• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    AMP Dual-Turbo Iterative Detection and Decoding for LDPC Coded Multibeam MSC Uplink

    2018-06-21 02:33:14YangYangWenjingWangXiqiGao
    China Communications 2018年6期

    Yang Yang, Wenjing Wang, Xiqi Gao*

    National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China

    I. INTRODUCTION

    Multibeam antennas that can form hundreds of spot beams and support the transmissions of independent information streams for multiple users at the same spectrum band have been widely employed by mobile satellite communication (MSC) system to enhance its capacity.However, in spite of the much improved capacity, inter-beam-interference (IBI) and noise still lead to receiving errors [1]. The multibeam MSC channel with full frequency reuse is essentially a multiple-input multiple-output(MIMO) channel. A hybrid space ground precoding method to manage the downlink IBI of multi-beam MSC can be found in [2]. For the uplink, we propose to employ the MIMO receiver [3, 4] to manage its IBI and reduce the receiving errors.

    For forward error correction coded MIMO systems, turbo iterative detection and decoding that exchanges soft information between a soft-in soft-out (SISO) detector and an SISO decoder in an iterative fashion is a kind of near-optimum MIMO receiver [5–10]. A low computational complexity turbo iterative detection and decoding scheme called dual-turbo iterative detection and decoding for turbo coded MIMO systems is proposed in [11], and the dual-turbo method for low-density parity-check (LDPC) coded systems is given in[12].

    In this work, we improve the dual-turbo iterative detection and decoding scheme via the approximate message passing (AMP)algorithm for the LDPC coded systems and introduce it into the multibeam MSC uplink to manage its uplink IBI. This improvement can further reduce the computational complexity and achieve much lower bit error rate (BER).

    The rest of the paper is organized as follows: in section II, multibeam MSC system model is described. The AMP algorithm aided detection method is introduced in section III.The proposed AMP dual-turbo iterative detection and decoding method is given in section IV, along with the computational complexity analysis. The simulation results are shown in Section V. The conclusions are drawn in section VI.

    The authors proposed to hybridize the AMP detector with LDPC SISO decoder to improve the traditional dual-turbo iterative detection and decoding scheme.

    II. SYSTEM MODEL

    We consider a geostationary earth orbit (GEO)MSC uplink withMspot-beams. Suppose there areNusers randomly distributed in the service area transmitting to the satellite at the same time. As shown in figure 1, for each user a block ofKbinary information bits is encoded by an (K,W) LDPC code. We employ vectors bnand cnto denote a codeword before and after coding for usern. TheWcoded bits cnare then fed into a 2Mc-ary QAM modulator with constellation X and output xn. We useto denote itst-th entry, which is transmitted by usernduring symbol periodtSuppose the carriers of all user terminals(UTs) are locked on the same clock. Then,their symbols can be transmitted and received almost synchronously. Let xtdenotes the symbols transmitted by all UTs during symbol period t, whereThen the general baseband channel model during symbol periodtis given by.

    where vectordenotes the signals received by all spot-beams, Ztdenotes channel matrix, and ntdenotes the independent and identically distributed (i.i.d.) additive white Gaussian noise (AWGN) with varianceIt worth noting that both xnand xtare used to denote the transmitted symbols. xnis a row vector, and xtis a column vector. Their relationships are given as follows,

    The received data ynand ytare similar.

    The channel matrix Ztcan be modeled specifically for the multibeam MSC uplink as follows [3],

    The first item B is anM×Nmatrix modeling the beam gains, which is generally approximated by the well accepted method as follows [13],

    whereJ1andJ3are thefirst kind Bessel functions of order one and three respectively. θmndenotes the off axis angle of usernwith respect to the axis of spot-beamm, and θ3dBis the angle that corresponds to 3dBpower loss of each spot-beam.Gmaxis the maximum beam gain. Suppose the position of all users remain constant during a codeword. Then B reduces to a deterministic real positive matrix. In most case, B is sparse, because the signals transmitted by one user can be received by just a part of the spotbeams, and each spot-beam can only receive the signals coming from the users nearby.

    Fig. 1. Multibeam MSC uplink with MIMO receiver.

    The second itemis anN×Ndiagonal matrix modeling the shadowing and rain attenuation of each user, which is also constant during a codeword as well.

    The third itemis anN×Ndiagonal matrix containing i.i.d. non-zero mean complex entries, which models the multi-passing fading of each user.is modeled according to the Rician channel model as follows,

    where K is the Rician K-factor,is a diagonal matrix modeling the line of sight (LoS)signal fading, which is constant during a codeword as well, andis an i.i.d. complex Gaussian diagonal matrix modeling the scattered fading.

    III. AMP DETECTION

    AMP algorithm [14, 15] is a distributed message passing method, which can be employed as an MIMO detector to estimate the posterior probability distribution of the transmitted signals [16–18]. Hence, it can be used as a detector to estimatefor the multibeam MSC uplink as well [3, 4]. Through estimatingit can turn the unwanted IBI into useful energy to reduce the detection errors.

