• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Scaling Factor Optimization of Turbo-Polar Iterative Decoding

    2018-06-21 02:33:12ZhenzhenLiuKaiNiuJiaruLinJingyuanSunHaoGuan
    China Communications 2018年6期

    Zhenzhen Liu*, Kai Niu Jiaru Lin Jingyuan Sun, Hao Guan

    1 Beijing University of Posts and Telecommunications, Beijing 100876, China

    2 Nokia Shanghai Bell Co., Ltd., Beijing 100876, China

    I. INTRODUCTION

    TURBO-POLAR code [1-2] is a type of parallel concatenated scheme of the systematic polar code (SPC) [3]. The performance of bit error rate (BER) of this scheme is better than that of the classic SPC. As the component code of turbo-polar structure, SPC is a capacity-achieving code with low encoding and decoding complexity. There are many decoding algorithms proposed, such as successive cancellation (SC) decoding [4] and successive cancellation list (SCL) decoding [5-6], successive cancellation stack (SCS) [7]. But because of the hard decision output property of those algorithms, they cannot be applicable to the iterative decoding structure of the turbo-polar code.

    On the contrary, two soft-in-soft-out (SISO)algorithms of SPC, belief propagation (BP)[8-9] and soft cancellation (SCAN) [10-11], can be applied to the iterative decoding structure of the turbo-polar code. Recently,the turbo-polar decoding based on BP algorithm was proposed in [1] and the weighted iterative structure was introduced. But there is no in-depth study of the weight coefficients optimization. Until now, several publications have discussed the issue of scaling factors(SFs) optimization of other codes [12-13].In [12], the SFs are optimized based on the mutual information between extrinsics for the low-density parity-check codes (LDPC). And as to turbo code, the optimization approach of SFs is relied on mathematical statistics [13].The effects of SFs are reflected on reducing the overestimated reliability values and the correlation between the intrinsic and extrinsic information.

    Focusing on the above question and in the light of [13], we propose a novel algorithm of SFs optimization of turbo-polar structure with SCAN or BP algorithm. Firstly, in order to measure the gap between the practical decoder and the ideal one, a weighted mean square error (WMSE) criterion is put forward.Secondly, the genie-aided SCAN/BP decoding is proposed as the ideal decoder. The reason is that the decoding performance assisted by the genie information is attractive. Thereafter, the SFs optimization algorithm for the turbo-polar decoding structure is presented with the help of the optimization rule and genie-aided SCAN/BP decoding. The optimization idea is that the performance of turbo-polar code with the SFs aided SCAN/BP decoder is managed as close as possible to that with the genie-aided decoding. Finally, the optimal SFs are obtained by the proposed algorithm. Simulation results demonstrate the performance improvement of the turbo-polar code with the optimal SFs.

    In this paper, a SFs optimization criterion is proposed for the weighted iterative decoding of turbo-polar code.

    The paper is organized as follows. Section II reviews the encoding and decoding of turbo-polar code and some symbol descriptions of SCAN and BP algorithms. The optimization criterion and the corresponding algorithm of SFs for the turbo-polar code are proposed in Section III. In Section IV, numerical results are presented. Section V concludes this paper.

    II. PRELIMINARIES

    2.1 Encoding and decoding of turbo-polar code

    Turbo-polar code with two component SPCs was proposed in [1]. SupposeNcdenotes the code length of component code,K-elements subset A ?{1,…,Nc}, Ac={1,… ,Nc} A ,and K={1,…,K}. A vector l=(l1,…,lK) is constituted by the elements in A sequentially. Assume u=(u1,…,uK) is an information sequence and v1=(…,v1,Nc) consists of v1,Aand v1,Ac, where the information set A is selected by the Gaussian Approximation method [14], then the codeword of the first SPC encoder is generated by

    where GAdenotes the sub-matrix of GNcwith rows in A. In addition,represents them-th Kronecker product ofandNc=2m. v1,Acisfixed and known to the encoder and decoder. Due to the structure of systematic code, thus we have x1,A= u and x1,Acdenotes the check sequence.

    Meanwhile the random interleaved information sequence is sent to the second SPC encoder and generates the second check sequence x2,Ac. After integrating the information sequence, the first and the second check sequences, the codeword of turbo-polar code is obtained and denoted by c=(c1,…,cN),where code lengthN=2Nc?Kand code rateR=. Assuming that it is modulated by the binary phase shift keying and is transmitted under the additive white Gaussian noise (AWGN) channel, the received signal y=(y1,…,yN) can be presented as

    where n=(n1,…,nN) is the i.i.d. Gaussian random noise sequence and each noise sample obeysni~ N(0,σ2).

    The decoding structure of turbo-polar code is shown in figure 1. The decoding processes are presented in the following.

    (i) The received signal y is split into three parts y1,p, y2,pand ysby the de-multiplexer,where y1,pand y2,pdenote the received check sequence from thefirst and the second encoders respectively and ysrepresents the received information sequence.

    (ii) For the SISO1 decoder at thet-th outer iteration, the received signal sequences y1,p,ysand the a priori information sequenceare fed into the decoder and the bit log-likelihood ratio (LLR) sequenceis generated after performing SCAN or BP decoding algorithm.

