• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Iterative Decoding Scheme for Davey-MacKay Construction

    2018-06-21 02:33:18YuanLiuWeigangChen
    China Communications 2018年6期

    Yuan Liu, Weigang Chen*

    School of Microelectronics, Tianjin Univeristy, Tianjin 300072, China

    I. INTRODUCTION

    In communication systems, loss of synchronization may introduce synchronization errors,i.e., symbol insertions/deletions, into the received sequences. Since insertions/deletions may cause the length of received sequences to be longer or shorter than transmitted sequences, traditional coding techniques that are designed only for correcting substitution errors cannot be directly applied [1].

    Codes that can correct synchronization errors have been comprehensively surveyed in[2]. These codes include algebraic block codes[3], convolutional codes, spatially-coupled(SC) codes [4], time-variant block codes [5, 6,7] and concatenated codes [8]. Among these coding techniques, the Davey-MacKay (DM)construction [8], which uses the watermark inner code and the non-binary low-density parity-check (NB-LDPC) outer code, is the most promising candidate. In this scheme, the watermark decoder recovers the synchronization and then produces symbol-by-symbol log-likelihood ratios (LLRs) for the LDPC decoder. The LDPC decoder, which is initialized using LLRs, corrects residual errors from the watermark decoder.

    Some researchers generalized the DM construction for other applications, such as in the speech watermarking system [9], where synchronization poses a more acute challenge than in the traditional communication system.By adopting the DM construction, significant improvement is achieved in the speech watermarking. In [5-7], time-varying block codes were designed, which generalized a number of previous synchronization error-correcting codes. Moreover, the maximum a posteriori(MAP) decoder was used and an iterative scheme was considered in [5] to achieve improved performance compared with the DM construction. The DM construction was also adapted to the insertion, deletion, substitution and the additive white Gaussian noise(IDS-AWGN) channel. Then, a soft-input watermark decoder, which was a modification of the original decoder for the DM construction,was developed to correct those errors [10].Furthermore, an iterative decoder for the DM construction over the IDS-AWGN channel was proposed in [11] to improve the performance.In terms of the code construction, a construction method for the watermark was introduced in [12], which achieves performance improvement.

    An iterative decoding scheme, in which the estimated average error rate and the estimated transmitted codeword from the outer decoder are fed back into the inner decoder, is presented to improve the performance of the DM construction.

    Considering that the original DM construction over the IDS channel is widespreadly used, the improvement of this scheme is investigated in this paper. The watermark decoder for the original DM construction in [8]only knows the average density of the sparse code for the transmitted codewords. Absence of the specific transmitted codeword information decreases the accuracy of the forward/backward quantities, which determine the capability of the watermark decoder to identify synchronization errors. In [13], an alternative symbol-level inner decoding algorithm is presented, which improves the performance by considering the actual transmitted codebook.Furthermore, an iterative decoder based on the symbol-level inner decoder is presented in[14], and the improvement achieved by using the iterative decoding scheme comes at a price of only a small increase in complexity.

    In this paper, an iterative decoding scheme based on the bit-level inner decoder is proposed to improve the performance of the DM construction. The estimated average bit error rate and the specific codeword from the LDPC decoder are fed back into the watermark decoder to update branch quantities of the decoding trellis in the subsequent iteration.The refined branch quantities yield accurate forward/backward quantities and reliable soft output LLRs that are utilized by the LDPC decoder to obtain the new estimates of the sparse LDPC codewords. As the iteration increases,the capability of identifying synchronization errors increases, and the number of residual errors and the number of bit errors in the estimated LDPC codeword decrease. Little prior knowledge of the transmitted codewords is required at the start of the iterations. As a result,the proposed iterative decoding scheme outperforms the DM construction by iteratively optimizing the synchronization and error-correcting capability.

    The rest of this paper is organized as follows. In Section II, we describe the synchronization error-correcting concatenated scheme,i.e., the DM construction. In Section III, a detailed description of the proposed iterative decoding scheme and the explanation why this method improves the performance are presented. Simulation results are given in Section IV to show the performance gain achieved by the proposed method. In this section, we also analyze the effect of the feedback information on the performance of the proposed method and demonstrate that the setting of the feedback information in this paper is reasonable. Finally, in Section V, we draw the conclusion.

    II. DM CONSTRUCTION

    2.1 System model

    The DM construction, which includes a watermark inner code and a sparsified NB-LDPC outer code, is illustrated in figure 1. The watermark code is employed to correct insertions/deletions and recover the synchronization. The NB-LDPC code [15-18], which is characterized by its sparse parity check matrix defined over Galois field GF(q=2k), is employed to correct residual errors. Using the NB-LDPC code, the information sequence m of lengthKsymbols is encoded into a codeword d with the codelength ofNsymbols. d is then mapped into a sparse code s, where the subsequencewith lengthnhas the minimum average densityf, 0≤i<N. An example of the one-to-one mapping μ: di→siis shown in Table I. By adding s modulo 2,to the inner watermark code w with the code length ofNc, the transmitted bit vector t is generated, where w is the binary random sequence and is constructed using a uniform random bit generator. The block length of the transmitted sequence t isNc=nNand the overall code rate

    Each bittiis sent to the binary IDS channel[3] with an insertion probabilityPi, deletion probabilityPdand transmission probabilityPt=1?Pi?Pd. Then, the transmitted bittiis substituted with the probabilityPs.

