• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low-Complexity Detection and Decoding Scheme for LDPC-Coded MLC NAND Flash Memory

    2018-06-21 02:32:54XushengLinGuojunHanShijieOuyangYanfuLiYiFang
    China Communications 2018年6期

    Xusheng Lin, Guojun Han,*, Shijie Ouyang, Yanfu Li, Yi Fang,2

    1 School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China

    2 National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China

    I. INTRODUCTION

    In the past five years, NAND flash memory has been widely applied in a large number of electronic products [1]. Based on the multi-level cell (MLC) storage technology[2], NAND flash memory can store more than one bit in each memory cell. Because of its obvious advantages in terms of storage density and low cost, MLC NAND flash memory now largely dominates global flash memory market [3]. However, with the density increasing,cell-to-cell interference (CCI) becomes more serious and hence causes an increase in the raw bit error rate of data stored in the cells.

    To ensure the reliability of storage data,error-correction codes (ECCs) have been gradually applied in MLC NAND flash memory.In [4] and [5], some traditional hard-decision ECCs such as BCH codes and RS codes have been used for NAND Flash memory. With regard to other ECCs, soft-decision error correction codes such as low-density parity-check (LDPC) codes have been adopted in MLC NAND flash memory [6] thanks to its outstanding error correction performance. In a general way, the sum-product algorithm (SPA)[7] is considered as the most well-known decoding algorithm based on iterative soft-decision. However, its complexity is large. In order to reduce the complexity of decoding,some simplified decoding algorithms, e.g.,soft reliability-based iterative majority-logic decoding (SRBI-MLGD) algorithm and Minsum algorithm over AWGN channel have been presented in [8] and [9], which can greatly reduce the decoding complexity while keeping the relative good error correction performance.

    In this paper, taking the trade-off between the performance and complexity into consideration, we adopt a non-uniform detection(N-UD) to detect the threshold voltage of the NAND flash memory cell. The N-UD can improve the log likelihood ratio (LLR) accuracy because the LLR calculation is related to the threshold voltage. To keep the lower detection complexity and latency, we just set two soft-decision reference voltages in the overlap area of threshold voltage, and the achieving average maximum mutual information [10]is used to select the value of the soft-decision reference voltages of N-UD. Furthermore, to reduce the decoding complexity and improve the decoding performance, we adopt a modified SRBI-MLGD (MSRBI-MLGD) algorithm to decode LDPC codes for MLC NAND flash memory. In this MSRBI-MLGD algorithm, anon-uniform quantizer based on power functionis used to quantize input LLRs. By joint the N-UD with the low complexity decoding,we can improve the overall detection performance of LDPC-coded MLC NAND flash memory.

    This paper is organized as follows. In Section II, a brief introduction of the structure of MLC NAND flash memory as well as the CCI are presented. Besides, the LLR calculation of threshold voltage of NAND flash memory cells is also given. In Section III, we introduce the N-UD and the non-uniform quantization of LLR for MSRBI-MLGD algorithm over the MLC NAND flash memory channel. Simulation results and analysis are shown in Section IV and the conclusion is given in Section V.

    In this paper, the authors adopt a N-UD method to obtain the threshold voltages through analyzing the characteristics of MLC NAND flash memory.

    II. PRELIMINARIES OF MLC NAND FLASH MEMORY

    In NAND flash memory, information bits are stored in the floating gate transistors which called NAND flash memory cells. The voltage of the floating gate is called as threshold voltage which varies with programming process.Different threshold voltage represents different bit information. Conventional single-level cell (SLC) has two storage states which means that it can only store one bit in each cell, while MLC has 2bstorage states and it can storebbits in each cell. Although MLC technology possesses relatively higher storage density, it is more vulnerable to raw bit error due to the parasitic capacitance coupling effect while programming.

    2.1 Cell-to-cell interference

    In previous research [11], [12], NAND flash memory can be modeled as a channel whose characteristic is similar with the normal communication channel. In this MLC NAND flash memory channel model, there are several types of noise which can influence the reliability of information stored on the chip. Among these interferences, CCI is the major noise. The threshold-voltage shift of one cell may influence the threshold voltage of its neighboring cells due to the parasitic capacitance coupling effect. With scaling down of the NAND flash memory, CCI will become more and more serious. The threshold-voltage shift of a victim cell affected by CCI ofnadjacent cells can be described as [11]

    Fig. 1. All bit-line structure and coupling effect of victim cell.

    whererepresents the threshold-voltage shift of one interfering cell which is programmed after the victim cell and γ(n)represents the coupling ratio.

    At present, there are two major types of bitline structures of NAND flash memory, one is the even/odd bit-line structure, the other is all bit-line structure. Due to different programming order, the CCI is different. In all bitline structure, cells along each word line are programmed at the same time. Thus each cell was mainly affected by three neighboring cells as shown in figure 1. In this paper, we just consider the all bit-line structure. The threshold-voltage shift of a victim cell in all bit-line structure can be expressed specifically by

    wherepandqrepresent the position of wordline and bit-line, respectively.?V(p,q)represents the threshold-voltage shift of the interfering cell at(p,q)position. As shown in figure 1, γyand γxyare coupling ratios of the floating gate in the vertical and diagonal direction, respectively.

    Fig. 2. Shift of the probability density functions (PDFs) of the threshold voltage after CCI in a 2bit/cell NAND flash memory.