    We employ the Bayes theorem to writeas

    Fig. 2. Factor graph of posteriori distribution

    Recall that B is sparse, thus Ztis sparse too. Denote the user set whose signals can be received by spot beammas Um, and the spot beam set that can receive the signals transmitted by usernas Bn. Then, for usern, the marginal probability density function (pdf)ytBnis the subset of ytcorresponding to Bn.Moreover, note that the entries of xtare independent of each other. Therefore,in(6) can be reformulated as

    whereis the subset of xt, which is similar to. Then we can use a factor graph to illustrate the posteriori distribution in (7) as given in figure 2.

    As a matter of fact, the AMP algorithm is a numerically efficient method to approximate each marginal pdfby a set of message passing equations that go from factor nodes to variable nodes(i.e.,m→n) and from variable nodes to factor nodes (i.e.,n→m) as illustrated in figure 2 [14, 15]. The message passing equations are constructed as follows,

    where the superscript(r)is used to denote the number of iterations, and the symbol ? means that two functions are identical upon a normalization factor.

    Suppose all random variables follow Gaussian distributions, and letdenote the mean and variance offollows,

    Thencan be worked out through(9) according to Gaussian approximation method as [19, 20]

    wherezmnis the (m,n)-th entry of Zt. Base on (11) we can use (8) to update

    Henceforth, we have the method to update the mean and variance ofas

    After enough iterations, we can estimate the mean and variance of

    Thus, we estimate the mean and varianceof each marginal pdf ofMore details of the AMP detector are given in APPENDIX.

    It is different from traditional linear detector that is aimed at estimating xt, the AMP detector is aimed at estimating the mean and variance off(xt|yt). In another word, the AMP detector achieves more posteriori information of the transmitted signals xt.

    IV. AMP DUAL-TURBO ITERATIVE DETECTION AND DECODING

    As a kind of MIMO receiver, turbo iterative detection and decoding can further turn the unwanted IBI into useful energy and further reduce the receiving errors, which is a kind of near-optimum MIMO receiver [5]. Dual-turbo iterative detection and decoding that exchanges soft extrinsic information and soft inner information efficiently between the linear SISO detector and the SISO decoder is a low complexity turbo iterative detection and decoding method [11, 12]. (The information exchanged between the SISO detector and the SISO decoder is called soft extrinsic information, while the information exchanged in the SISO decoder is called soft inner information.)For LDPC coded systems, the dual-turbo iterative detection and decoding is given in figure 3 (a). We propose to replace the linear SISO detector with the AMP detector as shown in figure 3 (b), i.e., the proposed AMP dual-turbo iterative detection and decoding scheme.

    Finding a way to exchange the soft extrinsic information for AMP detector is the key to employ it in the dual-turbo fashion. Take the variable notefor example that is a symbol of xtas given in section II. We have given the SISO detection method to update the mean and variance of its posteriori pdf in section III. Meanwhile, the mean and variance ofcan also be updated through SISO decoding as shown in figure 3 (b). Hence, the mean and variance ofcan be a bridge to help exchanging the soft extrinsic information between the AMP detector and the SISO decoder. The detail method to exchange the soft extrinsic information for LDPC coded systems is given in the following.

    The mean and variance ofgenerate the priori log-likelihood ratio (L-value) of(k). Meanwhile, they can also be rebuilt from(k) that will be given later.That gives a complete iteration of the soft extrinsic information. We use the superscriptsprandposto identify the information before and after SISO decoding. There areMcbits mapped into, and we use(k) to denote thek-th one. The definition of the priori L-value of(k) is given by

    We choose to compute it using the information ofas follows [7],

    where

    is the subset of X of which thek-th mapped bit is 0, andis the subset of which thek-th bit is 1.

    Recall thatT=W/Mcsymbol periods can transmit a codeword withWbits. We use vectorto denote the priori L-values of the codeword cnfor usern.

    Fig. 3. (a) Traditional dual-turbo iterative detection and decoding. (b) AMP dual-turbo iterative detection and decoding.

    It is the belief propagation (BP) algorithm is considered to perform SISO decoding and update the L-values for usern.Suppose Kware the bit notes connect to check notew, and Wkare the check notes connect to bit notek.The soft-information for notekis given by

    It worth noting that there are three iterations, the AMP iterations, the iterations to exchange soft inner information for SISO decoding, and the iterations to exchange soft extrinsic information for iterative detection and decoding. It is better to perform several AMP iterations before SISO decoding, because SISO decoding may suffer without relatively accurate prior information. It is suggested to perform about 10 AMP iterations before SISO decoding.