    By comparing the received sequence r with w, the watermark decoder computes the symbol-by-symbol LLRs l. Finally, by employing l, the NB-LDPC decoder generates the estimate of the information sequence.

    2.2 Inner decoder

    The received sequence r can be regarded as the observation sequence generated by the hidden Markov model (HMM). The synchronization drifts are the hidden states of the HMM, and the synchronization errors affects the state transition. Then, using the forward-backward algorithm [8, 19-20], the watermark decoder infers the block boundary and provides symbol-by-symbol LLRs l for the NB-LDPC decoder [8]. We assume thatP(di= λ) =P(di=0), and computelias

    wheresymbol,Thej-th synchronization driftxjequals the number of insertions minus the number of deletions, whentjis ready to be transmitted, 0≤j<Nc.xjtakes values

    wherexmaxis the maximum allowed drift. In

    is the probability that the drift at thej-th point isyand that the subsequenceagrees with r. The maximum length of consecutive insertions isI. Similarly, the backward quantity [8]

    is the probability of receiving (rj+y,…,rNc+5xmax)given a drift ofyat thej-th point, where(Nc+ 5xmax) is the end of the sliding-window decoding.Pab=P(xj+1=b|xj=a) is the transition probability andQab,jis the conditional probability of receiving (rj+a,… ,rj+b) given the transition (xj=a) to (xj+1=b). The computation of the branch quantityPabQab,jis given as follows [8].

    Fig. 1. Overview of the DM construction.

    Table I. The one-to-one mapping μ: di → si (GF(16), n=5).

    where γ is the probability with (b?a+1)channel deletions, and β is the probability with (b?a) channel insertions.is the effective substitution rate, i.e., the probability that a received bit does not equal to the corresponding watermark bit.

    After performing the inner decoding, the outer decoder, which is initialized using l,corrects misidentified synchronization errors and produces estimates of the information sequences.

    III. ITERATIVE DECODING SCHEME

    In the DM construction, the bit ‘1’ in the sparse code, which is unknown to the inner decoder, introduces a random independent substitution. The absence of the knowledge of the sparse code decreases the reliability of forward/backward quantities, which affects the ability of the watermark code to identify the position of synchronization errors and the quality of probability information propagated to the outer decoder. As a result, the capability of the inner decoder to recover the synchronization is limited.

    In this paper, we attempt to take into account estimates of transmitted sparse codewords, and present an iterative decoding scheme. By adaptively obtaining more accurate information about the codewords, the reliability of forward/backward quantities and the synchronization ability of the inner decoder can be improved. Finally, the overall decoding error probability of the system decreases.

    The terms w andPfin the computation of branch quantityPabQab,jallow the inner decoder to admit feedback information, which enables us to use iterative decoding. We assume that the watermark code and the estimate of the sparse codeareknown to the inner decoder, wherehas aone-to-one mapping to, andis updated iteratively. Thus, w in(4) is replaced by t(δ)= w, where,δis the global iteration number. Based on this assumption, the substitutions in r include some substitutions introduced byand others introduced by the channel. Specifically, if the received bit is not equal totakes the error value or thej-th transmitted bit is substituted by a channel substitution.Therefore, in theδ-th iteration, the effective bit substitution rate is calculated as follows.

    In (5),f(0)is the average sparse density ifδ=0, andf(δ)is the average estimated error probability that thej-th actual sparse bit does not equal toifδ>0, wherej=ni+l. With the increasing ofδ, the number of the average estimated errors in the estimated codeword decreases. For δ> 0, sincef(δ)is unknown to the decoder, we assume that the probability decreases by a constant shrinking factor in each iteration. Thus,

    where α is the shrinking factor. In this paper,α is set to 1/δmax. In theδ-th global iteration, the computation ofis rewritten as follows.

    In theδ-th global iteration, only forward and backward quantities are updated, the values of the middle quantities remain unchanged. The forward quantity in theδ-th global iteration is described as follows.

    Similarly, the backward quantity is computed as follows.

    Then, in theδ-th iteration, the symbol-by-symbol LLR is computed as

    Figure 2 illustrates the updating procedure for the iterative decoding method. The message is exchanged between the decoding trellis diagram of the inner decoder and the Tanner graph of the outer decoder. In the first iteration,is set to all-zero andf(0)is equal to the average density of.The watermark decoder compares r with t(0), and infers the position of insertions/deletions. Then, the watermark decoder outputs likelihoods for the LDPC decoder. After performing the LDPC decoding, the estimated NB-LDPC codewordis generated, wherehas a one-one correspondence with. Bothand the updatedf(1)are fed back into the inner decoder to update the branch quantityin the iterative decoding scheme. The forward and backward quantities, i.e.,F(1)(y) andB(1)(y), are updated. Then, l(1)is obtained and is used by the LDPC decoder to output. Asδincreases, bit errors indecrease.

    When the proposed iterative decoder is employed, the computation of the decoder will increase. Since the computation structure of the inner and outer decoder are not modified and only the effective substitution rateand the reference sequence are updated, the computation needed in the proposed iterative scheme is almost δ*times as much as the computation in the original DM decoding scheme, where δ*is the average number of global iteration. It will be demonstrated later that δ*is quite small for the proposed iterative decoding scheme in Section IV.

    Fig. 2. Illustration of the updating procedure for the iterative decoding scheme.

