• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spectral Coexistence between LEO and GEO Satellites by Optimizing Direction Normal of Phased Array Antennas

    2018-06-21 02:32:46ChenZhangJinJinHaoZhangTingLi
    China Communications 2018年6期

    Chen Zhang*, Jin Jin Hao Zhang, Ting Li

    1 Tsinghua Space Center, Tsinghua University, Beijing 100084, China

    2 Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100091, China

    I. INTRODUCTION

    In recent years, a number of Non Geostationary Orbits (NGEO) communication systems working in the Ku and Ka-band were proposed, creating a new era of commercial communication applications (e.g., Oneweb,SpaceX, Leo Sat, Sumsung and others)[1,2,3,4]. These NGEO constellations which contain hundreds or even thousands of small satellites can provide high-capacity and low-latency multimedia services but may generate harmful interference to other satellite systems,especially geostationary (GEO) satellite networks. This potential has attracted a great deal of research interest and various interference mitigation methodologies have proposed. Nelson [5] described the principle features of satellite-to-satellite and satellite-to-station interference analysis for NGEO satellite systems.Lansard [6,7] provided a concept of doublets constellation to cope with the coverage requirements under the constraint of frequency sharing with GEO. Fortes [8] formalized an analytical approach to assess interference involving NGEO satellite networks, and the statistical interfering signal power levels can be evaluated without requiring lengthy computer simulation runs. In [9], Fortes presented modifications to the implementation of the socalled analytical method, in this approach, the position of reference satellite is expressed with a new formulation by using mean anomaly and longitude of ascending node. Wang [10,11] investigated the key issues for spectrum sharing optimization on constellation selection and design, and several proposed NGEO systems are compared from an interference reduction point of view. Zhang [12] proposed a constellation design methodology considering frequency sharing which took the angle between the LEO and GEO communication links as design con-straints, but the constellation needs to support high dual or more satellites visibility at most latitudes. Sharma [13] proposed an adaptive power control technique to mitigate the inline interference of GEO and LEO satellites,the approach demonstrates that the adaptive power control technique can satisfy the desired quality of service of the MEO link while guaranteeing the interference limit of the GEO link. Previous mitigation methods usually focused on optimizing constellation parameters or transmit power to facilitate the sharing of spectrum resources among multiple satellite networks. Recently, the company Oneweb proposed to solve this problem by turning the satellite pitch angle during their span in the equatorial zone [14, 15], but the control strategy and the effect of this method call for further investigation.

    In this paper, a specific method is proposed to mitigate the in-line interference between LEO constellation and GEO belt. The contribution of the paper is twofold. First, it suggests a novel look at the spectrum sharing by optimizing the direction normal of phased array antennas, and the configuration of the constellation has not changed. Second, the link performance for global distributed earth stations are analyzed with different direction normal of phased array antenna, and the optimal direction normal is found by solving an optimization problem.

    The structure of this paper is as follows.The introduction is stated in section one. The interference scenario is formulated in section two. The visibility condition, antenna radiation patterns, coordinate transformations and interference calculation with analytic approach are introduced in detail in section three. In section four, a case study is performed to prove the validity of methods, then the simulation results are analyzed. In the last section, the conclusions are presented.

    II. PROBLEM DESCRIPTION

    The interference problem is formulated in this section. Figure 1 illustrates a simplified interference scenario, where green solid dots denote overlapped LEO and GEO earth stations in the most serious interference cases.Blue circles are LEO satellites and red star is a GEO satellite on the equator. Denoteβas the angle separation between LEO and GEO links for each earth station. It can be concluded that theβincreases as the latitude of earth stations decreases, which means low latitude earth stations most likely to receive interference from LEO systems.

    For LEO constellations, phased array antennas have become the antenna system of choice [16]. In this paper, the envelope of the phased array antenna is formulated as a cone directing to the earth center in order to simplify the discussion and implementation. Figure 2 illustrates the downlink interference scenario for low latitude earth stations when single coverage is considered. In figure 2(a), nadir pointing arrays with limited boresight angle are used for LEO constellations, it can be seen that LEO links with high visibility elevation most likely to create in-line interference with GEO system. in figure 2(b), the angular separation β is increased by tilting the direction normal of the phased array antennas with same angle, thus avoiding the interference to the GEO system. As can be seen that the interference is mitigated at the expense of reduced signal level at the LEO earth station, therefore the optimal direction normal of phased array is desired, and its evaluation is described in detail in the following sections.