    The turbo iterative detection and decoding needs to perform anM×Mmatrix inversion,and generateNprecoded signals via matrix and vector multiplication. Its complexity iswhereTcindicates the iterations of SISO decoding (the number of iterations to exchange soft inner information), andTdindicates the iterations to exchange the soft extrinsic information. Although the traditional dual-turbo method is a kind of low complexity turbo iterative detection and decoding scheme, its linear SISO detector still need to perform matrix inversion. The proposed AMP dual-turbo iterative detection and decoding does not need to perform matrix inversion, and thus has much lower computational load. Suppose the BMs are regularly arranged. Then the number of neighbouring BM for each BM are the same, so the sizes of Unand Bmare also the same for eachmandn. The sizes of Unand Bmare established for the majority of multi-beam systems, so we denote it asN0. In real applications, the multibeam MSC uplink channel matrix is sparse andN0is much smaller thanMandNin large multiple-beam systems. Thus, the computational complexity of the proposed AMP dual-turbo iterative detection and decoding is of orderTadenotes the iterations of AMP SISO detection, which is suggested to be set as 10 generally.TdandTcare no more than 10 as well in most case, which are all much smaller thanMandN. Therefore, the computational complexity of the proposed method can, in fact, be considered as of orderwhile the complexity of the traditional dual-turbo method is ofIt is obvi-ous that the proposed method has much lower computing load.

    The proposed AMP dual-turbo method has so low computational load, because thatN0is much smaller thanMandN, that is also why we consider to introduce the proposed method into multibeam MSC scenario. By the way, beside MIMO transmissions, the iterative detection and decoding fashion can also be employed in some other LDPC-coded systems such as Bit-Patterned Media Recording [21].

    V. SIMULATIONS

    Computer simulations are conducted to evaluate the performance of the proposed method.We consider an GEO MSC system as described in section II with parameters listed in Table I [22, 23]. The channel coherent time is supposed to be long enough to estimate channel state information perfectly. The AWGN power measured at each spot beam is calculat-The maximum beam gain of each spot beam isand the received signal-to-noise ratio (SNR) is

    Figure 4 shows the BER performance of the proposed method in comparison with the traditional turbo iterative detection and decoding given in [5] and the dual-turbo method givenin [12]. The result shows that the BER of the proposed AMP dual-turbo iterative detection and decoding is still poorer than the traditional turbo and dual-turbo methods without iterations. However, the proposed method becomes better than traditional methods after performing 3 iterations to feed back the soft extrinsic information. Hence, the proposed method has greater iteration gain than the traditional methods, and can make the iterations more effective to achieve lower BER.

    Table I. System configuration.

    Fig. 4. BER performance of the proposed method in comparison with the traditional method, where the code rate is K/ W= 1/3.

    Fig. 5. BER performance of the proposed method in comparison with the traditional method, where the code rate is K/ W= 1/2.

    Both of the proposed method and the method given in [12] employ the so-called dual-turbo idea. To highlight the improvement of the proposed method, we further compare them as shown in figure 5. It is obvious that the proposed method achieves much lower BER with 3 iterations.

    VI. CONCLUSION

    Multibeam antenna that can form hundreds of spot beams is a key element of current mobile satellite communications to enhance the capacity. However, inter-beam-interference may result in detection and decoding errors.Dual-turbo iterative detection and decoding that exchanges soft extrinsic information between an SISO detector and an SISO decoder iteratively is an efficient method to reduce the detection and decoding errors. We proposed to hybridize the AMP detector with LDPC SISO decoder to improve the traditional dual-turbo iterative detection and decoding scheme. The proposed method had lower computational complexity than traditional method, and has lower BER.

    APPENDIX

    We also useto save the number of messages [19]. Moreover, usingcan help to connect the AMP detector to the SISO decoder, as SISO decoder generatecan be used to direct update

    The detail method to passandis given in algorithm 1.

    Algorithm 1. AMP detection.

    ACKNOWLEDGEMENTS

    This work was supported by the National Natural Science Foundation of China under Grants 61320106003 and 61401095, and the Civil Aerospace Technologies Research Project under Grant D010109. The Fundamental Research Funds for the Central Universities under Grant YZZ17009.

    [1] P. D. Arapoglou, P. Burzigotti, M. Bertinelli, A.B. Alamanac, and R. D. Gaudenzi, “To MIMO or not to MIMO in mobile satellite broadcasting systems,”IEEE Trans. Wireless. Commun.,vol. 10,no. 9, pp. 2807–2811, Sep. 2011.

    [2] N. Song, T. Yang, and M. Haardt, “Efficient hybrid space-ground precoding techniques for multi-beam satellite sys-tems,” inproc. IEEE International Conference on Acoustics, Speech and Signal Processing, 2017.

    [3] D. Christopoulos, S. Chatzinotas, G. Zheng, J.Grotz, and B. Ottersten, “Linear and non-linear techniques for multibeam joint processing in satellite communications,”EURASIP Journal on Wireless Communications and Networking,p.162, May. 2012.

    [4] D. Christopoulos, S. Chatzinotas, J. Krause, and B. Ottersten, “Multiuser detection for mobile satellite systems: A fair performance evaluation,” inProc. VTC Scpring,Dresden, Germany,June 2013, pp. 1–5.

    [5] B. Lu and X. Wang, Turbo Receiver Techniques for Coded MIMO OFDM Systems. Springer Netherlands, 2005.