    Then the extrinsic information sequenceof the SISO1 decoder is obtained by subtracting ysandthat is

    whereis provided by the SISO2 decoder.

    Since the extrinsic information sequenceof the SISO1 decoder may be overestimated, it is necessary to scale it by multiplying the SF α1,tin the iterative decoding to improve the overall system performance. Thus the modified prior information for the SISO2 decoder is written as

    where π(k) denotes the interleaver mapping function. So all the SFs α1,tcompose a sequence α1.

    (iii) The SISO2 decoder outputs the bit LLRswith the help of y2,p, ysand.Similar to the Eq. (3), the extrinsic information sequenceis obtained. After de-interleaving, denoted by π?1, the a prior information for the SISO1 decoder is scaled by the SF α2,tand presented as

    where α2,tdenotes thet-th element of the SFs sequence α2.

    (iv) The steps (ii) and (iii) continue until the given maximum outer iteration numberMis reached.

    (v) According to the de-interleaved output bit LLRs, the decision is made.

    2.2 Symbol description

    In order to describe the SCAN decoding processes in our paper favorably, theBandLinformation [10] which denote the LLR information are introduced. Further, due to the requirement of algorithm description, the symbol (γ, φ,w) which denotes thewnode in the group φ at a depth γ of the factor graph is also borrowed. In addition,Lγ(φ,w) andBγ(φ,w) represent theLinformation andBinformation of the node (γ,φ,w), respectively. Moreover, Lγ(φ,w) and Bγ(φ,w) denote theLinformation andBinformation of the node (γ, φ,w) of the genie-aided SCAN decoding, respectively.

    Fig. 1. Iterative decoding for the turbo-polar code.

    At the ε-th iteration of BP decoding, two LLR expressions of the nodewof thehlayer of factor graph are borrowed from [9]. They are the left-to-right LLRand the rightto-left LLR. Those two LLRs in the genie-aided BP decoding are represented byandrespectively.

    III. SCALING FACTORS OPTIMIZATION

    This section contains three aspects. First, the SFs optimization rule for turbo-polar iterative decoding structure is presented. Second, the SFs optimization based on SCAN decoding is introduced. Finally, the SFs optimization of BP decoding is briefly described.

    3.1 Scaling factors optimization rule

    Recall that, by scaling the extrinsic LLR information, the performance of iterative decoding can be improved and approach to that of the ideal decoding.

    As to the turbo-polar structure with the standard decoder and SFs, the LLR of thek-th information bit at thet-th iteration can be presented as,

    whereukandys,kare thek-th element of u and ysrespectively. Anddenotes thek-th extrinsic information from thej-th SCAN/BP decoder (j=1,2) at thet-th outer iteration.

    If an ideal decoder is utilized, the LLR of thek-th information bit at thet-th iteration can be written as,

    We assume that both the SCAN/BP decoder and the ideal decoder can generate LLRs of the information bits in the iterative decoding process. To improve the performance of turbo-polar code with iterative decoder, we expect that the LLR distribution of the iterative decoder with SFs will be close to that of the ideal decoder as far as possible. In other words, the closer the LLR distribution between(u) and(u) is, the better thekkSF is.

    According to the unbiased estimation of statistical theory, it can be known that the estimated value is always distributed near the true value randomly. Unfortunately, by observing the statistical results, it is found that there is a big difference between the mean square value of LLR of the practical decoder and the ideal decoder. Therefore, in order to realize unbiased estimation, the weighted fac-are introduced into MSE criterion to mitigate the difference of the LLR distribution between the practical decoder and the ideal one. This is given a new name, i.e., WMSE. And it is regarded as the performance criterion in this paper. Given the SF αj,tfor thej-th decoder and thet-th iteration, the WMSE of the corresponding LLR sequences is written as

    where E[?] is the expectation in terms ofk.

    For optimizing the SFs under the SCAN/BP decoding, it is needed to minimize the WMSE as much as possible. From the viewpoint of mathematics, in order to min-

    Eq. (9) gives a formula to compute the SFs.Based on it, the optimization of SFs under specific decoding algorithms is presented in the following.

    3.2 SFs optimization for SCAN decoding

    In general, the genie-aided decoder can be used as the ideal decoder. Due to the assistance of genie, SCAN decoder can generate highly reliable LLR information to improve the system performance. Therefore, the genie aided decoding can be regarded as the optimization reference of the practical SCAN decoder.

    The optimization procedure of SFs under SCAN decoding is presented in Algorithm 1.This algorithm mainly includes three parts: the computation of extrinsic information of the standard SCAN decoder, the computation of extrinsic information of the genie-aided SCAN decoder and the calculation of SFs.

    As to the initialization ofBinformation of the standard SCAN decoder in the information set, there is no genie information to assist it.The source bits are set to 0 or 1 equiprobably.ThusBm(i, 0)=0,i∈A.

    On the other hand, for the initialization of Bm(i, 0)=0,i∈ A , some preprocessing steps are shown in line 2 of Algorithm 1. Some detailed explanations will be shown below.