    2.2 LLR calculation of MLC NAND flash memory cells

    When LDPC codes are used to correct errors over MLC NAND flash memory channel, we need to calculate the LLR for each coded bit if the soft-decision decoding algorithms are adopted. LetVthrepresent the threshold voltage of a flash memory cell. We assume that the prior probability of 0 or 1 for each bitzof each flash memory cell is equal in the beginning. Thus, the LLR of theith bit of a flash memory cell can be calculated by [13].

    Letbrepresent the number of bits stored in each flash memory cell. Hence, there areK=2bstorage states. Letpk(x) denote the probability density function of the threshold voltage of thekth storage state after interferences, where 0 ≤k≤K? 1.k=0 corresponds to the erased state andk>0 corresponds to the programmed state with the higher threshold voltage. LetSidenote the set of states whoseith bit is 1. Therefore, given the threshold voltage of a cell, we can calculate the LLR of each bit as [13].

    We assume that the MLC NAND flash memory has only the CCI and the flash memory is all bit-line structure. μeand σedenote the mean and standard deviation of the erased state threshold voltage, respectively.The threshold voltage of the programmed state tends to have a uniform distribution over[Vp,Vp+?Vpp].Vpis the normalized verify voltages and ?Vppis the normalized program step voltage. Denote ?Vppand for thekth programmed state asand. Letpc(x)represent the probability density function of the threshold voltage of CCI. Letpe(x) rep-resent the probability density function of the threshold voltage of the erased state before interferences. Let(x) represent the probability density function of the threshold voltage of the programmed state before interferences.Whenk=0the probability density functionp(0)(x) is

    and whenk>0the probability density functionp(k)(x) is

    where ? is the convolution calculation.

    Figure 2 shows that the shift of the probability density functions (PDFs) of the threshold voltage after CCI in a 2 bits/cell NAND flash memory.

    According to the probability density function of the threshold voltage presented in[13].p(0)(x) andp(k)(x) can be calculated as

    where δ(x) represents the Dirac drlta function.

    Assume that the threshold voltageVthof a cell falls into the range [Rl,Rr] (whereRlandRrare two adjacent reference voltages), we can ultimately calculate the LLR of each bit as

    III. MSRBI-MLGD ALGORITHM FOR LDPC CODES IN NAND FLASH MEMORY WITH NON-UNIFORM DETECTION

    3.1 Non-uniform detection for threshold voltage

    Fig. 3. Uniform detection for threshold voltage of a 2 bits/cell NAND flash memory.

    The uniform detection (UD) method often if xes several hard-decision reference voltages and these hard-decision reference voltages lie between each state. As illustrated in figure 3,Vthr,1,Vthr,2andVthr,3are the hard-decision reference voltages for a 2 bits/cell NAND flash memory. Such UD method can achieve good performance when the interference is weak. However, when the interference is serious, the performance of this detection is degraded due to the overlap of threshold voltage for each state. In such a case, the N-UD method can be used to improve the performance of detection according to [13]. With an aim to keep the lower detection complexity and latency, we just set two soft-decision reference voltages in the threshold voltage overlap to achieve N-UD as shown in figure 4 and the two soft-decision reference voltages can be set by using achieving average maximum mutual information (MI).qrepresents the difference between the soft-decision reference voltages and the hard-decision reference voltages.

    Fig. 5. A hard-decision reference voltage reference and two soft-decision reference voltage ± q are set between two adjacent storage states.

    Fig. 6. Equivalent discrete memoryless channel model for two adjacent storage stages.

    As illustrated in figure 5 and figure 6, The two adjacent storage states can be equivalent to a discrete memoryless channel (DMC).Assuming the input isX∈{0, 1} and output isY∈{00, 0 1, 10, 11}, the MII(X;Y) can be calculated as [10]

    3.2 Non-uniform quantization of llr based on power function for MSRBI-MLGD algorithm

    Due to the particularity of MLC NAND flash memory channel, the calculation and quan-tization of LLR are quite different from that for conventional AWGN channel. In order to improve the decoding performance and consider the characteristic of MLC NAND flash memory channel, we present anon-uniform quantization based on power function.

    Let: 1)mbe the quantitative level for the MSRBI-MLGD algorithm; 2)rbe the power of the power function for non-uniform quantization 3)bbe the number of bits that can be stored in each cell; 4)z=(z1,z2,...,zb) be the information sequence stored in each flash memory cell ; 5)L(zi) be the LLRinformation ofith bit in the flash memory cell, for 1≤i≤b.

    Due to the maximum quantitative valueQmaxis 2m?1? 1 and the minimum quantitative valueQminis ?(2m?1?1), we can define a step increment of quantization as

    According to ?Q, we can obtain each quantization valueQ. Given an initializedQ1,Qμ=Qμ?1+?Q, where μ ∈{2, 3,...}.

    To the best of our knowledge, LLR information is unreliable when its value is close to 0 and it needs a higher precision quantization.Therefore, we use anon-uniform quantizer based on power functionfor the MSRBI-MLGD algorithm.

    In this non-uniform quantization, assuming the absolute value of LLR information is| LLR|, then the maximum | LLR| of bit in all NAND flash memory cells corresponds to the maximum quantization valueQ2m/2.