    IV. SIMULATION RESULTS

    In this part, simulations are performed to verify the iterative scheme. Watermark sequences used in the simulation are binary random sequences. The parameters of the concatenated code are described as follows. The NB-LDPC code is a (999, 888) LDPC code over GF(16).N=999,n=5. The rate of the watermark code isk/n=4/5.f(0)=0.3125. The overall code length and code rate of the DM construction are 4995 and 0.71, respectively.Pi=Pd. The decoding simulation parameters are set as follows. The maximum insertion length is limited toI=2.xmaxis set to be several times larger than the standard deviation of the synchronization drift over one block length [8]. In this paper,xmax=5. The initial drift of thefirst transmitted block is assumed to be zero.F0(x)=1 ifx=0 andF0(x)=0 otherwise. By using the sliding-window decoding, the forward quantities at the start of the next transmitted block are calculated as follows.

    Table II. Simulation settings.

    Fig. 3. Performance of the proposed iterative decoding scheme under different δmax.

    where ε is a normalized constant. The block boundaries are not known at the receiver. The initial values for the backward quantities at position (Nc+ 5xmax) are set to equal probability, i.e., 1/(2xmax+ 1) as follows. The log-domain sum-product algorithm with a maximum local iteration number of 20 is employed in the LDPC decoder. The local iteration number is recorded when the log-domain sum-product algorithm is stop, which means that the codeword is decoded successfully or the iteration number reaches the maximum setting. The maximum global iteration numberδmax, which is the rounds of feeding back the decision information from the outer decoder to the inner decoder, is set to 5, 10, 20, and 30 respectively. The iterative decoding simulation stops when the codeword is decoded successfully orδ=δmax. For conciseness, we list all the simulation parameters in Table II.

    Firstly,figure 3 shows the frame error rates(FERs) of the proposed iterative decoding scheme withδmaxfrom 5 to 30 atPs=0 andPs=0.003, respectively. As observed in figure 3, the system with the iterative decoder performs better than the non-iterative counterpart,i.e., the DM construction. It is also clear that the performance gain provided by the proposed scheme does not increase significantly withδmaxincreasing. Thus, we can setδmaxto be a quite small value. In the following, the conclusion will also be verified using the average number of iterations.

    Secondly, in figure 4, results of the iterative decoding scheme are given for two settings off(δ)in order to demonstrate the effect off(δ)on the performance gain. It can be observed that the iterative scheme can achieve significant performance gain by using the decreasingf(δ). Furthermore, we also provide the simulation result using constant densityf(δ)=0.001.It can be observed that when using the constant density, iterative scheme can obtain nearly identical performance as the scheme using decreasing density in (6). The method is more convenient for implementation. Considering thatf(δ)decreases in each iteration, it is reasonable to defineshown in (6).

    Thirdly, figure 5 illustrates the average number of global iterations δ*for the proposed iterative decoding scheme whenPs=0.003 andPs=0. Simulation stops when the codeword is decoded successfully or the maximum global iteration number of 30 is reached.Figure 5 shows that the average number of global iterations δ*is quite small. Thus, the performance gain achieved by the iterative scheme comes at the price of only a small increase in complexity compared with the DM construction, since computation needed in the proposed scheme are δ*times as much as the DM construction. Moreover, small δ*reveals that the convergence speed of the proposed global iterative scheme is fast, and the average decoding complexity is low. Thus,δmaxcan be set to be a small value and adjusted according to the channel condition.

    Fourthly, we demonstrate the synchronization error correction capability of the inner decoder. Actually, the final synchronization accuracy can be evaluated by FERs of the system, which is demonstrated in figure 3. The lower the FER curve is, the better the synchronization performance becomes. Moreover, we also compare the ratio of symbols whose drift position is detected unsuccessfully to the total symbols by using the forward-backward algorithm with the hard-decision in the simulation.As shown in figure 6, by using the proposed iterative decoding scheme, the ratio of the unsuccessfully detected drift position reduces,which means the synchronization accuracy is improved. The gain obtained is small, because the hard-decision results are used and one insertion/deletion may cause multiple symbols drift. However, thefinal overall FER decreases with the iterations significantly since the inner decoder provides the soft probability information for the LDPC decoder.

    Fig. 4. Results of the proposed iterative decoding scheme for f()δ=0.001 and f()δ in (6), δmax=5.

    Fig. 5. Average number of iterations for the proposed iterative decoding scheme when Ps=0.003 and Ps=0.

    Fig. 6. The ratio of symbols whose drift position unsuccessfully detected to the total symbols by using the forward-backward algorithm with the hard-decision in the simulation, Ps=0.003, δmax=20.

    Fig. 7. Lower bounds using the iterative decoding scheme under different δmax,Ps=0.

    Finally, the lower bounds, obtained using the iterative decoding scheme under different global iteration numberδmax, on the capacity of an insertion/deletion channel without substitution is illustrated in figure 7. According to[8], the lower boundClis obtained by multiplyingCeby the rate of the watermark code,whereCeis the lower bound on the capacity of the effective channel seen by the LDPC code after watermark decoding, andCe=1?H.His the average entropy ofP(di|r) from the watermark decoder.

    As shown in figure 7, the iterative decoder enables the communication at the rate greater than the non-iterative system.