    Firstly, the genie informationis obtained by the aid of SPC encoding [3] as,

    where xj,A=(xj,i,i∈A) denotes the information bits and GAAis the submatrix of the matrix GNcwith elementsGi,b,i∈ A,b∈A. That isgj,k=vj,lk,k∈K, wherelkdenotes thek-th element of the information set A. Assume sign(x)=1 whenx≥0 holds, and otherwise sign(x)=?1. Then the genie information is utilized to adjust the sign of B information of source bits by sign( 2gj,k? 1).

    Secondly, if the amplitude of B information is very large, there is no decoding error. But it is impractical to approach by the practical SCAN decoder. In order to make the reference decoder feasible, the absolute value of soft information of source bits of the standard SCAN decoding after one iteration is used as the basic amplitude ρj=(ρj,k,k∈K) of the reference decoder.It can be written by the specific expression as

    Thirdly, a factorfis applied to further adjust the B information of source bits so that an ideal decoder is obtained which has good performance and can be approached by the practical decoder. Therefore, the obtained genie-aided SCAN decoder can be used as the practical optimization objective. Here, the factorfshould be carefully selected by a brute force search.

    For both decoders, theLinformation of the coded bits is initialized by the channel observations.

    After initializing theLinformation of the coded bits andBinformation of the source bits, the bit LLR informationis calculated by the SCAN decoding based iterative decoding as shown in figure 1. Moreover, the extrinsic informationis taken from it.

    It is important to note that the obtained SF is participated in the following SF computation. Eq. (11) gives a good explanation about that. In order to compute SF α1,t, the obtainedSFs α1,i,i<tand α2,i,i<tare introduced into the calculation of extrinsic information.As to the computation of SF α2,t, not only the SFs α1,i,i<tand α2,i,i<tof the former iter-ation, but also the SF α1,tare considered into the calculation of.

    Algorithm 1. SFs optimization for SCAN decoding.

    In addition, after initialization, update and output, the extrinsic informationof the genie-aided SCAN decoder is obtained by Eq. (13). Due to the iterative structure of the genie-aided SCAN decoder, the initialization effect of Bm(lk,0),k∈ K will extend to the entire decoding process.

    When the number of simulation frames reaches the predefined Γ, the cross correlative functionand the autocorrelation functionare replaced by the statisti-cal average value of the samples. The optimal SFs are obtained by plugging those statistical values into SFs optimization Eq. (9).

    Table I. Scaling factors for turbo-polar code with SCAN/BP decoding.

    The computation complexity of Algorithm 1 is also given in this subsection. It can be calculated by the following analysis. 1) The complexity for the preparation of prior information isO(3NclogNc). 2) The computation complexity of line 9-line 17 isO(2NclogNc).Further, two for loop and one while loop is implemented on line 9-line 17. Thereafter,the complexity isO(4MΓNclogNc). 3)Integrate the above complexity in 1) and 2),the complexity of the Algorithm 1 is aboutO((4MΓ+ 3)NclogNc).

    3.3 SFs optimization for BP decoding

    The processes of Algorithm 1 can also be applied to the SFs optimization of BP decoding by replacing the operations related to SCAN decoding with those of BP decoding. It should be noted that BP decoding includes the inner iteration other than the outer iteration between two component decoders. As an upgraded version of BP decoding, the genie-aided BP decoding is considered as the ideal decoder.

    Like the initialization process of Bm(lk,0),then,k∈ K of source bits can be initialized using the similar approach. During the decoding process of the genie-aided BP and the standard BP, the update rules in [9] are followed. Assume the maximum BP inner iteration number is Θ, then the bit LLR information of the transmitted bits of the genie-aided BP decoding is obtained by+,k∈ K.Further, the extrinsic LLR informationis extracted. As to the extrinsic information calculation of the BP decoder,=0,i∈A is allocated. After initializing and updating, the extrinsic informationof BP decoder is output. Simulation needs to be done many times in order to obtain the statistic characteristics ofand. Finally, the optimal SFs of BP decoder are calculated with Eq. (9).

    IV. NUMERICAL RESULTS

    In this section, the improvement of SFs to the error performance of turbo-polar code is shown. The code length and code rate of the component codes are denoted byNcandRc,respectively. Two code configurations are set to the constituent codes of turbo-polar code. That is,C1andC2denote {Nc= 128,Rc=1/2}and {Nc= 256,Rc=2/3}, respectively. And AWGN channel is the simulation channel.

    For some given signal noise ratio (SNR)values, the optimal SFs under each outer iteration for the component codesC1of turbo-polar code with SCAN or BP decoding are calculated and listed in Table I. Those SFs are calculated by Eq. (9). As to afixed SNR,the SF increases with the number of outer iteration. The reason is that the exchanged extrinsic information is more accurate along with the increase of iteration number. In addition, the SF becomes large with the increase of SNR. This is due to the improved system performance. The empirical value offfor the genie-aided SCAN and BP is 4 and 12, respectively. The total simulation frame number Γ for turbo-polar code is 106.