    As shown in figure 7, whenm=4 we can get 16 quantization values.Q1,Q2, ... ,Q8are the quantization values which are bigger than 0.We setLth8=max(|LLR|) andLth8=Q8rthen the power

    In order to ensure the power function can be set as an increasing function thatr>1, we will magnify all the values of | LLR| of bit to make the value of the maximum |LLR| of bit is bigger thanQ2m/2, which the magnification times β( β > 0) is based on the value of the maximum |LLR| of bit andQ2m/2. This magnification step will not change real LLR information of bit.

    The threshold values of |LLR| of bit for the NAND flash memory cells can be set as

    for 1≤j≤8.

    By means of the comparison betweenLthjand |L(zi)|, we can set the quantization value forL(zi) as the initial information φiofzito decode by

    for 2≤j≤8.

    By using thisnon-uniform quantizer based on power function, the LLR information which its value is close to 0 has a higher precision quantization and the LLR information which its value is far away from 0 has a lower precision quantization.

    Non-Uniform Quantization of LLR and Initialization for MSRBI-MLGD Algorithm(MSRBI-MLGD Algorithm for MLC NAND Flash Memory):

    Fig. 7. The quantitative value Q and the threshold value of |LLR| of bit in the non-uniform quantization based on power function when quantitative level m=4.

    ? Non-uniform detection: detect the threshold voltage of each MLC NAND flash memory cell.

    ? Obtain LLR information: calculate LLR information of each bit in each flash memory cell.

    1) Set the quantitative level m and get the each quantization valueQaccording to step increment ?Q.

    2) According to maximum |LLR|, determine the value of the powerrand set the threshold values of |LLR| of the flash cellLthj, for 1 ≤j≤ 2m/2.

    otherwise, φiis other quantization valueQaccording to the range of the threshold values of |LLR| that |L(zi)| locates.

    4) Use the SRBI-MLGD algorithm to decode.

    Since the initial information of each bit in each flash cell is an integer, and its extrinsic-information [9] is also an integer in each iteration, so its computational modification of reliability information is an integer too. As a result, the MSRBI-MLGD algorithm only needs the logical operations and integer addition as in the SRBI-MLGD algorithm, which greatly reduces the computational complexity of decoding as compared to SPA and Min-sum algorithm.

    Fig. 8. The BER performance of the (504,2331) QC-LDPC code over the 3bits/cell NAND flash memory channel with the N-UD and UD and decoded with SRBI-MLGD algorithm as well as the Min-sum algorithm. The maximum number of iteration is 100.

    IV. SIMULATION

    The performance of a binary LDPC-coded NAND flash memory system detected and decoded with our proposed joint detection and decoding scheme is presented in this section.We adopt a NAND flash memory that can store 3 bits in a cell. The binary LDPC code is a rate-0.784 length-2331 (504, 2331) quasi-cyclic (QC) LDPC code. This code is constructed by using algebraic approaches [14] and has 56 variable-nodes with degree 7 and the other variable-nodes with degree 8, and a constant check-node degree 36.We set μeand σeof the erased state as 1.4 and 0.4, respectively.For the seven programmed state, ?Vppis set to 0.2, and Vp are set to 2.7, 3.4, 4.1, 4.8, 5.5,6.2 and 6.9, respectively. We adopt a parameter s called cell-to-cell coupling strength factor[3], and γyand γxyequal 0.08s and 0.0064s,respectively.

    We perform Monte-Carlo simulation over the 3 bits/cell NAND flash memory channel with differentsto determine the two soft-decision reference voltages. By using achieving maximum mutual information, wefixq=0.06V for different value ofs.

    Figure 8 shows the bit error ratio (BER)of the (504, 2331) QC-LDPC code over the 3 bits/cell NAND flash memory channel with the N-UD and UD and decoded with the SRBI-MLGD algorithm as well as the Min-sum algorithm. The quantization level for SRBI-MLGD algorithm ism=6. The maximum number of iterations is 100. Fromfigure 8 we see that the N-UD can achieve better performance than the UD. We also see that the performance of the SRBI-MLGD algorithm withm=6 is relatively close to that of the Min-sum algorithm under both the N-UD and UD.

    Figure 9 shows the BER performance of the (504, 2331) QC-LDPC code over the 3 bits/cell flash memory channel with the N-UD and UD and decoded with the MSRBI-MLGD algorithm as well as the SRBI-MLGD algorithm. In order to achieve a better performance, we set maximum |LLR|=6.5 and β=100 after a lot of simulations. We observe that with thenon-uniform quantizer based on power function, the performance of the MSRBI-MLGD algorithm is better than SRBI-MLGD algorithm.

    Figure 10 shows the BER performance of the (504, 2331) QC-LDPC code over the 3 bits/cell flash memory channel with N-UD and decoded by the MSRBI-MLGD algorithm with different quantization levels. We observe that with the increase of the quantization levels, the performance of the MSRBI-MLGD algorithm can be gradually improved. However, this improvement becomes smaller and smaller whenm>5.

    Figure 11 shows the BER performance of the (504,2331) QC-LDPC code and (128,1152)Richardson LDPC code over the 3 bits/cell NAND flash memory channel with the N-UD and UD and decoded with the MSRBI-MLGD algorithm (m=6). The Richardson LDPC code is a rate-0.888 length-1152 (128,1152) binary LDPC code. The variable-nodes of this code has different degree such as 2, 3, 6, 7, 9, 10,and the check-node degree is 52. We can find that the MSRBI-MLGD algorithm is suitable for LDPC codes with different code length and code rate.