    V. CONCLUSIONS

    An iterative decoding scheme, in which the estimated average error rate and the estimated transmitted codeword from the outer decoder are fed back into the inner decoder, is presented to improve the performance of the DM construction. Furthermore, the effect using different feedback information on the overall synchronization error-correcting performance is analyzed. Compared with the traditional DM construction, the proposed iterative decoding scheme can increase synchronization accuracy and achieve performance gain at the expense of a small increase in complexity.

    ACKNOWLEDGEMENTS

    This work was supported in part by National Natural Science Foundation of China(61671324) and the Director’s Funding from Qingdao National Laboratory for Marine Science and Technology.

    [1] M. Rahmati, T. M. Duman, “Bounds on the capacity of random insertion and deletion-additive noise channels,”IEEE Transactions on Information Theory,vol. 59, no. 9, 2013, pp. 5534-5546.

    [2] H. Mercier, V. K. Bhargava, V. Tarokh, “A survey of error-correcting codes for channels with symbol synchronization errors,”IEEE Communications Surveys & Tutorials,vol. 12, no. 1, 2010,pp. 87-94.

    [3] V. Guruswami, C. Wang, “Deletion codes in the high-noise and high-rate regimes,”IEEE Transactions on Information Theory,vol. 63, no. 4,2017, pp. 1961-1970.

    [4] R. Goto, K. Kasai, H. Kaneko. “Coding of insertion-deletion-substitution channels without markers,” Proceedings ofIEEE International Symposium on Information Theory,Barcelona,Spain, 2016, pp. 635 – 639.

    [5] J. A. Briffa, V. Buttigieg, S. Wesemeyer,“Time-varying block codes for synchronization errors: maximum a posteriori decoder and practical issues,”IET Journal of Engineering, vol.2014, no. 1, 2014, pp. 1-12.

    [6] V. Buttigieg, J. A. Briffa, “Improved code construction for synchronization error correction,”Proceedings of International ITG Conference on Systems, Communications and Coding, Hamburg, Germany, 2015, pp. 1-6.

    [7] J. A. Briffa, V. Buttigieg, “A MAP decoder for TVB codes on a generalized Iyengar–Siegel–Wolf BPMR Markov channel model,”IEEE Transactions on Magnetics,vol. 52, no. 2, 2016, pp. 1-9.

    [8] M. C. Davey, D. J. C. Mackay, “Reliable communication over channels with insertions, deletions,and substitutions,”IEEE Transactions on Information Theory,vol. 47, no. 2, 2001, pp. 687-698.

    [9] D. J. Coumou, G. Sharma, “Insertion, deletion codes with feature-based embedding: a new paradigm for watermark synchronization with applications to speech watermarking,”IEEE Transactions on Information Forensics and Security,vol. 3, no. 2, 2008, pp. 153-165.

    [10] Xiaopeng Jiao, M. A. Armand, “Soft-input inner decoder for the Davey-MacKay construction,”IEEE Communications Letters,vol. 16, no. 5,2012, pp. 722-725.

    [11] Xiaopeng Jiao, Jianjun Mu, Rong Sun, “Iterative decoding for the Davey-MacKay construction over IDS-AWGN channel,”IEICE Transactions on Fundamentals, vol. E96-A, no. 5, 2013, pp. 1006-1009.

    [12] P. Nguyen, M. A. Armand, Tong Wu, “On the watermark string in the Davey-MacKay construction,”IEEE Communications Letters,vol. 17,no. 9, 2013, pp. 1830-1833.

    [13] J. A. Briffa, H. G. Schaathum, S. Wesemeyer,“An improved decoding algorithm for the Davey-MacKay construction,”Proceedings of IEEE International Conference on Communications,Cape Town, South Africa, 2010, pp. 1-5.

    [14] Xiaopeng Jiao, M. A. Armand, “Interleaved LDPC codes, reduced-complexity inner decoder and an iterative decoder for the Davey-MacKay construction,”Proceedings of IEEE International Symposium on Information Theory,Saint Petersburg, Russia, 2011, pp. 747-751.

    [15] J. O. Lacruz, F. Garcia-Herrero, M. J. Canet,et al. “High-performance NB-LDPC decoder with reduction of message exchange,”IEEE Transactions on Very Large Scale Integration Systems,vol. 24, no. 5, 2016, pp. 1950-1961.

    [16] Weigang Chen, C. Poulliat, D. Declercq,et al.,“Non-binary LDPC codes defined over the general linear group: finite length design and practical implementation issues,”Proceedings of IEEE the 69th Vehicular Technology Conference,Barcelona, Spain, 2009, pp. 1-5.

    [17] F. Steiner, G. Bocherer, G. Liva, “Protograph-based LDPC code design for shaped bit-metric decoding,”IEEE Journal on Selected Areas in Communications,vol. 34, no. 2, 2016,pp. 397-407.

    [18] J. O. Lacruz, F. Garcia-Herrero, M. J. Canet,et al.,“Reduced-complexity nonbinary LDPC decoder for high-order Galoisfields based on trellis minmax algorithm,”IEEE Transactions on Very Large Scale Integration Systems,vol. 24, no. 8, 2016,pp. 2643-2653.

    [19] Tong Wu, M. A. Armand, “The Davey-MacKay coding scheme for channels with dependent insertion, deletion and substitution errors,”IEEE Transactions on Magnetics,vol. 49, no. 1, 2013,pp. 489-495.