    The BER performance of turbo-polar code by SCAN decoder with different SFs are exhibited in figure 2(a), where the constituent codes areC1andC2, and they are marked with solid line and dotted line respectively.The diamond and square denote the SFs set to all 1s (standard SCAN decoding) and the optimal values (refer to Table I(a)), respectively.In addition, the outer iteration numberMis 6. For the turbo-polar code with component codesC1, it can be observed that there is about 0.3 dB gain obtained by introducing the optimal SFs at BER 10?4. Meanwhile, the performance curve of turbo-polar code with the fixed scaling factor 0.75 is also given. Compared with it, the case with the SFs obtained by the proposed method has some gains. However, the selection of fixed coefficient 0.75 is experimental. As to the determination of SFs,we provide the theoretical support.

    Fig. 2. Performance comparison of turbo-polar code with different SFs.

    In order to facilitate comparison, the simulation parameter is configured as [1]. That is, the component codes areC1, BP decoder is the component decoder with the maximum inner iteration number Θ=60, the outer iteration numberMis 3 and the SNR interval is set to 3.8~4.8 dB. From the simulation results offigure 2(b), it can be observed that the performance with the optimal SFs (refer to Table I(b)) has 0.7 dB gain compared to that with SFs all 1s at BER 10?4. Further, the performance of turbo-polar code with the SFs obtained by our method is better than that given in [1].

    Besides, the optimum SFs for SCAN decoding and BP decoding can be calculated off line. Thus the decoding complexity with the addition of SFs is the same as that without SFs except the complexity brought by the multiplication operation of SFs. Taken the performance and complexity consideration together,it can make a conclusion that the decoding performance is improved at a little cost of complexity.

    V. CONCLUSIONS

    In this paper, a SFs optimization criterion is proposed for the weighted iterative decoding of turbo-polar code. And a genie-aided based SFs optimization algorithm for SCAN/BP decoding is presented. Compared with the standard iterative decoding, the case with the optimal SFs will achieve better performance.

    In the future, we will further focus on the choice of target reference decoding algorithm.In addition, other scaling factor optimization approaches may be considered.

    ACKNOWLEDGEMENTS

    This work was supported by the National Natural Science Foundation of China (No.61671080), the National Natural Science Foundation of China (No. 61771066) and Nokia Beijing Bell Lab.

    [1] D. Wu, A. Liu, Y. Zhang, et al., “Parallel concatenated systematic polar codes,”IET Elec. Letters,vol. 52, no. 1, 2016, pp. 43-45.

    [2] Q. Zhang, A. Liu, Y. Zhang, et al., “Practical design and decoding of parallel concatenated structure for systematic polar codes,”IEEE Trans.Commun., vol. 64, no. 2, 2016, pp. 456-466.

    [3] E. Arikan, “Systematic polar coding,”IEEE Commun. Lett., vol. 15, no. 8, 2011, pp. 860-862.

    [4] E. Arikan, “Channel Polarization: A method for constructing capacity achieving codes for symmetric binary-input memoryless channels,”IEEE Trans. Inf.Theory, vol. 55, no. 7, 2009, pp. 3051-3073.

    [5] I. Tal, A. Vardy, “List decoding of polar codes,”Proc. IEEE Int. Symp. Inform. Theory (ISIT), 2011,pp. 1-5.

    [6] K. Chen, K. Niu, J. Lin, “Improved Successive Cancellation Decoding of Polar Codes,”IEEE Trans.Commun., vol. 61, no.8, 2013, pp. 3100-3107.

    [7] K. Chen, K. Niu, “Stack Decoding of Polar Codes,”Electron. Lett., vol. 48, no. 12, 2012, pp.695-696.

    [8] E. Arikan, “A performance comparison of polar codes and reed-muller codes,”IEEE Commun.Lett., vol. 12, no. 6, 2008, pp. 447-449.

    [9] B. Yuan, K. Parhi, “Early stopping criteria for energy-efficient low latency belief-propagation polar code decoders,”IEEE Transactions on Signal Processing, vol. 62, no. 24, 2014, pp. 6496-6506.

    [10] U. Fayyaz and J. Barry, “Low-complexity soft-output decoding of polar codes,”IEEE Sel.Com., vol. 32, no. 5, 2014, pp. 958-966.

    [11] U. Fayyaz and J. Barry, “A low-complexity soft-output decoder for polar codes,”Proc. IEEE Global Communications Conference (GLOBECOM), 2013, pp. 2692-2697.

    [12] F. Alberge, “Min-sum decoding of irregular LDPC codes with adaptive scaling based on mutual information,”Proc. IEEE International Symposium on Turbo Codes and Iterative Information Processing, 2016, pp. 71-75.

    [13] D. Yue, H. Nguyen, “Unified scaling factor approach for turbo decoding algorithms,”IET Com., vol. 4, no. 8, 2010, pp. 905-914.

    [14] P. Trifonov, “Efficient Design and Decoding of Polar Codes,”IEEE Trans. Commun., vol. 60, no.11, 2012, pp. 3221-3227.

    [15] G. Roussas, “A course in mathematical statistics,”Academic Press, 1997.

