联通29元200g的流量卡| 国产爱豆传媒在线观看| 青春草亚洲视频在线观看| 美女高潮的动态| 国产探花极品一区二区| 亚洲综合色惰| 国精品久久久久久国模美| 亚洲四区av| 真实男女啪啪啪动态图| 麻豆成人av视频| 汤姆久久久久久久影院中文字幕| 亚洲,一卡二卡三卡| 国产久久久一区二区三区| 美女脱内裤让男人舔精品视频| 丰满人妻一区二区三区视频av| 免费观看的影片在线观看| 成人综合一区亚洲| 美女视频免费永久观看网站| 91精品一卡2卡3卡4卡| 日韩欧美精品v在线| av国产精品久久久久影院| 欧美日韩亚洲高清精品| 久久精品国产亚洲av涩爱| 亚洲精品成人久久久久久| 亚洲精品影视一区二区三区av| 中文字幕人妻熟人妻熟丝袜美| 国内精品美女久久久久久| 国产一区亚洲一区在线观看| 免费黄色在线免费观看| 国产毛片a区久久久久| 又大又黄又爽视频免费| 插阴视频在线观看视频| 国产午夜精品一二区理论片| 国产精品偷伦视频观看了| 国产av国产精品国产| 99久久人妻综合| 国产精品久久久久久久电影| 男女国产视频网站| 亚洲国产成人一精品久久久| 肉色欧美久久久久久久蜜桃 | 一级二级三级毛片免费看| 国产精品久久久久久久久免| 大陆偷拍与自拍| 精品午夜福利在线看| 狂野欧美激情性bbbbbb| 黄色配什么色好看| 五月玫瑰六月丁香| 国产亚洲一区二区精品| 黄色日韩在线| 精品久久久久久久久av| 极品教师在线视频| 制服丝袜香蕉在线| 免费大片18禁| 涩涩av久久男人的天堂| 午夜日本视频在线| 啦啦啦中文免费视频观看日本| 蜜桃久久精品国产亚洲av| 国产白丝娇喘喷水9色精品| 各种免费的搞黄视频| 午夜爱爱视频在线播放| 国产成人精品福利久久| 国产男人的电影天堂91| 精品人妻熟女av久视频| 黄色一级大片看看| 亚洲av成人精品一二三区| 国产精品嫩草影院av在线观看| 精品久久久久久久人妻蜜臀av| 亚洲精品日韩av片在线观看| 2021少妇久久久久久久久久久| 成人午夜精彩视频在线观看| 亚洲欧洲国产日韩| 国产 精品1| kizo精华| 26uuu在线亚洲综合色| 高清欧美精品videossex| 赤兔流量卡办理| 日韩伦理黄色片| 久久国内精品自在自线图片| 欧美日本视频| 高清日韩中文字幕在线| 天堂俺去俺来也www色官网| .国产精品久久| 国产亚洲午夜精品一区二区久久 | 菩萨蛮人人尽说江南好唐韦庄| 国产淫片久久久久久久久| 在线播放无遮挡| 亚洲国产av新网站| 国产中年淑女户外野战色| 精品酒店卫生间| 国产欧美另类精品又又久久亚洲欧美| 国产精品伦人一区二区| 国产亚洲91精品色在线| 欧美极品一区二区三区四区| 精品人妻偷拍中文字幕| 搡老乐熟女国产| 欧美成人午夜免费资源| 三级经典国产精品| av一本久久久久| 99热这里只有精品一区| 中文字幕av成人在线电影| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久亚洲中文字幕| 日韩中字成人| 最近手机中文字幕大全| 国产精品99久久久久久久久| 在线观看三级黄色| 国产69精品久久久久777片| 国产熟女欧美一区二区| 久久人人爽av亚洲精品天堂 | 夫妻性生交免费视频一级片| 国国产精品蜜臀av免费| 极品少妇高潮喷水抽搐| 国产精品福利在线免费观看| 亚洲精品日本国产第一区| 亚洲欧美成人精品一区二区| 中国三级夫妇交换| 国产乱来视频区| 亚洲国产日韩一区二区| 一本色道久久久久久精品综合| 国产乱来视频区| 精品国产露脸久久av麻豆| 在线观看国产h片| 别揉我奶头 嗯啊视频| 三级国产精品欧美在线观看| 舔av片在线| 又爽又黄a免费视频| 婷婷色麻豆天堂久久| 欧美日韩国产mv在线观看视频 | 午夜福利在线在线| 18禁裸乳无遮挡免费网站照片| 日韩欧美一区视频在线观看 | 中文字幕av成人在线电影| 毛片一级片免费看久久久久| 一级毛片aaaaaa免费看小| av国产免费在线观看| 国产亚洲精品久久久com| 中国美白少妇内射xxxbb| 亚洲综合色惰| 亚洲av不卡在线观看| av在线蜜桃| 国产高清有码在线观看视频| 欧美高清成人免费视频www| 亚洲av男天堂| 狂野欧美白嫩少妇大欣赏| kizo精华| 亚洲精品成人久久久久久| 日日摸夜夜添夜夜爱| 最近最新中文字幕免费大全7| 大话2 男鬼变身卡| 高清av免费在线| 少妇 在线观看| 国产黄片美女视频| 国产一区二区亚洲精品在线观看| 国产一级毛片在线| 大陆偷拍与自拍| 大片电影免费在线观看免费| 国产精品一二三区在线看| 国产成人精品福利久久| 一本色道久久久久久精品综合| 少妇 在线观看| 精品酒店卫生间| 亚洲精品日韩在线中文字幕| 国产黄片视频在线免费观看| 老师上课跳d突然被开到最大视频| 亚洲欧美精品自产自拍| 在线观看国产h片| 中文字幕免费在线视频6| av.在线天堂| 我要看日韩黄色一级片| 国产精品久久久久久久久免| 一级毛片黄色毛片免费观看视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产亚洲91精品色在线| eeuss影院久久| 欧美一区二区亚洲| 国产一级毛片在线| 99视频精品全部免费 在线| 精品一区在线观看国产| 欧美成人精品欧美一级黄| 久久久久久久久久人人人人人人| 国产男女内射视频| 国产精品久久久久久精品古装| 欧美最新免费一区二区三区| 在线观看三级黄色| 欧美成人精品欧美一级黄| 国产免费一级a男人的天堂| 啦啦啦中文免费视频观看日本| 男女无遮挡免费网站观看| 婷婷色麻豆天堂久久| 好男人视频免费观看在线| 男女无遮挡免费网站观看| 99热国产这里只有精品6| 精品一区二区三区视频在线| 熟女av电影| 菩萨蛮人人尽说江南好唐韦庄| 狂野欧美白嫩少妇大欣赏| 精品酒店卫生间| 久久精品综合一区二区三区| 精品99又大又爽又粗少妇毛片| 在线看a的网站| 午夜免费鲁丝| 国产 一区 欧美 日韩| 交换朋友夫妻互换小说| av免费观看日本| 久久久久久伊人网av| 男插女下体视频免费在线播放| 久久精品熟女亚洲av麻豆精品| 欧美xxⅹ黑人| 久久久久久国产a免费观看| 美女高潮的动态| 国产精品.久久久| 丰满人妻一区二区三区视频av| 下体分泌物呈黄色| 天天一区二区日本电影三级| 免费电影在线观看免费观看| 久久久久性生活片| 国产一区二区三区综合在线观看 | 精品少妇黑人巨大在线播放| 国产精品久久久久久精品电影| 精品一区二区三区视频在线| 91狼人影院| 日日撸夜夜添| 久久人人爽人人片av| 成年版毛片免费区| 精品久久国产蜜桃| 亚洲人成网站在线播| 天堂中文最新版在线下载 | 午夜精品国产一区二区电影 | 欧美性猛交╳xxx乱大交人| 在线观看国产h片| av专区在线播放| 在线观看三级黄色| 日韩视频在线欧美| 日韩大片免费观看网站| 国产精品久久久久久久久免| 婷婷色综合大香蕉| 极品教师在线视频| 在线观看一区二区三区| 啦啦啦啦在线视频资源| 久久国产乱子免费精品| 国产精品蜜桃在线观看| 亚洲天堂av无毛| 热re99久久精品国产66热6| 2022亚洲国产成人精品| 韩国高清视频一区二区三区| 久久99精品国语久久久| a级毛色黄片| 在线观看av片永久免费下载| 美女cb高潮喷水在线观看| av天堂中文字幕网| 97热精品久久久久久| 亚洲经典国产精华液单| 亚洲国产最新在线播放| 色网站视频免费| av在线播放精品| 伊人久久精品亚洲午夜| 丝袜美腿在线中文| 