    The BER performance of the (504,2331)QC-LDPC code over the 3 bits/cell flash memory channel vs. the number of iterations when decoded with the MSRBI-MLGD algorithm and SRBI-MLGD algorithm is shown in figure 12.sis set to 1.05. We see that the performance of the MSRBI-MLGD algorithm outperforms the SRBI-MLGD algorithm when the number of iterations is bigger than 15.With the increase of the number of iterations,the performance of the MSRBI-MLGD algorithm can be gradually improved when the number of iterations exceeds 30. This means that we can achieve a trade-off between the performance and the complexity for the MSRBI-MLGD algorithm by adjusting the maximum number of iterations.

    V. CONCLUSIONS

    Fig. 10. The BER performance of the (504,2331) QC-LDPC code over the 3bits/cell NAND flash memory channel with N-UN and decoded by the MSRBI-MLGD algorithm with different quantization levels. The maximum number of iterations is 100.

    In this paper, we adopt a N-UD method to obtain the threshold voltages through analyzing the characteristics of MLC NAND flash memory, which can remarkably improve the LLR accuracy of each bit in MLC NAND flash memory cells. The N-UD is formulated by using achieving average maximum mutual information of NAND flash memory cells.Although N-UD increases a little latency relatively, it can effectively improve the detection performance. Besides, in order to reduce the decoding complexity and improve the decoding performance, we develop a MSRBI-MLGD algorithm by using anon-uniformquantizer based on power functionto decode LDPC codes. Simulation results and analysis prove that our design can offer the better performance and lower complexity for high-column-weight LDPC-coded MLC NAND flash memory.

    Fig. 11. The BER performance of the (504,2331) QC-LDPC code and (128,1152)Richardson LDPC code over the 3bits/cell NAND flash memory channel with the N-UD and UD and decoded with the MSRBI-MLGD algorithm(m=6).The maximum number of iterations is 100.

    Fig. 12. The BER performance of the (504,2331)QC-LDPC code over the 3bits/cell NAND flash memory channel vs.the number of iterations when decoded with the MSRBI-MLGD algorithm and SRBI-MLGD algotithm. The cell-to-cell coupling strength factor s=1.05.

    ACKNOWLEDGEMENT

    This work was supported in part by the NSF of China (61471131, 61771149, 61501126), NSF of Guangdong Province 2016A030310337, the open research fund of National Mobile Communications Research Laboratory, Southeast University (No. 2018D02), and the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2017-ZJ022).

    [1] S. Ou, G. Han, Y. Fang, and W. Liu, “LLR-distribution-based nonuniform quantization for RBI-MSD algorithm in MLC flash memory,”IEEE Commun. Lett., vol.22, no.1, pp. 45--48, Dec.2017.

    [2] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O.Mutlu, ``Error characterization, mitigation, and recovery in flash-memory-based solid-state drives,’ inProc. IEEE, vol.105, no.9, pp. 1666--17048, Sep. 2017.

    [3] G. Dong, N. Xie and T. Zhang, ``Techniques for embracing intra-cell unbalanced bit error characteristics in MLC NAND flash memory,’ inProc.IEEE GC Workshops, Dec. 2010, pp. 1915-1920.

    [4] W. Liu, J. Rho and W. Sung, ``Low-power high-throughput BCH error correction VLSI design for multi-level cell NAND Flash memories,’inProc. IEEE Workshop. Signal Process Syst, Oct.2006, pp. 303--308.

    [5] R. Micheloni, et al, ``A 4Gb 2b/cell NAND flash memory with embedded5b BCH ECC for 36MB/s system read throughput,’ inProc. ISSCC Dig.Tech. Papers, Feb. 2006, pp. 497--506.

    [6] Y. Maeda and H. Kaneko, ``Error control coding for multilevel cell flash memories using nonbinary low-density parity-check codes,’ inProc.4th IEEE International Symposium on Defect andFault Tolerance in VLSI Systems, Oct. 2009,pp. 367--375.

    [7] T. J. Richardson, M. A. Shokrollahi and R. L. Urbanke, ``Design ofcapacity-approaching irregular low-density parity-check codes,’IEEE. Trans.Inform. Theory, vol.47, no.2, pp. 619--637, Feb.2001.

    [8] H. Chen, K. Zhang. Ma and B. Bai, ``Comparisons between reliability-based iterative min-sum and majority-logic decoding algorithms for LDPC codes,’IEEE Trans. Commun, vol.59, no.7, pp.1766--1771, July. 2011

    [9] Q. Huang, J. Kang, L. Zhang, S. lin and K. Abdel-Ghaffar, ``Two reliability-based iterative majority-logic decoding algorithms for LDPC codes,’IEEE Trans. Commun, vol.57, no.12, pp.3597--3606, Dec. 2009.

    [10]J. Wang, K. Vakilinia and T. Chen, ``Enhanced precision through multiple reads for LDPC decoding in flash memories,’IEEE J.Sel. Areas.Commun, vol.32, no.5, pp. 880--891, May. 2014.

    [11] X. Wang, G. Dong, L. Pan and R. Zhou, ``Error correction codes and signal processing in flash memory},’ emph{Flash Memories. InTech, Prof.Igor Stievano (Ed.), ISBN: 978-953-307-272-2.