    麻豆乱淫一区二区| 啦啦啦免费观看视频1| 国产欧美日韩一区二区三区在线| 免费在线观看影片大全网站| 久久久久久免费高清国产稀缺| 亚洲中文字幕日韩| 老司机靠b影院| 身体一侧抽搐| 激情视频va一区二区三区| 午夜两性在线视频| 国产一区二区三区视频了| 激情在线观看视频在线高清 | 一二三四社区在线视频社区8| 午夜福利,免费看| 亚洲精品美女久久av网站| 露出奶头的视频| 黄频高清免费视频| 在线观看午夜福利视频| 国产精品久久视频播放| 久久久久国内视频| 麻豆国产av国片精品| 精品久久久久久电影网| 狂野欧美激情性xxxx| 正在播放国产对白刺激| 丁香六月欧美| 无限看片的www在线观看| 欧美不卡视频在线免费观看 | 久久影院123| 99精品在免费线老司机午夜| 欧美乱码精品一区二区三区| 国产精品乱码一区二三区的特点 | 夜夜夜夜夜久久久久| 最新在线观看一区二区三区| 成熟少妇高潮喷水视频| 国内久久婷婷六月综合欲色啪| 久久国产精品人妻蜜桃| 在线观看免费高清a一片| 久久精品亚洲精品国产色婷小说| 亚洲色图av天堂| 欧美亚洲日本最大视频资源| 婷婷成人精品国产| 乱人伦中国视频| 国产不卡一卡二| 在线永久观看黄色视频| 欧美+亚洲+日韩+国产| 日韩成人在线观看一区二区三区| 国产不卡av网站在线观看| 国产欧美亚洲国产| 俄罗斯特黄特色一大片| 电影成人av| 精品熟女少妇八av免费久了| 久久草成人影院| 国产精品一区二区在线不卡| 黄色毛片三级朝国网站| 免费在线观看视频国产中文字幕亚洲| 国产精品免费视频内射| 一进一出抽搐gif免费好疼 | 80岁老熟妇乱子伦牲交| 岛国毛片在线播放| 国产伦人伦偷精品视频| 久久精品亚洲av国产电影网| 极品人妻少妇av视频| 欧美国产精品一级二级三级| 久久热在线av| 亚洲国产欧美网| 精品福利观看| 亚洲精品一卡2卡三卡4卡5卡| 女同久久另类99精品国产91| 日韩制服丝袜自拍偷拍| avwww免费| 天堂√8在线中文| 免费女性裸体啪啪无遮挡网站| 中亚洲国语对白在线视频| 久久香蕉激情| 久久久国产一区二区| 国产精品av久久久久免费| av超薄肉色丝袜交足视频| 中文欧美无线码| 日韩一卡2卡3卡4卡2021年| 国产精品欧美亚洲77777| 我的亚洲天堂| 亚洲自偷自拍图片 自拍| 亚洲三区欧美一区| av天堂在线播放| 另类亚洲欧美激情| 国产免费现黄频在线看| 老鸭窝网址在线观看| 免费在线观看黄色视频的| 亚洲精品国产一区二区精华液| 亚洲 欧美一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 精品少妇一区二区三区视频日本电影| 91字幕亚洲| 少妇被粗大的猛进出69影院| 露出奶头的视频| 国产成人影院久久av| 日本撒尿小便嘘嘘汇集6| 伦理电影免费视频| 午夜日韩欧美国产| 久久国产精品影院| 国产在线一区二区三区精| 日韩欧美一区二区三区在线观看 | 99热网站在线观看| 久久国产精品人妻蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 十八禁人妻一区二区| 美女 人体艺术 gogo| 色尼玛亚洲综合影院| 男男h啪啪无遮挡| 侵犯人妻中文字幕一二三四区| 乱人伦中国视频| 国产精品二区激情视频| 午夜亚洲福利在线播放| 欧美精品一区二区免费开放| 91麻豆av在线| 热re99久久国产66热| 亚洲一区二区三区不卡视频| 美国免费a级毛片| 一边摸一边做爽爽视频免费| 乱人伦中国视频| 国产一区二区三区综合在线观看| 中文字幕人妻丝袜制服| 亚洲精华国产精华精| 亚洲一区二区三区欧美精品| 高清毛片免费观看视频网站 | 欧美av亚洲av综合av国产av| 精品一区二区三卡| 日韩免费av在线播放| 日韩欧美国产一区二区入口| 亚洲少妇的诱惑av| 纯流量卡能插随身wifi吗| 日韩欧美国产一区二区入口| 国产成人系列免费观看| 午夜福利欧美成人| 两个人免费观看高清视频| 欧美黄色片欧美黄色片| 久久久国产精品麻豆| 欧美日本中文国产一区发布| 五月开心婷婷网| 亚洲精华国产精华精| 国产精品亚洲av一区麻豆| 丰满迷人的少妇在线观看| 搡老熟女国产l中国老女人| 97人妻天天添夜夜摸| 少妇粗大呻吟视频| 少妇被粗大的猛进出69影院| 国产精品一区二区在线观看99| 亚洲av日韩在线播放| 人人妻人人澡人人看| 色综合欧美亚洲国产小说| 搡老乐熟女国产| 夜夜躁狠狠躁天天躁| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区精品视频观看| 