    [6] X. Wang and H. V. Poor, “Iterative (turbo) soft interference cancellation and decoding for coded CDMA,”IEEE Trans. Commun.,vol. 47, no. 7,pp. 1046–1061,July 1999.

    [7] W. Zhong, A. Lu, and X. Gao, “MMSE SQRD based SISO dectection for coded MIMO-OFDM systems,”China Science, vol. 57, pp. 042311:1–042311:1–0, Apr. 2014.

    [8] B. Lu, G. Yue, and X. Wang, “Performance analysis and design optimization of LDPC-coded MIMO-OFDM systems,”IEEE Trans. Signal Process.,vol. 52, no. 2, pp. 348–361, Feb. 2004.

    [9] K. Wang, H. Shen, W. Wu, and Z. Ding, “Joint detection and decoding in LDPC-based spacetime coded MIMO-OFDM systems via linear programming,”IEEE Trans. Signal Process.,vol.63, no. 13, pp. 3411–3424, July 2015.

    [10] M. A. B. Altaf, M. A. B. Altaf, and etc., “Towards design and automation of hardware-friendly NOMA receiver with iterative multi-user detection,” inProc. ACM, 2017, 2017, p. 60.

    [11] W. Wang, X. Gao, X. Wu, X. You, C. Zhao, and K.-K. Wong, “Dual-turbo reciever architecture for turbo coded MIMO-OFDM systems,”China Science, vol. 55, no. 2, pp. 384–395, Feb. 2012.

    [12] W. Wang, X. Gao, and X. Wu, “Dual-turbo detection and decoding for LDPC coded MIMO-OFDM systems,”Journal of university of science and technology of China,vol. 40, no. 1,Jan. 2010.

    [13] C. Caini, G. E. Corazza, G. F. M. Ruggieri, and F.Vatalaro, “A spectrum- and power-efficient EHF mobile satellite system to be integrated with terrestrial cellular systems,”IEEE Journal on Selected Areas in Communications,vol. 10, no. 8,pp. 1351–1325, Oct 1992.

    [14] D. L. Donoho, A. Maleki, and A. Montanari,“Message-passing algorithms for compressed sensing,” inproc. PNAS 2009,November 10,2009.

    [15] D. L. Donoho, A. Maleki, and A. Montanari,“Message-passing algorithms for compressed sensing,” inproc. ITW, Cairo, Egypt, Jan 2010.

    [16] E. Bjornson, R. Zakhour, D. Gesbert, and B. Ottersten,“Cooperative multicell precoding: rate region characterization and distributed strategies with instantaneous and statistical CSI,”IEEE Trans. Signal Process.,vol. 58, no. 8, pp.4298–4310, Aug. 2010.

    [17] I. Sohn, S. H. Lee, and J. Andrews, “Belief propagation for distributed downlink beamforming in cooperative MIMO cellular networks,”IEEE Trans. Wireless. Commun.,vol. 12, no. 10, pp.4140–4149, Dec. 2010.

    [18] Y. Huang, G. Zheng, M. Bengtsson, K.-K. Wong,L. Yang, and B. Ottersten, “Distributed multicell beam-forming with limited intercell coordination,”IEEE Trans. Signal Process.,vol. 59, no. 2,pp. 728–738, Feb. 2011.

    [19] C.-K. Wen, J.-C. Chen, K.-K. Wong, and P. Ting,“Message passing algorithm for disributed downlink regularized zero-forcing beamforming with cooperative base stations,”IEEE Trans.Wireless. Commun.,vol. 13, no. 5, pp. 2920–2930, May 2014.

    [20] D. Guo and C.-C. Wang, “Asymptotic meansquare optimality of belief propagation for sparse linear systems,” in proc.2006 IEEE Inf.Theory Workshop,Chengdu, China, Oct 2006,pp. 194–198.

    [21] S. Jeong and J. Lee, “Iterative channel detection with LDPC product code for bit-patterned media recording,”IEEE Trans. magnetics,vol. 53, no.11, pp. 8205204–8205204, Nov. 2017.

    [22] G. Maral and M. Bousquet,Satellite Communications Systems. Weinheim, Germany: Wiley,2002.

    [23] “Propagation data and prediction methods required for the design of earth-space telecommunication systems,” Geneva 2009.ITU-R RecommendationP.618-10,