    [12] C. A. Aslam, Y. Guan and K. Cai, ``Read and write voltage signal optimization for multi-level-cell(MLC) NAND flash memory,’IEEE Trans. Commun, vol.64, no.4, pp. 1613--1623, Feb. 2016.

    [13] G. Dong, N. Xie and T. Zhang, ``On the use of soft-decision error-correction codes in NAND flash memory,’IEEE Trans. Circuits and Systems I: Regular Papers, vol.58, no.2, pp. 429--439,Feb. 2011.

    [14] S. Song, B. Zhou, S. Lin and K. Abdel-Ghaffar, ``A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields,’IEEE Trans. Commun, vol. 57, no.1, pp. 84-93, Jan. 2

    日日撸夜夜添| 免费高清在线观看视频在线观看| 亚洲熟女精品中文字幕| 伦理电影免费视频| 美女国产高潮福利片在线看| 久久久久久久亚洲中文字幕| 女人久久www免费人成看片| 一级片免费观看大全| 色婷婷av一区二区三区视频| 精品少妇内射三级| 精品亚洲乱码少妇综合久久| 深夜精品福利| 日产精品乱码卡一卡2卡三| 国产男女内射视频| 亚洲国产色片| 成人午夜精彩视频在线观看| av.在线天堂| 精品久久久久久电影网| 91精品伊人久久大香线蕉| 久久精品久久久久久久性| 成年动漫av网址| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品乱久久久久久| 亚洲av免费高清在线观看| 国产乱人偷精品视频| 亚洲中文av在线| 国产熟女午夜一区二区三区| 久久综合国产亚洲精品| 蜜桃国产av成人99| 女人久久www免费人成看片| 如日韩欧美国产精品一区二区三区| 夫妻午夜视频| 一区二区三区激情视频| 人人妻人人爽人人添夜夜欢视频| 日韩中字成人| 大片免费播放器 马上看| 女的被弄到高潮叫床怎么办| 亚洲经典国产精华液单| 一本色道久久久久久精品综合| 亚洲婷婷狠狠爱综合网| 日本91视频免费播放| 日韩熟女老妇一区二区性免费视频| 欧美人与性动交α欧美精品济南到 | 国产黄频视频在线观看| 伦理电影免费视频| 美女视频免费永久观看网站| 亚洲成色77777| 搡女人真爽免费视频火全软件| 啦啦啦中文免费视频观看日本| 免费看av在线观看网站| av有码第一页| 各种免费的搞黄视频| 国产免费一区二区三区四区乱码| 亚洲欧美色中文字幕在线| 熟女电影av网| 国产一区亚洲一区在线观看| 超碰成人久久| 一级爰片在线观看| 亚洲av欧美aⅴ国产| 高清av免费在线| 免费日韩欧美在线观看| 日本欧美视频一区| 国产黄色免费在线视频| av一本久久久久| 97精品久久久久久久久久精品| 两个人免费观看高清视频| 午夜福利网站1000一区二区三区| 国产精品一区二区在线不卡| 一边摸一边做爽爽视频免费| 不卡视频在线观看欧美| 少妇人妻久久综合中文| 国产免费一区二区三区四区乱码| 免费黄频网站在线观看国产| 日韩中文字幕视频在线看片| av一本久久久久| 一边摸一边做爽爽视频免费| 国产成人精品福利久久| 极品人妻少妇av视频| 美国免费a级毛片| 999精品在线视频| 国产精品香港三级国产av潘金莲 | 国产欧美日韩综合在线一区二区| 久久这里只有精品19| 日韩三级伦理在线观看| 国产综合精华液| 一本久久精品| 在线免费观看不下载黄p国产| 黄色 视频免费看| 久久久a久久爽久久v久久| 成人午夜精彩视频在线观看| 国产白丝娇喘喷水9色精品| 日韩一本色道免费dvd| 久久久精品国产亚洲av高清涩受| 中文字幕最新亚洲高清| 色播在线永久视频| 麻豆精品久久久久久蜜桃| 飞空精品影院首页| 午夜福利视频在线观看免费| 在线观看一区二区三区激情| 国产伦理片在线播放av一区| 大陆偷拍与自拍| 这个男人来自地球电影免费观看 | 国产黄频视频在线观看| 精品一区二区免费观看| 亚洲欧洲日产国产| 国产成人a∨麻豆精品| 女性被躁到高潮视频| 999精品在线视频| 国产淫语在线视频| 九草在线视频观看| 大话2 男鬼变身卡| 最新中文字幕久久久久| 国产视频首页在线观看| av女优亚洲男人天堂| 在线观看人妻少妇| 日本免费在线观看一区| 