    [20] Feng Wang, D. Fertonani, T. M. Duman, “Symbol-level synchronization and LDPC code design for insertion/deletion channels,”IEEE Transactions on Communications,vol. 59, no. 5,2011, pp. 1287-1297.

    日韩免费av在线播放| 亚洲精品av麻豆狂野| 宅男免费午夜| 三上悠亚av全集在线观看| 天堂俺去俺来也www色官网| 9191精品国产免费久久| 熟女少妇亚洲综合色aaa.| 久久午夜亚洲精品久久| 亚洲中文av在线| 在线观看一区二区三区激情| 亚洲一区中文字幕在线| 看免费av毛片| 久久久国产成人精品二区 | 欧美av亚洲av综合av国产av| 97人妻天天添夜夜摸| 久久人人爽av亚洲精品天堂| 人人妻人人澡人人爽人人夜夜| 99久久人妻综合| 亚洲国产精品合色在线| 搡老熟女国产l中国老女人| 免费久久久久久久精品成人欧美视频| 日韩有码中文字幕| 母亲3免费完整高清在线观看| 国产三级黄色录像| 国产高清激情床上av| 97人妻天天添夜夜摸| 色综合婷婷激情| 久久人人爽av亚洲精品天堂| 亚洲综合色网址| 国产麻豆69| 后天国语完整版免费观看| 狠狠狠狠99中文字幕| 久久久水蜜桃国产精品网| 亚洲精品粉嫩美女一区| 黄色女人牲交| 精品视频人人做人人爽| 乱人伦中国视频| 亚洲精品国产区一区二| 一边摸一边做爽爽视频免费| 成人永久免费在线观看视频| 国产1区2区3区精品| 亚洲情色 制服丝袜| 精品一区二区三区av网在线观看| 免费av中文字幕在线| 色尼玛亚洲综合影院| 欧美另类亚洲清纯唯美| 成年女人毛片免费观看观看9 | 三级毛片av免费| 欧美日韩一级在线毛片| 午夜精品久久久久久毛片777| 这个男人来自地球电影免费观看| 免费看十八禁软件| 十八禁人妻一区二区| 亚洲精华国产精华精| av网站免费在线观看视频| 电影成人av| 亚洲一码二码三码区别大吗| 老司机影院毛片| 成在线人永久免费视频| 久久久久久久午夜电影 | 一a级毛片在线观看| 亚洲第一av免费看| 波多野结衣av一区二区av| 婷婷精品国产亚洲av在线 | 欧美乱妇无乱码| bbb黄色大片| 操美女的视频在线观看| 中文欧美无线码| 欧美日韩视频精品一区| 欧美精品一区二区免费开放| 欧美色视频一区免费| 中文字幕人妻熟女乱码| 欧美日韩福利视频一区二区| 亚洲色图 男人天堂 中文字幕| 日韩有码中文字幕| 国产精品亚洲av一区麻豆| 亚洲第一欧美日韩一区二区三区| 国产成人免费观看mmmm| 美女扒开内裤让男人捅视频| 91老司机精品| 丁香六月欧美| 国产精品 欧美亚洲| 久久精品aⅴ一区二区三区四区| 建设人人有责人人尽责人人享有的| 欧美不卡视频在线免费观看 | 淫妇啪啪啪对白视频| 午夜久久久在线观看| 两个人免费观看高清视频| 亚洲精品一卡2卡三卡4卡5卡| av天堂在线播放| 欧美精品高潮呻吟av久久| 日韩熟女老妇一区二区性免费视频| 久久天躁狠狠躁夜夜2o2o| 久久精品成人免费网站| 少妇的丰满在线观看| 欧美中文综合在线视频| 老司机午夜福利在线观看视频| 久久久精品国产亚洲av高清涩受| 国产欧美日韩一区二区精品| 成年版毛片免费区| 国产精品免费视频内射| 欧美日韩av久久| 欧美日韩黄片免| 欧美日韩亚洲高清精品| 亚洲少妇的诱惑av| 久久精品熟女亚洲av麻豆精品| 99精品久久久久人妻精品| 亚洲五月天丁香| 一区二区三区精品91| 欧美乱妇无乱码| 黄片大片在线免费观看| 丝袜人妻中文字幕| 亚洲熟女精品中文字幕| x7x7x7水蜜桃| 亚洲综合色网址| av天堂久久9| 免费av中文字幕在线| 法律面前人人平等表现在哪些方面| 日韩一卡2卡3卡4卡2021年| 午夜老司机福利片| 国产成人一区二区三区免费视频网站| 女人被狂操c到高潮| 高清在线国产一区| 啦啦啦在线免费观看视频4| 王馨瑶露胸无遮挡在线观看| 精品一区二区三区av网在线观看| 免费观看精品视频网站| 搡老乐熟女国产| 淫妇啪啪啪对白视频| 王馨瑶露胸无遮挡在线观看| 欧美不卡视频在线免费观看 | 最近最新中文字幕大全免费视频| 夜夜爽天天搞| 亚洲五月婷婷丁香| 国产极品粉嫩免费观看在线| 亚洲一区高清亚洲精品| 久久久久国产一级毛片高清牌| 久久午夜综合久久蜜桃| 亚洲在线自拍视频| 亚洲 欧美一区二区三区| 免费在线观看日本一区| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩av久久| 