    搞女人的毛片| 亚洲无线在线观看| 欧美丝袜亚洲另类| 欧美潮喷喷水| 国产精品蜜桃在线观看 | 久久99热这里只有精品18| 欧美+日韩+精品| 又爽又黄无遮挡网站| 禁无遮挡网站| 少妇裸体淫交视频免费看高清| 九九久久精品国产亚洲av麻豆| 国产极品天堂在线| 免费av不卡在线播放| 国产伦一二天堂av在线观看| 精品久久久久久久人妻蜜臀av| 国产成人午夜福利电影在线观看| 又黄又爽又刺激的免费视频.| 国产单亲对白刺激| 久久精品国产亚洲网站| 亚洲精品久久久久久婷婷小说 | 午夜福利在线在线| 18+在线观看网站| 老女人水多毛片| 秋霞在线观看毛片| 99在线视频只有这里精品首页| 国产黄片视频在线免费观看| 久久精品影院6| 国产单亲对白刺激| 久久精品国产亚洲网站| 午夜爱爱视频在线播放| 亚洲国产色片| 99久久精品国产国产毛片| 一个人观看的视频www高清免费观看| 亚洲七黄色美女视频| 天美传媒精品一区二区| 一夜夜www| 欧美zozozo另类| 嫩草影院入口| 成年女人看的毛片在线观看| 国产伦一二天堂av在线观看| av在线亚洲专区| 91精品一卡2卡3卡4卡| 久久久久久久久中文| 成人欧美大片| 国产精品人妻久久久久久| 亚洲不卡免费看| 99久国产av精品| 三级毛片av免费| 嫩草影院精品99| 国产一区二区激情短视频| 综合色av麻豆| 观看美女的网站| а√天堂www在线а√下载| 久久精品影院6| 国产成年人精品一区二区| 日韩中字成人| 亚洲综合色惰| 五月玫瑰六月丁香| 亚洲欧洲日产国产| 九九久久精品国产亚洲av麻豆| 深夜a级毛片| 高清午夜精品一区二区三区 | 舔av片在线| 日韩强制内射视频| 一边亲一边摸免费视频| 一个人观看的视频www高清免费观看| 亚洲国产精品成人综合色| 六月丁香七月| 免费观看的影片在线观看| 一级毛片我不卡| 嫩草影院新地址| 日本爱情动作片www.在线观看| 综合色丁香网| 欧美一区二区亚洲| 99国产精品一区二区蜜桃av| 69人妻影院| 男女边吃奶边做爰视频| 爱豆传媒免费全集在线观看| 日韩欧美三级三区| av免费在线看不卡| 色综合亚洲欧美另类图片| 26uuu在线亚洲综合色| 国产三级中文精品| 欧美区成人在线视频| .国产精品久久| h日本视频在线播放| 国产精品乱码一区二三区的特点| 自拍偷自拍亚洲精品老妇| 99久久中文字幕三级久久日本| 哪里可以看免费的av片| 综合色av麻豆| av在线播放精品| 亚洲国产欧美人成| 国产一区二区激情短视频| 一边亲一边摸免费视频| 淫秽高清视频在线观看| 久久久久久大精品| 午夜a级毛片| 国产三级中文精品| 欧美一区二区精品小视频在线| 特级一级黄色大片| 中文亚洲av片在线观看爽| 亚洲美女视频黄频| 久久婷婷人人爽人人干人人爱| 国产蜜桃级精品一区二区三区| 国产成年人精品一区二区| av又黄又爽大尺度在线免费看 | 亚洲电影在线观看av| 欧美+亚洲+日韩+国产| 少妇人妻一区二区三区视频| 国产蜜桃级精品一区二区三区| 欧美激情在线99| 日本三级黄在线观看| 欧美日韩综合久久久久久| 亚洲欧洲国产日韩| 能在线免费看毛片的网站| 亚洲成a人片在线一区二区| 99久久人妻综合| 日韩欧美国产在线观看| 午夜精品一区二区三区免费看| 欧美日本视频| av福利片在线观看| 亚洲精品自拍成人| avwww免费| 久久精品国产亚洲av香蕉五月| www日本黄色视频网| 黑人高潮一二区| 亚洲国产色片| 免费av观看视频| 国产 一区精品| 性插视频无遮挡在线免费观看| 最近最新中文字幕大全电影3| 国内精品美女久久久久久| 99久久精品热视频| 亚洲七黄色美女视频| 亚洲人与动物交配视频| 成人亚洲精品av一区二区| 国产成人freesex在线| 亚洲国产精品sss在线观看| 国产不卡一卡二| 美女脱内裤让男人舔精品视频 | 日产精品乱码卡一卡2卡三| 国产一区亚洲一区在线观看| 狂野欧美白嫩少妇大欣赏| 中国美白少妇内射xxxbb| 欧美日韩在线观看h| 久久久久久久久久黄片| 国产一区二区亚洲精品在线观看| 午夜爱爱视频在线播放| 亚洲三级黄色毛片| 成人毛片60女人毛片免费| 久久亚洲精品不卡| 亚洲自偷自拍三级| 狂野欧美激情性xxxx在线观看| 我要搜黄色片| 午夜爱爱视频在线播放| 亚洲第一电影网av| 99热这里只有是精品50| www.av在线官网国产| 久久99精品国语久久久| 嫩草影院精品99| 国产视频内射| 亚洲精华国产精华液的使用体验 | 麻豆乱淫一区二区| 日本成人三级电影网站| 我要看日韩黄色一级片| 中文在线观看免费www的网站| 悠悠久久av| 91久久精品国产一区二区三区| 国产精华一区二区三区| 在线播放国产精品三级| 伊人久久精品亚洲午夜| .