在线观看国产h片| 欧美成人精品欧美一级黄| 女人久久www免费人成看片| 日日撸夜夜添| 日韩中文字幕欧美一区二区 | 两个人免费观看高清视频| 免费高清在线观看视频在线观看| 嫩草影院入口| 日韩一区二区视频免费看| 亚洲人成电影观看| 一级毛片我不卡| 精品亚洲成a人片在线观看| 寂寞人妻少妇视频99o| 国产精品欧美亚洲77777| 黄网站色视频无遮挡免费观看| 久久鲁丝午夜福利片| 精品国产一区二区久久| 亚洲国产色片| 女性生殖器流出的白浆| 国产激情久久老熟女| 99热全是精品| 丝袜美腿诱惑在线| 一级毛片电影观看| 韩国精品一区二区三区| a级毛片在线看网站| 午夜免费鲁丝| 一级爰片在线观看| 一区在线观看完整版| 咕卡用的链子| 欧美激情 高清一区二区三区| 久久久久精品久久久久真实原创| 亚洲欧美中文字幕日韩二区| 高清视频免费观看一区二区| 免费不卡的大黄色大毛片视频在线观看| 欧美日韩精品网址| 成人亚洲精品一区在线观看| 男女高潮啪啪啪动态图| 99久久人妻综合| 亚洲av日韩在线播放| 久久ye,这里只有精品| 女的被弄到高潮叫床怎么办| 男的添女的下面高潮视频| 久久综合国产亚洲精品| 日日啪夜夜爽| 亚洲美女黄色视频免费看| 丝袜美足系列| 青春草视频在线免费观看| 日产精品乱码卡一卡2卡三| 午夜福利视频精品| 少妇被粗大的猛进出69影院| 亚洲av.av天堂| 国产 精品1| 国产探花极品一区二区| 又粗又硬又长又爽又黄的视频| 国产精品一二三区在线看| 午夜福利在线免费观看网站| 精品第一国产精品| 一级爰片在线观看| 91国产中文字幕| 丝袜美足系列| 久久av网站| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品成人久久小说| 久久久久久久久久久免费av| av天堂久久9| av线在线观看网站| 久久99精品国语久久久| 老司机亚洲免费影院| 久久亚洲国产成人精品v| 欧美日韩一级在线毛片| 最近的中文字幕免费完整| 亚洲国产日韩一区二区| www.熟女人妻精品国产| 欧美 日韩 精品 国产| 成年美女黄网站色视频大全免费| 啦啦啦在线免费观看视频4| 一级爰片在线观看| 少妇人妻 视频| 欧美日韩av久久| 欧美日本中文国产一区发布| 丰满乱子伦码专区| 波多野结衣av一区二区av| 欧美日韩成人在线一区二区| 男人爽女人下面视频在线观看| 午夜av观看不卡| 日日摸夜夜添夜夜爱| 国产成人精品一,二区| av在线观看视频网站免费| 大片免费播放器 马上看| 成人午夜精彩视频在线观看| 18禁裸乳无遮挡动漫免费视频| 国产精品一二三区在线看| 最近中文字幕2019免费版| 亚洲欧洲精品一区二区精品久久久 | 在现免费观看毛片| 黄片小视频在线播放| 99热网站在线观看| 美女视频免费永久观看网站| 大话2 男鬼变身卡| 午夜久久久在线观看| 丝袜脚勾引网站| 老女人水多毛片| 国产av精品麻豆| 男女国产视频网站| 一级爰片在线观看| 极品人妻少妇av视频| 最近的中文字幕免费完整| 午夜福利在线免费观看网站| 日韩成人av中文字幕在线观看| 自线自在国产av| 美女大奶头黄色视频| 黄色毛片三级朝国网站| 国产毛片在线视频| 各种免费的搞黄视频| 激情视频va一区二区三区| 国产高清不卡午夜福利| 中国国产av一级| 涩涩av久久男人的天堂| 成人手机av| 一级毛片我不卡| 深夜精品福利| 国产视频首页在线观看| 国产精品香港三级国产av潘金莲 | 午夜日本视频在线| 在现免费观看毛片| 精品国产露脸久久av麻豆| 久久影院123| 国产野战对白在线观看| av免费观看日本| 亚洲精品国产av成人精品| 十八禁网站网址无遮挡| 亚洲国产精品一区三区| 一区二区日韩欧美中文字幕| 十分钟在线观看高清视频www| 在线观看www视频免费| 永久网站在线| 91在线精品国自产拍蜜月| 久久婷婷青草| 国产一区亚洲一区在线观看| 极品少妇高潮喷水抽搐| 国产国语露脸激情在线看| 侵犯人妻中文字幕一二三四区| 熟女电影av网| 一区二区三区四区激情视频| 国产伦理片在线播放av一区| 亚洲av福利一区| 天天躁夜夜躁狠狠躁躁| 久久99一区二区三区| 午夜福利视频精品| 岛国毛片在线播放| 综合色丁香网| 欧美老熟妇乱子伦牲交| av一本久久久久| 天天躁狠狠躁夜夜躁狠狠躁| av片东京热男人的天堂| 天天躁夜夜躁狠狠躁躁| 日韩中字成人| 飞空精品影院首页| 中文欧美无线码| 下体分泌物呈黄色| 国产成人精品无人区| 大片免费播放器 马上看| 亚洲久久久国产精品| 亚洲精品国产一区二区精华液| www.