999久久久精品免费观看国产| videos熟女内射| 一a级毛片在线观看| 国产精品二区激情视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品永久免费网站| 日日夜夜操网爽| 欧美 亚洲 国产 日韩一| 国产成人影院久久av| 久久精品人人爽人人爽视色| 成在线人永久免费视频| 夜夜爽天天搞| 亚洲五月婷婷丁香| 免费观看a级毛片全部| 性少妇av在线| 国产精品免费大片| 亚洲精品av麻豆狂野| 变态另类成人亚洲欧美熟女 | 如日韩欧美国产精品一区二区三区| 老鸭窝网址在线观看| 91在线观看av| 久久ye,这里只有精品| 一级毛片女人18水好多| 国产亚洲精品一区二区www | 欧美激情极品国产一区二区三区| 欧美日韩乱码在线| 久久性视频一级片| 无人区码免费观看不卡| 一级片'在线观看视频| 欧美最黄视频在线播放免费 | av视频免费观看在线观看| 欧美日本中文国产一区发布| 老司机靠b影院| 亚洲片人在线观看| 国产97色在线日韩免费| aaaaa片日本免费| 日日夜夜操网爽| 飞空精品影院首页| 99在线人妻在线中文字幕 | 人人澡人人妻人| 亚洲在线自拍视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品av麻豆狂野| 无限看片的www在线观看| 久热爱精品视频在线9| 婷婷精品国产亚洲av在线 | 国产精品亚洲av一区麻豆| 黄片播放在线免费| 国产在视频线精品| 下体分泌物呈黄色| 一级作爱视频免费观看| 欧美人与性动交α欧美精品济南到| 热99re8久久精品国产| 色尼玛亚洲综合影院| 欧美最黄视频在线播放免费 | 国产熟女午夜一区二区三区| 欧美一级毛片孕妇| 淫妇啪啪啪对白视频| 水蜜桃什么品种好| 日韩欧美一区视频在线观看| 好男人电影高清在线观看| 一a级毛片在线观看| 亚洲第一青青草原| 人成视频在线观看免费观看| 亚洲一区高清亚洲精品| 伦理电影免费视频| 9191精品国产免费久久| 亚洲 国产 在线| 久热这里只有精品99| 热99久久久久精品小说推荐| 狠狠婷婷综合久久久久久88av| 国产欧美日韩综合在线一区二区| 可以免费在线观看a视频的电影网站| 热re99久久国产66热| 欧美日韩亚洲高清精品| 在线视频色国产色| 久久久久久久午夜电影 | 天天操日日干夜夜撸| 久99久视频精品免费| √禁漫天堂资源中文www| 亚洲欧美一区二区三区久久| 亚洲精品国产一区二区精华液| 午夜免费鲁丝| 侵犯人妻中文字幕一二三四区| 免费看a级黄色片| 宅男免费午夜| a级毛片在线看网站| 首页视频小说图片口味搜索| 国产精品免费大片| 日日爽夜夜爽网站| 999精品在线视频| av欧美777| 天天操日日干夜夜撸| 夜夜夜夜夜久久久久| 成人精品一区二区免费| 婷婷成人精品国产| 人妻一区二区av| 桃红色精品国产亚洲av| 国产男女内射视频| 国产精品乱码一区二三区的特点 | 一进一出抽搐动态| 午夜久久久在线观看| av电影中文网址| 91字幕亚洲| 五月开心婷婷网| 久久精品成人免费网站| 久久精品熟女亚洲av麻豆精品| 日韩欧美三级三区| 国产成人精品无人区| 日韩有码中文字幕| 丰满迷人的少妇在线观看| 亚洲色图av天堂| 国产又爽黄色视频| 黄色视频不卡| 免费看十八禁软件| www.精华液| 国产精品98久久久久久宅男小说| 国产男靠女视频免费网站| 色94色欧美一区二区| 免费在线观看黄色视频的| 看免费av毛片| 中文亚洲av片在线观看爽 | 夜夜夜夜夜久久久久| 黄色毛片三级朝国网站| 一区二区三区激情视频| 午夜福利一区二区在线看| 欧美在线一区亚洲| 在线av久久热| 一本综合久久免费| 91成人精品电影| 欧美日韩亚洲综合一区二区三区_| 99精品久久久久人妻精品| 国产精品电影一区二区三区 | 在线观看免费日韩欧美大片| 黑人猛操日本美女一级片| 激情在线观看视频在线高清 | 少妇裸体淫交视频免费看高清 | 亚洲国产欧美日韩在线播放| 1024香蕉在线观看| а√天堂www在线а√下载 | 999久久久国产精品视频| 天堂√8在线中文| 如日韩欧美国产精品一区二区三区| av天堂久久9| 在线观看66精品国产| 国产在线观看jvid| а√天堂www在线а√下载 | 亚洲精品在线美女| 亚洲av美国av| 嫁个100分男人电影在线观看| 国产高清videossex| 亚洲欧美日韩另类电影网站| 丰满的人妻完整版| 国产日韩一区二区三区精品不卡| 