白带黄色成豆腐渣| 欧美xxxx黑人xx丫x性爽| 大香蕉久久网| 最近中文字幕高清免费大全6| 亚洲无线观看免费| 亚洲精品久久午夜乱码| 国产精品一区二区三区四区免费观看| 欧美成人a在线观看| 白带黄色成豆腐渣| 国模一区二区三区四区视频| 欧美日韩一区二区视频在线观看视频在线 | 久久精品久久久久久噜噜老黄| 如何舔出高潮| 久久精品久久久久久噜噜老黄| 18禁动态无遮挡网站| 婷婷色综合大香蕉| 亚洲美女搞黄在线观看| 日韩制服骚丝袜av| 国产色爽女视频免费观看| 亚洲一级一片aⅴ在线观看| 国产亚洲av片在线观看秒播厂| 七月丁香在线播放| 天堂网av新在线| 中国三级夫妇交换| 大又大粗又爽又黄少妇毛片口| 大码成人一级视频| 亚洲av中文字字幕乱码综合| 久久影院123| 在线播放无遮挡| 国产精品精品国产色婷婷| 亚洲国产精品999| 欧美性感艳星| 久久鲁丝午夜福利片| 亚洲,一卡二卡三卡| 国产毛片a区久久久久| 少妇猛男粗大的猛烈进出视频 | 国产精品熟女久久久久浪| 大话2 男鬼变身卡| 久久精品夜色国产| 日韩欧美精品v在线| 嘟嘟电影网在线观看| 久久精品国产自在天天线| 成年av动漫网址| 搡女人真爽免费视频火全软件| 亚洲av在线观看美女高潮| 日日撸夜夜添| 联通29元200g的流量卡| 激情 狠狠 欧美| 80岁老熟妇乱子伦牲交| 国产精品女同一区二区软件| 精品少妇黑人巨大在线播放| 嫩草影院入口| 国产午夜福利久久久久久| 成年人午夜在线观看视频| 国产精品一区二区性色av| 在线 av 中文字幕| 午夜福利在线在线| 女的被弄到高潮叫床怎么办| 日韩精品有码人妻一区| 乱码一卡2卡4卡精品| 爱豆传媒免费全集在线观看| 国产伦精品一区二区三区四那| 日韩强制内射视频| 日韩国内少妇激情av| 亚洲精品久久午夜乱码| 国产男女超爽视频在线观看| 国产老妇伦熟女老妇高清| 国产爱豆传媒在线观看| 啦啦啦啦在线视频资源| 少妇人妻 视频| 国产大屁股一区二区在线视频| 大码成人一级视频| 亚洲精华国产精华液的使用体验| 免费观看性生交大片5| 成人高潮视频无遮挡免费网站| 国精品久久久久久国模美| .国产精品久久| 禁无遮挡网站| 亚洲精品视频女| 久久精品久久久久久久性| 日韩中字成人| 国产色爽女视频免费观看| 国产成人福利小说| 久久久久久久久久成人| videossex国产| 国产成人精品久久久久久| 水蜜桃什么品种好| 国产 一区精品| 国产欧美日韩一区二区三区在线 | a级一级毛片免费在线观看| 91久久精品国产一区二区三区| 欧美日本视频| 一个人观看的视频www高清免费观看| 99视频精品全部免费 在线| 国产老妇伦熟女老妇高清| 久久久午夜欧美精品| 免费看日本二区| 国产伦精品一区二区三区视频9| 亚洲,一卡二卡三卡| 免费大片黄手机在线观看| 一区二区三区免费毛片| 国内精品美女久久久久久| 午夜激情福利司机影院| 3wmmmm亚洲av在线观看| 免费黄频网站在线观看国产| 97在线视频观看| 日日摸夜夜添夜夜添av毛片| 毛片一级片免费看久久久久| av在线蜜桃| 国产精品国产三级国产专区5o| 精品久久久久久久久亚洲| 久久精品国产鲁丝片午夜精品| 自拍欧美九色日韩亚洲蝌蚪91 | 午夜精品一区二区三区免费看| 亚洲国产欧美人成| 精品少妇黑人巨大在线播放| 一区二区三区乱码不卡18| 亚洲精品aⅴ在线观看| 韩国av在线不卡| 26uuu在线亚洲综合色| av在线老鸭窝| 中国国产av一级| 国产白丝娇喘喷水9色精品| 亚洲最大成人手机在线| 男人舔奶头视频| 亚洲国产成人一精品久久久| 国产成年人精品一区二区| 免费av观看视频| 一二三四中文在线观看免费高清| 精品熟女少妇av免费看| 久久久久性生活片| 99久久精品热视频| 秋霞伦理黄片| 久久精品久久精品一区二区三区| 免费观看av网站的网址| 久久精品国产亚洲网站| 免费播放大片免费观看视频在线观看| 青春草视频在线免费观看| 青青草视频在线视频观看| .