国产精品久久| 精品人妻视频免费看| 欧美性猛交黑人性爽| 熟女人妻精品中文字幕| 免费看光身美女| 国产精品一及| 免费看av在线观看网站| 欧美激情国产日韩精品一区| 日韩中字成人| 观看美女的网站| 色视频www国产| 成人一区二区视频在线观看| 日本成人三级电影网站| 美女xxoo啪啪120秒动态图| 99热这里只有精品一区| 亚洲av中文av极速乱| 深爱激情五月婷婷| 亚洲成a人片在线一区二区| 亚洲精品乱码久久久v下载方式| 欧美高清成人免费视频www| 亚洲经典国产精华液单| 26uuu在线亚洲综合色| 日本免费a在线| 午夜老司机福利剧场| 麻豆精品久久久久久蜜桃| 免费一级毛片在线播放高清视频| 久久人人精品亚洲av| videossex国产| a级一级毛片免费在线观看| 五月伊人婷婷丁香| 久久人人爽人人片av| 在线观看66精品国产| 国产一区二区亚洲精品在线观看| 国产 一区 欧美 日韩| 亚洲精品自拍成人| 在现免费观看毛片| 国产精品1区2区在线观看.| 男女边吃奶边做爰视频| 国产人妻一区二区三区在| 亚洲欧美日韩高清在线视频| 日韩,欧美,国产一区二区三区 | 国产精品精品国产色婷婷| 99热这里只有是精品在线观看| 精品久久久久久久人妻蜜臀av| 久久热精品热| 国产一区二区在线av高清观看| 国产日本99.免费观看| av天堂中文字幕网| www.色视频.com| 美女内射精品一级片tv| 高清毛片免费看| 国产精品久久久久久久电影| 欧美精品国产亚洲| 欧美高清性xxxxhd video| 日韩一本色道免费dvd| 久久6这里有精品| 精品国内亚洲2022精品成人| 99久久中文字幕三级久久日本| 美女高潮的动态| 国产午夜福利久久久久久| 一夜夜www| 一级毛片aaaaaa免费看小| 成人国产麻豆网| 可以在线观看的亚洲视频| 两性午夜刺激爽爽歪歪视频在线观看| 久久人人精品亚洲av| 欧美日韩乱码在线| 一级av片app| 九草在线视频观看| 欧美日韩精品成人综合77777| 欧美激情在线99| 在线免费观看不下载黄p国产| 国产av麻豆久久久久久久| 一进一出抽搐gif免费好疼| 亚洲一级一片aⅴ在线观看| 超碰av人人做人人爽久久| 一级黄片播放器| 97超碰精品成人国产| 国产精品无大码| 99国产精品一区二区蜜桃av| 直男gayav资源| 九九在线视频观看精品| 天堂√8在线中文| 性欧美人与动物交配| 波野结衣二区三区在线| 国产蜜桃级精品一区二区三区| 一夜夜www| 午夜精品国产一区二区电影 | 舔av片在线| 亚洲av成人精品一区久久| 欧美bdsm另类| 欧美丝袜亚洲另类| 亚洲中文字幕一区二区三区有码在线看| 国产黄色小视频在线观看| 成人一区二区视频在线观看| 国产一区亚洲一区在线观看| 国产综合懂色| 九九久久精品国产亚洲av麻豆| 午夜福利在线在线| 国产黄片视频在线免费观看| 在线播放无遮挡| 亚洲av免费在线观看| 亚洲人成网站在线播| 日日啪夜夜撸| 国产片特级美女逼逼视频| 免费av不卡在线播放| 超碰av人人做人人爽久久| 成人欧美大片| 变态另类丝袜制服| 亚洲av成人精品一区久久| 成人国产麻豆网| 日韩一区二区三区影片| 亚洲精品乱码久久久久久按摩| 亚洲av熟女| 国产色婷婷99| 欧美日韩在线观看h| 免费搜索国产男女视频| 精品久久久久久久久久免费视频| 91午夜精品亚洲一区二区三区| 国产黄色小视频在线观看| 国产av一区在线观看免费| 2022亚洲国产成人精品| 一本一本综合久久| 成人特级黄色片久久久久久久| 淫秽高清视频在线观看| 校园春色视频在线观看| 亚洲第一区二区三区不卡| 久久婷婷人人爽人人干人人爱| 亚洲精品国产av成人精品| 成人午夜精彩视频在线观看| 丰满的人妻完整版| 午夜激情福利司机影院| 内射极品少妇av片p| 亚洲欧洲国产日韩| 亚洲成人久久爱视频| 成年版毛片免费区| 国产成人精品婷婷| 日本撒尿小便嘘嘘汇集6| 