午夜视频精品福利| 午夜免费成人在线视频| 99re在线观看精品视频| 亚洲精品粉嫩美女一区| 免费女性裸体啪啪无遮挡网站| 中国美女看黄片| 免费观看a级毛片全部| 一级片'在线观看视频| 成人18禁高潮啪啪吃奶动态图| 黑人操中国人逼视频| 国产精品亚洲一级av第二区| 久久久精品免费免费高清| 日韩三级视频一区二区三区| 18禁美女被吸乳视频| 如日韩欧美国产精品一区二区三区| 99热网站在线观看| 午夜成年电影在线免费观看| 香蕉久久夜色| 一边摸一边做爽爽视频免费| 精品亚洲成国产av| 国产精品免费一区二区三区在线 | 后天国语完整版免费观看| 可以免费在线观看a视频的电影网站| 黄片播放在线免费| 窝窝影院91人妻| 99国产精品一区二区三区| 国产精品欧美亚洲77777| www.精华液| 黄片播放在线免费| 成年人午夜在线观看视频| 午夜视频精品福利| 99re在线观看精品视频| 国产91精品成人一区二区三区| 91成年电影在线观看| 男女下面插进去视频免费观看| 一级作爱视频免费观看| 欧美日韩亚洲国产一区二区在线观看 | 久久久久国产一级毛片高清牌| 丰满迷人的少妇在线观看| 亚洲一区中文字幕在线| 午夜免费成人在线视频| 黄片小视频在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 交换朋友夫妻互换小说| 国产成人一区二区三区免费视频网站| 国产日韩一区二区三区精品不卡| 欧美激情久久久久久爽电影 | 久久久久精品国产欧美久久久| 久久香蕉精品热| 国产成人精品在线电影| 欧美精品av麻豆av| 色在线成人网| 日本一区二区免费在线视频| 岛国在线观看网站| 色94色欧美一区二区| 国产男女内射视频| 日韩欧美国产一区二区入口| 国产亚洲欧美在线一区二区| 欧美激情高清一区二区三区| 中文字幕人妻熟女乱码| 精品一区二区三区av网在线观看| 天堂俺去俺来也www色官网| 亚洲精品一二三| 亚洲五月天丁香| 熟女少妇亚洲综合色aaa.| 欧美 亚洲 国产 日韩一| av中文乱码字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲人成电影观看| 成人18禁在线播放| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利视频在线观看免费| 久久精品aⅴ一区二区三区四区| 日韩欧美免费精品| 99精品久久久久人妻精品| 成人18禁在线播放| av免费在线观看网站| 精品一区二区三卡| 交换朋友夫妻互换小说| 男女高潮啪啪啪动态图| 一本综合久久免费| 亚洲 国产 在线| 女性生殖器流出的白浆| 18禁黄网站禁片午夜丰满| 精品少妇久久久久久888优播| 久久久久久免费高清国产稀缺| 亚洲av美国av| 欧美一级毛片孕妇| 自线自在国产av| 国产黄色免费在线视频| 亚洲国产精品合色在线| 天天添夜夜摸| 欧美最黄视频在线播放免费 | 丝袜在线中文字幕| 久久精品国产亚洲av香蕉五月 | 天天躁日日躁夜夜躁夜夜| 纯流量卡能插随身wifi吗| 美女高潮到喷水免费观看| 99香蕉大伊视频| 最新美女视频免费是黄的| 不卡一级毛片| 国产欧美亚洲国产| 三级毛片av免费| 成人精品一区二区免费| 建设人人有责人人尽责人人享有的| 午夜福利欧美成人| 久久天躁狠狠躁夜夜2o2o| 男女高潮啪啪啪动态图| 激情视频va一区二区三区| 老汉色av国产亚洲站长工具| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人免费无遮挡视频| av天堂在线播放| 日本a在线网址| 高清av免费在线| 亚洲五月色婷婷综合| 99国产精品免费福利视频| 国产精品美女特级片免费视频播放器 | 一区二区三区国产精品乱码| 成人国产一区最新在线观看| 在线免费观看的www视频| 久久亚洲真实| 国产人伦9x9x在线观看| 精品国产亚洲在线| av有码第一页| 在线av久久热| 国产精品免费视频内射| 欧美黑人欧美精品刺激| 久久亚洲真实| 亚洲在线自拍视频| 久久久久久久国产电影| 国产精品av久久久久免费| 婷婷丁香在线五月| 亚洲色图av天堂| 美女高潮喷水抽搐中文字幕| 日韩一卡2卡3卡4卡2021年| 女性被躁到高潮视频| 精品国产美女av久久久久小说| 大香蕉久久成人网| 日日摸夜夜添夜夜添小说| 女人高潮潮喷娇喘18禁视频| 一夜夜www| 日韩欧美在线二视频 | 亚洲人成电影观看| 国产主播在线观看一区二区| 美女高潮喷水抽搐中文字幕| 亚洲精华国产精华精| 