精品少妇一区二区三区视频日本电影| av视频免费观看在线观看| 欧美在线一区亚洲| 女人被狂操c到高潮| 一本综合久久免费| 午夜福利欧美成人| 色精品久久人妻99蜜桃| 正在播放国产对白刺激| 两性午夜刺激爽爽歪歪视频在线观看 | 国产野战对白在线观看| 国产精品九九99| 欧美人与性动交α欧美精品济南到| 高潮久久久久久久久久久不卡| 不卡一级毛片| 国产欧美亚洲国产| 亚洲人成电影免费在线| 亚洲精品av麻豆狂野| 飞空精品影院首页| 99re6热这里在线精品视频| 桃红色精品国产亚洲av| 50天的宝宝边吃奶边哭怎么回事| 一区二区三区激情视频| 亚洲精品一二三| 后天国语完整版免费观看| 日日爽夜夜爽网站| 黑人巨大精品欧美一区二区蜜桃| 久久久国产精品麻豆| 老司机午夜十八禁免费视频| av国产精品久久久久影院| 纯流量卡能插随身wifi吗| 老司机影院毛片| 99香蕉大伊视频| 亚洲国产欧美网| 国产又爽黄色视频| 欧美在线一区亚洲| 久久热在线av| 午夜视频精品福利| 国产精品一区二区在线观看99| 亚洲免费av在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产无遮挡羞羞视频在线观看| 99热只有精品国产| 桃红色精品国产亚洲av| 伦理电影免费视频| 天堂俺去俺来也www色官网| 免费在线观看完整版高清| 国产熟女午夜一区二区三区| 亚洲午夜理论影院| 自线自在国产av| 国产精品自产拍在线观看55亚洲 | 亚洲伊人色综图| 男女免费视频国产| 色尼玛亚洲综合影院| 亚洲成人免费电影在线观看| 亚洲成人国产一区在线观看| 欧美成狂野欧美在线观看| 啦啦啦在线免费观看视频4| 国产亚洲精品第一综合不卡| 啪啪无遮挡十八禁网站| 丰满迷人的少妇在线观看| 日韩制服丝袜自拍偷拍| 亚洲精品国产色婷婷电影| 精品久久久久久,| а√天堂www在线а√下载 | 一级a爱片免费观看的视频| 久久久久久久久久久久大奶| 久久热在线av| 嫩草影视91久久| 国产精品久久久久久人妻精品电影| 久久国产精品人妻蜜桃| 日韩欧美国产一区二区入口| 亚洲av日韩在线播放| 久久人人爽av亚洲精品天堂| 纯流量卡能插随身wifi吗| 国产亚洲精品久久久久5区| 叶爱在线成人免费视频播放| 国产单亲对白刺激| 久热爱精品视频在线9| av有码第一页| 久久久久久亚洲精品国产蜜桃av| 欧美日韩精品网址| 欧美黑人欧美精品刺激| 免费在线观看黄色视频的| 岛国在线观看网站| 久久亚洲精品不卡| 成年人黄色毛片网站| 好看av亚洲va欧美ⅴa在| 精品一品国产午夜福利视频| 国产欧美日韩一区二区精品| 美国免费a级毛片| 亚洲精品久久成人aⅴ小说| 久久九九热精品免费| 午夜91福利影院| 人妻 亚洲 视频| 波多野结衣一区麻豆| 久久国产亚洲av麻豆专区| 国产成人系列免费观看| 久久性视频一级片| 又黄又粗又硬又大视频| 久久精品国产清高在天天线| 免费观看a级毛片全部| 久久国产亚洲av麻豆专区| 巨乳人妻的诱惑在线观看| 两性夫妻黄色片| 咕卡用的链子| 欧美激情 高清一区二区三区| 免费在线观看亚洲国产| 美女福利国产在线| 极品少妇高潮喷水抽搐| 久久精品成人免费网站| 中文字幕高清在线视频| av在线播放免费不卡| 成人手机av| 国产成人精品久久二区二区免费| 成年动漫av网址| 国产熟女午夜一区二区三区| 欧美人与性动交α欧美软件| 久久精品aⅴ一区二区三区四区| 别揉我奶头~嗯~啊~动态视频| 看黄色毛片网站| 精品国产一区二区三区四区第35| 国产av又大| 国产免费男女视频| 亚洲精品一二三| 国产成人欧美在线观看 | 啪啪无遮挡十八禁网站| 精品久久久久久久久久免费视频 | 亚洲av片天天在线观看| 宅男免费午夜| 亚洲一区高清亚洲精品| 999精品在线视频| 国产成人精品无人区| 黄色毛片三级朝国网站| tube8黄色片| 99香蕉大伊视频| 国产精品一区二区精品视频观看| 视频区欧美日本亚洲| 亚洲国产中文字幕在线视频| 国产深夜福利视频在线观看| 高清毛片免费观看视频网站 | 精品午夜福利视频在线观看一区| 日韩中文字幕欧美一区二区| 成在线人永久免费视频| 国产人伦9x9x在线观看| av天堂在线播放| 男人操女人黄网站| 亚洲va日本ⅴa欧美va伊人久久| 91精品三级在线观看| 国产亚洲欧美精品永久| 身体一侧抽搐| 欧美在线一区亚洲| 久久草成人影院| 一级a爱视频在线免费观看| 19禁男女啪啪无遮挡网站| 欧美另类亚洲清纯唯美| 久久精品国产a三级三级三级| 日韩人妻精品一区2区三区| 欧美乱码精品一区二区三区| 免费在线观看完整版高清| 