欧美+日韩+精品| 美女黄网站色视频| 亚洲人与动物交配视频| 22中文网久久字幕| 久久久国产成人免费| 女同久久另类99精品国产91| 亚洲婷婷狠狠爱综合网| 久久亚洲国产成人精品v| 久久久成人免费电影| 久久久国产成人免费| 日本熟妇午夜| 亚洲七黄色美女视频| 一级毛片aaaaaa免费看小| 少妇被粗大猛烈的视频| 能在线免费看毛片的网站| 啦啦啦韩国在线观看视频| 婷婷色综合大香蕉| 国产69精品久久久久777片| 中文字幕av成人在线电影| 精品欧美国产一区二区三| 高清午夜精品一区二区三区 | 夫妻性生交免费视频一级片| 丰满乱子伦码专区| 精品99又大又爽又粗少妇毛片| 我的老师免费观看完整版| 成人特级av手机在线观看| 亚洲av不卡在线观看| av在线蜜桃| 亚洲av熟女| 国产伦理片在线播放av一区 | 午夜久久久久精精品| 男女做爰动态图高潮gif福利片| 午夜福利成人在线免费观看| 午夜a级毛片| 晚上一个人看的免费电影| 日韩欧美精品v在线| 久久99热6这里只有精品| 亚洲激情五月婷婷啪啪| 亚洲最大成人手机在线| 久久鲁丝午夜福利片| 有码 亚洲区| 嘟嘟电影网在线观看| 国产高潮美女av| 色播亚洲综合网| 免费人成在线观看视频色| 一区福利在线观看| 狂野欧美白嫩少妇大欣赏| 12—13女人毛片做爰片一| 日韩亚洲欧美综合| 久久久久久九九精品二区国产| 欧美色视频一区免费| 久久久久国产网址| 国产不卡一卡二| 最近手机中文字幕大全| 国内精品久久久久精免费| av在线蜜桃| 青春草亚洲视频在线观看| 精品久久久久久久久久久久久| 少妇高潮的动态图| 国产精品无大码| 亚洲精品影视一区二区三区av| 久久这里有精品视频免费| 国产一区二区在线观看日韩| 欧美高清性xxxxhd video| 国内揄拍国产精品人妻在线| 精品久久久久久久久久久久久| 久久久成人免费电影| 久久精品国产鲁丝片午夜精品| 日韩av不卡免费在线播放| 99riav亚洲国产免费| 国产在线精品亚洲第一网站| 国产成人a区在线观看| 国产 一区精品| 精品人妻熟女av久视频| 变态另类成人亚洲欧美熟女| 亚洲av一区综合| 日韩在线高清观看一区二区三区| 久久这里只有精品中国| 一进一出抽搐动态| 久久久久久久久久久免费av| 成人漫画全彩无遮挡| 99热这里只有是精品50| 国产蜜桃级精品一区二区三区| 欧美丝袜亚洲另类| 日韩人妻高清精品专区| 国产精品嫩草影院av在线观看| 欧美日韩综合久久久久久| 一夜夜www| 亚洲性久久影院| 成人漫画全彩无遮挡| 赤兔流量卡办理| 亚洲国产欧洲综合997久久,| 成年av动漫网址| 最好的美女福利视频网| 欧美成人一区二区免费高清观看| 国产欧美日韩精品一区二区| 久久久精品94久久精品| 色5月婷婷丁香| 午夜亚洲福利在线播放| 国语自产精品视频在线第100页| videossex国产| av.在线天堂| av女优亚洲男人天堂| 国产三级中文精品| 蜜桃亚洲精品一区二区三区| 久久久成人免费电影| 真实男女啪啪啪动态图| 国国产精品蜜臀av免费| 色5月婷婷丁香| av视频在线观看入口| 国产精品一区二区在线观看99 | 成人毛片a级毛片在线播放| 51国产日韩欧美| 欧美日本亚洲视频在线播放| 老司机福利观看| 国产成人91sexporn| 国产成人精品一,二区 | www.av在线官网国产| 亚洲五月天丁香| 高清午夜精品一区二区三区 | 91av网一区二区| 内地一区二区视频在线| 国产精品人妻久久久影院| av专区在线播放| 成人漫画全彩无遮挡| 成人高潮视频无遮挡免费网站| or卡值多少钱| 久久久久久久久久成人| 天天躁日日操中文字幕| 天堂中文最新版在线下载 | 夫妻性生交免费视频一级片| 麻豆国产av国片精品| 久久精品人妻少妇| 国产单亲对白刺激| 久久久久久久久大av| 亚洲三级黄色毛片| 偷拍熟女少妇极品色| 少妇高潮的动态图| 亚洲av免费高清在线观看| 久久精品人妻少妇| 女的被弄到高潮叫床怎么办| 国产精品免费一区二区三区在线| 国产欧美日韩精品一区二区| 天美传媒精品一区二区| 美女脱内裤让男人舔精品视频 | 黄色配什么色好看| 日本一二三区视频观看| 神马国产精品三级电影在线观看| 晚上一个人看的免费电影| 久久久久久久久大av| 欧美潮喷喷水| 日本爱情动作片www.