自偷自拍.com| 最黄视频免费看| 秋霞在线观看毛片| 亚洲精品aⅴ在线观看| 性色avwww在线观看| 不卡视频在线观看欧美| 午夜免费鲁丝| 亚洲,欧美,日韩| 国产亚洲午夜精品一区二区久久| 久久狼人影院| 欧美精品国产亚洲| videos熟女内射| 日韩伦理黄色片| 久久久精品区二区三区| freevideosex欧美| 一级a爱视频在线免费观看| 你懂的网址亚洲精品在线观看| 国产1区2区3区精品| 深夜精品福利| 国产综合精华液| 国产精品国产av在线观看| 最近最新中文字幕免费大全7| 18禁动态无遮挡网站| freevideosex欧美| 韩国av在线不卡| 纵有疾风起免费观看全集完整版| 国产老妇伦熟女老妇高清| 最近中文字幕2019免费版| 国产成人免费无遮挡视频| 亚洲第一青青草原| 国产一区二区 视频在线| 一区二区日韩欧美中文字幕| 色哟哟·www| 亚洲欧美色中文字幕在线| 日本vs欧美在线观看视频| 国产欧美日韩一区二区三区在线| 欧美日韩一级在线毛片| 亚洲精品国产av蜜桃| 大香蕉久久成人网| 日韩中文字幕欧美一区二区 | 黄频高清免费视频| 国产在视频线精品| 一级毛片黄色毛片免费观看视频| 婷婷色综合www| 波野结衣二区三区在线| 午夜日韩欧美国产| 国产免费现黄频在线看| 男男h啪啪无遮挡| 亚洲成av片中文字幕在线观看 | 国产日韩欧美在线精品| 日韩中文字幕视频在线看片| 日本欧美视频一区| 啦啦啦在线观看免费高清www| 91成人精品电影| 少妇人妻 视频| 三上悠亚av全集在线观看| 中文欧美无线码| 国产精品国产三级国产专区5o| 人成视频在线观看免费观看| 久久久久精品性色| 国产女主播在线喷水免费视频网站| 最近手机中文字幕大全| 制服丝袜香蕉在线| 老司机亚洲免费影院| 亚洲第一区二区三区不卡| 午夜91福利影院| 亚洲av电影在线进入| 国产1区2区3区精品| 成年人免费黄色播放视频| 久久综合国产亚洲精品| 国产伦理片在线播放av一区| 人人妻人人添人人爽欧美一区卜| 十八禁网站网址无遮挡| 免费观看无遮挡的男女| 人人妻人人澡人人爽人人夜夜| av国产精品久久久久影院| 久久久久精品人妻al黑| 日日摸夜夜添夜夜爱| 九草在线视频观看| 99久久综合免费| 久久久久久久久久久免费av| 午夜91福利影院| 成人亚洲欧美一区二区av| 午夜日韩欧美国产| 叶爱在线成人免费视频播放| 免费在线观看视频国产中文字幕亚洲 | 丰满乱子伦码专区| 亚洲欧美成人精品一区二区| 有码 亚洲区| 美女午夜性视频免费| 各种免费的搞黄视频| 18+在线观看网站| 爱豆传媒免费全集在线观看| 欧美97在线视频| xxx大片免费视频| 亚洲第一av免费看| 大片电影免费在线观看免费| 日韩欧美一区视频在线观看| 久久久精品94久久精品| 蜜桃在线观看..| 国产亚洲最大av| 少妇的逼水好多| 国产精品三级大全| 日韩在线高清观看一区二区三区| 国产一区二区 视频在线| 久久av网站| 人人澡人人妻人| 尾随美女入室| 看免费av毛片| 黄色配什么色好看| 美女福利国产在线| 人体艺术视频欧美日本| 热re99久久国产66热| 久久女婷五月综合色啪小说| 国产成人精品婷婷| 国产成人欧美| 午夜福利在线观看免费完整高清在| 丰满迷人的少妇在线观看| 免费看不卡的av| 国产高清国产精品国产三级| 熟女av电影| 久久综合国产亚洲精品| 成年人免费黄色播放视频| 日日爽夜夜爽网站| 色网站视频免费| 又黄又粗又硬又大视频| 高清黄色对白视频在线免费看| 曰老女人黄片| 婷婷色麻豆天堂久久| 麻豆精品久久久久久蜜桃| 街头女战士在线观看网站| 韩国高清视频一区二区三区| 波多野结衣一区麻豆| 久热久热在线精品观看| 亚洲av成人精品一二三区| 十八禁高潮呻吟视频| 最近最新中文字幕免费大全7| 欧美av亚洲av综合av国产av | 国产精品熟女久久久久浪| 边亲边吃奶的免费视频| 国产精品一二三区在线看| av免费观看日本| 自线自在国产av| 十分钟在线观看高清视频www| 亚洲第一av免费看| 亚洲欧洲精品一区二区精品久久久 | 欧美av亚洲av综合av国产av | 最近2019中文字幕mv第一页| 久久99蜜桃精品久久| 如何舔出高潮| av片东京热男人的天堂| h视频一区二区三区| 中国国产av一级| 日韩,欧美,国产一区二区三区| 中文字幕av电影在线播放| 久久久久国产网址| 久久人人爽av亚洲精品天堂| 国产淫语在线视频| 日韩不卡一区二区三区视频在线| 国产精品一二三区在线看| 亚洲av中文av极速乱| 99九九在线精品视频| 欧美黄色片欧美黄色片| 免费观看性生交大片5| 亚洲经典国产精华液单| 欧美国产精品va在线观看不卡| 国产成人精品无人区| 亚洲精品第二区| 91国产中文字幕| 三上悠亚av全集在线观看| 亚洲av男天堂| 一区二区日韩欧美中文字幕| 黄片播放在线免费| 国产精品.