免费看a级黄色片| 午夜日韩欧美国产| 国产免费av片在线观看野外av| 黄色片一级片一级黄色片| 日韩中文字幕欧美一区二区| 亚洲一码二码三码区别大吗| 亚洲午夜理论影院| 午夜免费成人在线视频| 欧美亚洲 丝袜 人妻 在线| 久久精品亚洲熟妇少妇任你| 精品久久久久久久毛片微露脸| 精品久久久久久久久久免费视频 | 亚洲专区国产一区二区| 日韩欧美免费精品| 啦啦啦视频在线资源免费观看| 人妻 亚洲 视频| 亚洲一区高清亚洲精品| 999久久久国产精品视频| 亚洲一区二区三区欧美精品| 中文字幕精品免费在线观看视频| 天堂√8在线中文| 成熟少妇高潮喷水视频| 十八禁高潮呻吟视频| 麻豆国产av国片精品| 欧美不卡视频在线免费观看 | 成人av一区二区三区在线看| 电影成人av| 久久精品亚洲精品国产色婷小说| 五月开心婷婷网| 人人澡人人妻人| 久热这里只有精品99| 很黄的视频免费| 久久婷婷成人综合色麻豆| 久久久久久久久久久久大奶| 在线观看舔阴道视频| 搡老岳熟女国产| 制服诱惑二区| 在线十欧美十亚洲十日本专区| 久久亚洲精品不卡| 国产麻豆69| 亚洲精品中文字幕在线视频| 日韩大码丰满熟妇| 9热在线视频观看99| 国产伦人伦偷精品视频| 在线国产一区二区在线| 91精品三级在线观看| 国产aⅴ精品一区二区三区波| av欧美777| 欧美成人免费av一区二区三区 | 五月开心婷婷网| 精品少妇久久久久久888优播| 免费在线观看完整版高清| 在线播放国产精品三级| 国产xxxxx性猛交| 99热网站在线观看| 久久人人97超碰香蕉20202| 午夜精品久久久久久毛片777| av免费在线观看网站| 欧美在线一区亚洲| 欧美日韩瑟瑟在线播放| 日本a在线网址| 色综合婷婷激情| 国产亚洲欧美在线一区二区| 少妇猛男粗大的猛烈进出视频| 99热只有精品国产| 久久草成人影院| 村上凉子中文字幕在线| 成年人黄色毛片网站| 黄网站色视频无遮挡免费观看| 在线观看午夜福利视频| 黄色成人免费大全| 国产精品 国内视频| 欧美不卡视频在线免费观看 | 午夜免费成人在线视频| 99久久国产精品久久久| 老司机靠b影院| 久9热在线精品视频| 国产一区二区三区视频了| a在线观看视频网站| 亚洲熟女毛片儿| 黄片大片在线免费观看| 亚洲中文字幕日韩| 最近最新免费中文字幕在线| www日本在线高清视频| 天堂中文最新版在线下载| 午夜91福利影院| 叶爱在线成人免费视频播放| 在线国产一区二区在线| 国产男女超爽视频在线观看| 在线国产一区二区在线| 色94色欧美一区二区| 亚洲欧美一区二区三区久久| 99精国产麻豆久久婷婷| 精品久久久精品久久久| 叶爱在线成人免费视频播放| 亚洲欧美一区二区三区久久| 黄色视频,在线免费观看| 香蕉久久夜色| 国产有黄有色有爽视频| 国产精品久久久久成人av| 亚洲精品中文字幕一二三四区| 757午夜福利合集在线观看| 男女下面插进去视频免费观看| 手机成人av网站| 国产精品 国内视频| 久久国产精品影院| 18禁裸乳无遮挡免费网站照片 | 免费在线观看视频国产中文字幕亚洲| 欧美日韩乱码在线| 久久精品亚洲精品国产色婷小说| 天堂中文最新版在线下载| 欧美日韩瑟瑟在线播放| 免费人成视频x8x8入口观看| 又黄又爽又免费观看的视频| 电影成人av| 国产乱人伦免费视频| 中国美女看黄片| 久久香蕉精品热| 欧美日韩成人在线一区二区| 热re99久久精品国产66热6| 欧美人与性动交α欧美精品济南到| 日韩免费av在线播放| 日本撒尿小便嘘嘘汇集6| 亚洲成人免费av在线播放| 久久精品国产99精品国产亚洲性色 | 亚洲国产欧美日韩在线播放| 久久香蕉激情| 国产精品影院久久| 首页视频小说图片口味搜索| 日韩成人在线观看一区二区三区| av网站在线播放免费| 国产高清激情床上av| 国产人伦9x9x在线观看| 人人妻人人爽人人添夜夜欢视频| 脱女人内裤的视频| 国产精品一区二区在线观看99| 日韩免费高清中文字幕av| 最近最新中文字幕大全免费视频| a级毛片黄视频| 最新的欧美精品一区二区| 亚洲国产欧美日韩在线播放| 亚洲人成伊人成综合网2020| 国产亚洲精品第一综合不卡| 少妇猛男粗大的猛烈进出视频| 亚洲av美国av| 久久热在线av| 国产av一区二区精品久久| 美女 人体艺术 gogo| 97人妻天天添夜夜摸| 国产免费现黄频在线看| av天堂久久9| 亚洲欧美色中文字幕在线| 久9热在线精品视频| 欧美日韩av久久| 午夜福利在线免费观看网站| 日韩欧美在线二视频 | 后天国语完整版免费观看| 纯流量卡能插随身wifi吗| 国产区一区二久久|