99久久精品国产亚洲精品| 亚洲一区中文字幕在线| 91麻豆精品激情在线观看国产 | aaaaa片日本免费| 男男h啪啪无遮挡| 国产精品久久久av美女十八| av网站免费在线观看视频| 91大片在线观看| 好男人电影高清在线观看| 免费女性裸体啪啪无遮挡网站| 国产精品久久电影中文字幕 | 五月开心婷婷网| 国产成人欧美在线观看 | 高清黄色对白视频在线免费看| 免费久久久久久久精品成人欧美视频| 黑人巨大精品欧美一区二区mp4| 99国产精品免费福利视频| 无人区码免费观看不卡| 超碰成人久久| 久久中文看片网| 精品熟女少妇八av免费久了| 老司机深夜福利视频在线观看| 久久狼人影院| 国产精品偷伦视频观看了| 91精品国产国语对白视频| 国产深夜福利视频在线观看| 成在线人永久免费视频| 亚洲avbb在线观看| 日本黄色视频三级网站网址 | netflix在线观看网站| 亚洲精品久久成人aⅴ小说| 国产熟女午夜一区二区三区| 9191精品国产免费久久| 一区二区日韩欧美中文字幕| 亚洲黑人精品在线| 人人妻人人添人人爽欧美一区卜| 99国产极品粉嫩在线观看| 俄罗斯特黄特色一大片| 黄色丝袜av网址大全| 伊人久久大香线蕉亚洲五| 亚洲aⅴ乱码一区二区在线播放 | 日本vs欧美在线观看视频| 久久精品亚洲熟妇少妇任你| 在线观看免费视频网站a站| 久久精品亚洲av国产电影网| 看免费av毛片| 啦啦啦免费观看视频1| 久久久久久久久久久久大奶| 日日爽夜夜爽网站| 亚洲国产精品sss在线观看 | 91精品三级在线观看| 国产成人免费观看mmmm| 又紧又爽又黄一区二区| av有码第一页| 夫妻午夜视频| 亚洲全国av大片| 夜夜爽天天搞| 看片在线看免费视频| 日韩免费av在线播放| 亚洲国产欧美一区二区综合| 伦理电影免费视频| 亚洲精品在线观看二区| 最新的欧美精品一区二区| 男男h啪啪无遮挡| 久热这里只有精品99| 黄色片一级片一级黄色片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av美国av| 少妇的丰满在线观看| 亚洲精品中文字幕在线视频| 日韩欧美免费精品| 午夜免费鲁丝| 久久狼人影院| 一进一出抽搐动态| 9热在线视频观看99| 视频区欧美日本亚洲| 校园春色视频在线观看| 999久久久国产精品视频| 久久亚洲真实| 色播在线永久视频| 丰满的人妻完整版| 很黄的视频免费| 麻豆乱淫一区二区| 国产精品av久久久久免费| 黄片播放在线免费| 巨乳人妻的诱惑在线观看| 一级作爱视频免费观看| 亚洲午夜精品一区,二区,三区| 国产三级黄色录像| 法律面前人人平等表现在哪些方面| 国产亚洲av高清不卡| 极品教师在线免费播放| 人人澡人人妻人| 国产一区有黄有色的免费视频| 欧美乱妇无乱码| 不卡av一区二区三区| 在线天堂中文资源库| 大片电影免费在线观看免费| 精品电影一区二区在线| 男女下面插进去视频免费观看| 欧美久久黑人一区二区| 美女午夜性视频免费| 在线观看日韩欧美| 麻豆成人av在线观看| 午夜亚洲福利在线播放| 日日爽夜夜爽网站| 欧美午夜高清在线| 久久午夜亚洲精品久久| 无限看片的www在线观看| 99在线人妻在线中文字幕 | 黄色女人牲交| 少妇的丰满在线观看| 韩国精品一区二区三区| 18在线观看网站| 色婷婷久久久亚洲欧美| 国产亚洲欧美在线一区二区| 久久ye,这里只有精品| 亚洲成人免费av在线播放| 中文字幕人妻熟女乱码| 亚洲专区国产一区二区| 国产伦人伦偷精品视频| 一区二区三区国产精品乱码| 两个人免费观看高清视频| 国产成人av教育| 久久久精品区二区三区| 99国产精品一区二区蜜桃av | 成在线人永久免费视频| 亚洲欧美日韩高清在线视频| 久久精品熟女亚洲av麻豆精品| 精品久久久久久电影网| 国产99白浆流出| 亚洲国产欧美一区二区综合| 无限看片的www在线观看| 亚洲中文av在线| 亚洲欧洲精品一区二区精品久久久| 国产一区有黄有色的免费视频| 国产精品美女特级片免费视频播放器 | 国产欧美日韩综合在线一区二区| 国产成人精品久久二区二区免费| 99热只有精品国产| 亚洲综合色网址| 精品人妻1区二区| 午夜精品久久久久久毛片777| 精品少妇一区二区三区视频日本电影| 18禁美女被吸乳视频| 丝袜美足系列| 亚洲久久久国产精品| 在线播放国产精品三级| 精品一区二区三卡| 99热网站在线观看| 亚洲专区中文字幕在线| 制服诱惑二区| 亚洲五月色婷婷综合| 国产成人精品无人区| 国产亚洲精品一区二区www | 黄色毛片三级朝国网站| 99热只有精品国产| 