久久久| 春色校园在线视频观看| 国产精品 国内视频| 亚洲欧美精品综合一区二区三区 | 国产精品久久久久久精品电影小说| 1024视频免费在线观看| 国产精品蜜桃在线观看| 国产成人91sexporn| 国产日韩欧美亚洲二区| 欧美另类一区| 成年人免费黄色播放视频| 少妇被粗大猛烈的视频| 婷婷色av中文字幕| 七月丁香在线播放| 亚洲第一av免费看| 9色porny在线观看| 久久国产精品大桥未久av| 最近手机中文字幕大全| 天天操日日干夜夜撸| 下体分泌物呈黄色| 日本色播在线视频| 日韩制服丝袜自拍偷拍| 亚洲伊人久久精品综合| 日韩电影二区| 天美传媒精品一区二区| 99国产综合亚洲精品| 色婷婷久久久亚洲欧美| 亚洲人成电影观看| 国产在线一区二区三区精| 一边亲一边摸免费视频| 伦精品一区二区三区| 9191精品国产免费久久| 老鸭窝网址在线观看| 在线观看www视频免费| 亚洲国产av影院在线观看| 国产色婷婷99| 亚洲av电影在线观看一区二区三区| 免费大片黄手机在线观看| 午夜老司机福利剧场| 久久久亚洲精品成人影院| 丝袜在线中文字幕| 免费不卡的大黄色大毛片视频在线观看| 久久毛片免费看一区二区三区| 日日爽夜夜爽网站| 国产成人精品久久二区二区91 | 亚洲少妇的诱惑av| 91久久精品国产一区二区三区| 在线天堂中文资源库| 2021少妇久久久久久久久久久| 国产极品天堂在线| 国产乱人偷精品视频| 免费av中文字幕在线| 国产成人精品福利久久| 国产片特级美女逼逼视频| 亚洲精品,欧美精品| 亚洲av在线观看美女高潮| 亚洲欧洲日产国产| 女性生殖器流出的白浆| 国产 精品1| 欧美bdsm另类| 一区福利在线观看| 一二三四中文在线观看免费高清| 纵有疾风起免费观看全集完整版| 国产精品蜜桃在线观看| av网站在线播放免费| 91精品三级在线观看| 高清欧美精品videossex| 一区二区三区精品91| 亚洲图色成人| 2018国产大陆天天弄谢| 精品人妻熟女毛片av久久网站| 免费在线观看视频国产中文字幕亚洲 | 一区二区三区乱码不卡18| 国产黄色免费在线视频| 亚洲少妇的诱惑av| 丰满迷人的少妇在线观看| 叶爱在线成人免费视频播放| 建设人人有责人人尽责人人享有的| 国产成人91sexporn| 亚洲视频免费观看视频| 午夜老司机福利剧场| 欧美日韩成人在线一区二区| 精品人妻一区二区三区麻豆| 成人漫画全彩无遮挡| 一级毛片黄色毛片免费观看视频| 啦啦啦啦在线视频资源| 亚洲一级一片aⅴ在线观看| 国产伦理片在线播放av一区| 亚洲欧美清纯卡通| 亚洲熟女精品中文字幕| 亚洲国产看品久久| 91精品国产国语对白视频| 天天躁夜夜躁狠狠久久av| 纯流量卡能插随身wifi吗| 一边亲一边摸免费视频| 性高湖久久久久久久久免费观看| 亚洲欧美一区二区三区国产| 极品人妻少妇av视频| 亚洲欧美成人精品一区二区| av电影中文网址| 街头女战士在线观看网站| 亚洲欧美色中文字幕在线| 久久久久久久精品精品| 午夜福利网站1000一区二区三区| 18禁观看日本| 91久久精品国产一区二区三区| 大陆偷拍与自拍| 激情视频va一区二区三区| 国产一区亚洲一区在线观看| 久久久久国产网址| 最近2019中文字幕mv第一页| 色婷婷av一区二区三区视频| 国产不卡av网站在线观看| 久久精品国产综合久久久| 亚洲精品,欧美精品| 在线观看一区二区三区激情| 曰老女人黄片| 久久精品国产自在天天线| 考比视频在线观看| 一本久久精品| 日本色播在线视频| 日韩欧美一区视频在线观看| 欧美日韩国产mv在线观看视频| 久久99蜜桃精品久久| 国产免费又黄又爽又色| 91精品国产国语对白视频| 这个男人来自地球电影免费观看 | 熟女电影av网| 欧美亚洲日本最大视频资源| 一级片'在线观看视频| 女性生殖器流出的白浆| 亚洲精品成人av观看孕妇| 亚洲一级一片aⅴ在线观看| 十八禁网站网址无遮挡| 国产成人aa在线观看| 日日撸夜夜添| 精品人妻熟女毛片av久久网站| 国产 精品1| 亚洲av.av天堂| 91精品三级在线观看| 久久国内精品自在自线图片| 亚洲色图 男人天堂 中文字幕| 日韩视频在线欧美| 大片免费播放器 马上看| 成人手机av| 精品国产一区二区三区四区第35| 制服人妻中文乱码| 久久久国产精品麻豆| 免费日韩欧美在线观看| 日产精品乱码卡一卡2卡三| 国产亚洲一区二区精品| 香蕉国产在线看| 美女视频免费永久观看网站| 69精品国产乱码久久久| 亚洲国产欧美日韩在线播放| 日韩一卡2卡3卡4卡2021年| 免费黄网站久久成人精品| 少妇的丰满在线观看| 国产成人精品一,二区| 制服人妻中文乱码| 久久精品人人爽人人爽视色| 色婷婷久久久亚洲欧美|