在线观看| 免费av不卡在线播放| 欧美色视频一区免费| 只有这里有精品99| 国内久久婷婷六月综合欲色啪| 亚洲av成人av| 国产精品99久久久久久久久| 18禁在线无遮挡免费观看视频| 日本-黄色视频高清免费观看| 人妻少妇偷人精品九色| 精品人妻视频免费看| 在线播放国产精品三级| 久久久久久国产a免费观看| 99热只有精品国产| 观看免费一级毛片| 激情 狠狠 欧美| 国产成人freesex在线| 日韩欧美精品免费久久| 亚洲精品亚洲一区二区| 成年av动漫网址| 精品午夜福利在线看| 国产亚洲精品av在线| 欧美激情在线99| 国产午夜福利久久久久久| 久久人人爽人人片av| 午夜a级毛片| 亚洲欧美日韩高清在线视频| 青青草视频在线视频观看| 国内精品一区二区在线观看| 男人和女人高潮做爰伦理| 国产极品天堂在线| 久久精品国产亚洲av天美| 国产av不卡久久| 亚洲,欧美,日韩| 最后的刺客免费高清国语| 精品人妻偷拍中文字幕| 中出人妻视频一区二区| 亚洲18禁久久av| 国产精品不卡视频一区二区| av卡一久久| 边亲边吃奶的免费视频| 老司机福利观看| 亚洲国产欧美在线一区| 欧美日韩国产亚洲二区| 最近手机中文字幕大全| 欧美日本亚洲视频在线播放| 乱码一卡2卡4卡精品| 狂野欧美激情性xxxx在线观看| 亚洲色图av天堂| 国产人妻一区二区三区在| av国产免费在线观看| 老师上课跳d突然被开到最大视频| 欧美性猛交黑人性爽| 网址你懂的国产日韩在线| 欧美色视频一区免费| 日本色播在线视频| 国产色婷婷99| av在线播放精品| av在线蜜桃| 91精品国产九色| 波多野结衣高清作品| 熟妇人妻久久中文字幕3abv| 亚洲四区av| 少妇人妻一区二区三区视频| 国产成人精品一,二区 | 免费观看在线日韩| 亚洲一区高清亚洲精品| 深夜精品福利| 伦精品一区二区三区| 午夜福利视频1000在线观看| 国产三级在线视频| 老师上课跳d突然被开到最大视频| 中文字幕熟女人妻在线| 国产亚洲精品久久久久久毛片| 国产日本99.免费观看| 久久久久久伊人网av| 国产亚洲精品av在线| 18禁裸乳无遮挡免费网站照片| 男人舔奶头视频| 亚洲不卡免费看| 九九热线精品视视频播放| 夫妻性生交免费视频一级片| 久久久久性生活片| 91麻豆精品激情在线观看国产| 日韩成人伦理影院| 插阴视频在线观看视频| 国产午夜精品久久久久久一区二区三区| 丝袜喷水一区| 日本爱情动作片www.在线观看| 精品一区二区三区人妻视频| 午夜福利成人在线免费观看| 国国产精品蜜臀av免费| 一级黄色大片毛片| 最近2019中文字幕mv第一页| 色综合亚洲欧美另类图片| 91精品一卡2卡3卡4卡| 亚洲精品国产av成人精品| 欧美日韩在线观看h| 欧美一级a爱片免费观看看| 岛国在线免费视频观看| 久久热精品热| 国产乱人偷精品视频| 18禁在线播放成人免费| 国产一级毛片七仙女欲春2| 欧美成人精品欧美一级黄| 国产成人福利小说| .国产精品久久| 国产精品一二三区在线看| 黑人高潮一二区| 黄色配什么色好看| 欧美xxxx性猛交bbbb| 久久久久久久久大av| 成人永久免费在线观看视频| 国产老妇伦熟女老妇高清| 成人国产麻豆网| 在线播放无遮挡| 久久九九热精品免费| 少妇被粗大猛烈的视频| 小蜜桃在线观看免费完整版高清| 最后的刺客免费高清国语| 亚洲成人精品中文字幕电影| 国产日韩欧美在线精品| 两个人视频免费观看高清| 日韩人妻高清精品专区| 午夜久久久久精精品| 日本av手机在线免费观看| 久久久久久九九精品二区国产| 久久精品国产鲁丝片午夜精品| 欧美一区二区亚洲| 99久久久亚洲精品蜜臀av| 蜜桃久久精品国产亚洲av| 听说在线观看完整版免费高清| 日本-黄色视频高清免费观看| 欧美极品一区二区三区四区| or卡值多少钱| 日本黄大片高清| 亚洲美女搞黄在线观看| 一级二级三级毛片免费看| av在线蜜桃| 亚洲第一电影网av| 午夜亚洲福利在线播放| 天天躁夜夜躁狠狠久久av| 国产大屁股一区二区在线视频| 国产黄色小视频在线观看| 天天躁夜夜躁狠狠久久av| 国产又黄又爽又无遮挡在线| 91在线精品国自产拍蜜月| 日韩精品青青久久久久久| 久久久a久久爽久久v久久| 99国产精品一区二区蜜桃av| 国产极品天堂在线| 日韩大尺度精品在线看网址| 夜夜爽天天搞| 91aial.com中文字幕在线观看|