男女高潮啪啪啪动态图| 午夜福利欧美成人| 成人国语在线视频| 乱人伦中国视频| 99精品久久久久人妻精品| 在线观看www视频免费| 久久久久久久久久久久大奶| 国产免费男女视频| 精品久久久久久久毛片微露脸| 91老司机精品| 午夜福利一区二区在线看| 久久久久视频综合| 男女午夜视频在线观看| 国产成人av教育| 久久久久久人人人人人| 十八禁人妻一区二区| 亚洲欧美精品综合一区二区三区| 欧美日韩乱码在线| 欧美乱码精品一区二区三区| 日韩熟女老妇一区二区性免费视频| 免费观看精品视频网站| 亚洲男人天堂网一区| 国产高清国产精品国产三级| 精品人妻在线不人妻| 狂野欧美激情性xxxx| 国产野战对白在线观看| x7x7x7水蜜桃| 日韩制服丝袜自拍偷拍| 国产欧美日韩综合在线一区二区| 飞空精品影院首页| 国产av又大| 身体一侧抽搐| 国产av又大| 超碰97精品在线观看| 中文欧美无线码| 精品国产亚洲在线| 欧美亚洲 丝袜 人妻 在线| 下体分泌物呈黄色| 99国产精品一区二区蜜桃av | 69av精品久久久久久| 一本综合久久免费| 久久国产精品大桥未久av| 亚洲中文日韩欧美视频| 国产亚洲欧美在线一区二区| 日日爽夜夜爽网站| 大香蕉久久网| 真人做人爱边吃奶动态| 捣出白浆h1v1| 我的亚洲天堂| 天堂√8在线中文| av国产精品久久久久影院| 亚洲av美国av| 50天的宝宝边吃奶边哭怎么回事| 一本一本久久a久久精品综合妖精| 久久久久精品国产欧美久久久| 国产蜜桃级精品一区二区三区 | 在线永久观看黄色视频| 丰满人妻熟妇乱又伦精品不卡| 久久久精品免费免费高清| 国产精品 欧美亚洲| 在线永久观看黄色视频| 亚洲欧洲精品一区二区精品久久久| 日韩欧美一区二区三区在线观看 | 黄网站色视频无遮挡免费观看| 18禁裸乳无遮挡免费网站照片 | 精品一区二区三区视频在线观看免费 | 乱人伦中国视频| 免费在线观看亚洲国产| 女人高潮潮喷娇喘18禁视频| 十分钟在线观看高清视频www| 亚洲美女黄片视频| 国产区一区二久久| 欧美av亚洲av综合av国产av| 中出人妻视频一区二区| 午夜福利欧美成人| 欧洲精品卡2卡3卡4卡5卡区| 在线永久观看黄色视频| 国产在线精品亚洲第一网站| 日韩欧美三级三区| 国产成人av激情在线播放| 日本精品一区二区三区蜜桃| 精品久久久久久久久久免费视频 | 日本欧美视频一区| 一级片'在线观看视频| 一区二区日韩欧美中文字幕| 黄色丝袜av网址大全| 午夜福利,免费看| 高潮久久久久久久久久久不卡| 99国产精品免费福利视频| 人妻丰满熟妇av一区二区三区 | 久久久精品国产亚洲av高清涩受| 久久精品国产a三级三级三级| 国产精品秋霞免费鲁丝片| 黑人巨大精品欧美一区二区蜜桃| 无人区码免费观看不卡| 极品少妇高潮喷水抽搐| 99久久精品国产亚洲精品| tube8黄色片| 欧美另类亚洲清纯唯美| 在线永久观看黄色视频| 久久久久久久久免费视频了| 久久久水蜜桃国产精品网| 亚洲精品av麻豆狂野| 视频区欧美日本亚洲| 欧美乱码精品一区二区三区| 男女之事视频高清在线观看| 激情在线观看视频在线高清 | 亚洲精品成人av观看孕妇| 国产成人影院久久av| 婷婷成人精品国产| 国产成人一区二区三区免费视频网站| 波多野结衣av一区二区av| 91麻豆av在线| 另类亚洲欧美激情| 黄色a级毛片大全视频| 久久久久久久午夜电影 | 精品福利观看| 久久精品亚洲av国产电影网| 丝袜在线中文字幕| 久久久精品国产亚洲av高清涩受| 日韩成人在线观看一区二区三区| av网站在线播放免费| 国产不卡av网站在线观看| 精品国内亚洲2022精品成人 | 夜夜夜夜夜久久久久| 国产一区在线观看成人免费| 国产片内射在线| 深夜精品福利| 一级毛片精品| 国产男女超爽视频在线观看| 国产免费男女视频| 99国产精品一区二区蜜桃av | 一区二区三区精品91| 老熟妇仑乱视频hdxx| 精品久久久久久电影网| 欧美在线黄色| 欧美大码av| 国产亚洲欧美在线一区二区| 无限看片的www在线观看| 91麻豆精品激情在线观看国产 | 欧美最黄视频在线播放免费 | 免费在线观看完整版高清| 少妇猛男粗大的猛烈进出视频| 欧美激情 高清一区二区三区| av国产精品久久久久影院| 99国产综合亚洲精品| 一二三四在线观看免费中文在| 一区在线观看完整版| av天堂在线播放| 国产精品免费大片| 91精品三级在线观看| 亚洲欧美一区二区三区久久| 满18在线观看网站| 丰满饥渴人妻一区二区三| 无人区码免费观看不卡| 国产真人三级小视频在线观看| 国产日韩一区二区三区精品不卡|