国产精品久久| 久久久久精品性色| 精华霜和精华液先用哪个| 免费黄频网站在线观看国产| 我要看日韩黄色一级片| 欧美最新免费一区二区三区| 国产精品99久久99久久久不卡 | 18禁裸乳无遮挡免费网站照片| 午夜福利高清视频| 美女视频免费永久观看网站| 亚州av有码| 人人妻人人看人人澡| 免费观看无遮挡的男女| 身体一侧抽搐| 91精品国产九色| 亚洲精品乱久久久久久| 亚洲精品一二三| 亚洲婷婷狠狠爱综合网| 22中文网久久字幕| 嘟嘟电影网在线观看| 国产精品国产三级国产av玫瑰| 久久久欧美国产精品| 91精品伊人久久大香线蕉| 亚洲欧美一区二区三区黑人 | 人妻少妇偷人精品九色| 黄片wwwwww| 精品一区二区三卡| 最近中文字幕高清免费大全6| 精品熟女少妇av免费看| 女人被狂操c到高潮| 国产精品国产三级国产av玫瑰| 欧美高清成人免费视频www| 大片免费播放器 马上看| 久久热精品热| 国产欧美日韩一区二区三区在线 | 99re6热这里在线精品视频| 亚洲欧美清纯卡通| 国产精品偷伦视频观看了| 中文在线观看免费www的网站| 国产精品爽爽va在线观看网站| h日本视频在线播放| 国产 精品1| 成人国产麻豆网| 成人欧美大片| 一个人观看的视频www高清免费观看| 中文天堂在线官网| 久久久久久久大尺度免费视频| 午夜激情久久久久久久| www.av在线官网国产| 亚洲国产精品成人久久小说| 久久精品久久久久久噜噜老黄| 一级毛片aaaaaa免费看小| 欧美激情在线99| 欧美精品人与动牲交sv欧美| 内地一区二区视频在线| 有码 亚洲区| 网址你懂的国产日韩在线| 亚洲人与动物交配视频| 精品一区二区免费观看| 另类亚洲欧美激情| 午夜老司机福利剧场| 自拍偷自拍亚洲精品老妇| 免费黄频网站在线观看国产| 午夜亚洲福利在线播放| 我的老师免费观看完整版| 欧美日韩亚洲高清精品| 亚洲欧洲日产国产| av福利片在线观看| 三级国产精品片| 亚州av有码| 亚洲,欧美,日韩| 色婷婷久久久亚洲欧美| 中文欧美无线码| 国产成人精品一,二区| 深爱激情五月婷婷| 在线天堂最新版资源| 成人二区视频| 一级片'在线观看视频| 女人久久www免费人成看片| 国语对白做爰xxxⅹ性视频网站| 只有这里有精品99| 国产成人a区在线观看| 亚洲色图综合在线观看| 中文字幕av成人在线电影| 尤物成人国产欧美一区二区三区| 国产高清国产精品国产三级 | 九九久久精品国产亚洲av麻豆| 日韩在线高清观看一区二区三区| 王馨瑶露胸无遮挡在线观看| 日日啪夜夜撸| 亚洲人成网站高清观看| 久久6这里有精品| 久久久亚洲精品成人影院| av黄色大香蕉| 久久影院123| 亚洲欧美精品自产自拍| 精品99又大又爽又粗少妇毛片| 91久久精品国产一区二区三区| 国产有黄有色有爽视频| 香蕉精品网在线| 久久精品综合一区二区三区| 欧美区成人在线视频| 麻豆乱淫一区二区| 精华霜和精华液先用哪个| 亚洲天堂国产精品一区在线| 亚洲av电影在线观看一区二区三区 | 99久久中文字幕三级久久日本| 成人欧美大片| 国产精品久久久久久av不卡| 亚洲真实伦在线观看| 久久久a久久爽久久v久久| 综合色丁香网| 日韩人妻高清精品专区| 国产综合懂色| 亚洲欧美日韩卡通动漫| 久久久午夜欧美精品| 成人美女网站在线观看视频| 国产av国产精品国产| 日日啪夜夜撸| 国产免费又黄又爽又色| 91精品伊人久久大香线蕉| 久久99蜜桃精品久久| 男女无遮挡免费网站观看|