    Fig. 1. A simplified interference scenario between LEO constellation and a GEO satellite.

    III. METHODOLOGY

    3.1 The visibility condition between earth station and satellite

    This section describes the visibility condition between earth station and satellite. Denote[ν, φ]┬as the latitude and longitude of the earth station, then the position vector under Earth-Centered-Fixed (ECF) frame can be given by

    where,Reis the equatorial radius. Denote Rsatas the position vector of the satellite under Earth-Centered-Inertial (ECI) frame, then the position vector rsatunder ECF frame can be

    Fig. 2. The downlink interference scenario of low latitude overlapped earth stations.

    expressed as

    where, θgis Greenwich sidereal time and it can be obtained by

    where, θg0is the Greenwich sidereal time att0, ωeis earth rotation rate and ?tis the time difference between any timetand the initial timet0. Define ξ as the minimum visibility elevation, and the vector from earth station to satellite is defined asDenote rantas the direction normal of phased array,and ζ as the cone angle. Then the visibility conditions between satellite and earth station are expressed as

    The above equations denote that the satellite is visible only if it can be seen by the earth station, and the earth station is located in the footprint of the phased array antenna.

    3.2 Antenna radiation patterns

    Three types of antenna radiation patterns involved in the simulation are given in this section. According to ITU-R S.1528, the reference pattern for an LEO satellite antenna having antenna aperture diameter to wavelength ratio (D/λ)< 35 is given by

    where, ψ is the off-axis angle, ψbis one-halthe 3dB beam width.Gm=20log(D/λ)represents the maximum gain in the main lobe (dBi).Z=Y×100.04(Gm+Ls?LF), whereLSis the main beam and near-in side-lobe mask cross point (dB) below the peak gain,LFis the far-out side-lobe level (dBi) and the value is 0 dBi for ideal patterns. For MEO satellite,Ls=?1 2 and Y=2ψb, and for LEO satellite,Ls= ?6.75 andY= ?1.5ψb.

    According to ITU-R S.672-4, the reference radiation pattern employing for GEO satellites is given by (6) shown in the bottom at this page, whereGmis the maximum gain in the main lobe (dBi), ψ0is the one half the 3 dB beam width in the plane of interest, ψ1is the value of the ψ when theG(ψ) =Gm+Ls+ 20 ?25log(ψ / ψ0) is equal to 0 dBi,Lsis the required near-in-side-lobe level (dB) relative to peak gain, and (a,b) are numeric values based on the value ofLs. ForLs=?20 dB, the values ofaandbare 2.58 and 6.32, respectively.

    According to ITU-R S.465-6, the reference radiation pattern employing for earth stations is given by

    Figure 3 shows the gain patterns of GEO/LEO satellites and earth terminals using the relevant ITU-R recommendations in the downlink mode.

    3.3 Coordinate transformation

    This section evaluates the direction normal of phased array after tilting. Five relating coordinates are defined as below

    ● ECF coordinatesE?Xf Yf Zf’: It has its origin at the center of mass of the Earth,Xfis along the Greenwich or prime meridian.Zfpoints along the rotation axis of the Earth, and theYfaxis completes a right-handed coordinate system.

    ● ECI coordinatesE?X iYiZi’: It has its origin at the center of mass of the Earth,Xiis along the intersection of the Earth equatorial plane and the ecliptic plane,Zipoints along the rotation axis of the Earth, and theYiaxis completes a right-handed coordinate system.

    ● LVLH(Local Vertical, Local Horizontal)coordinatesS?X lYlZl’: It has its origin at the mass center of satellite,Zlaxis points toward earth’s center,Ylaxis is the direction of the negative unit angular momentum vector, and theXlaxis completes a right-handed coordinate system.

    ● VVLH(Vehicle Velocity, Local Horizontal)coordinatesS?Xv Yv Zv’: It has its origin at the mass center of satellite,Xvis directed toward the satellite from earth’s center,Zvaxis is the orbit normal and perpendicular to the orbit plane, and theYvaxis completes a right-handed coordinate system.

    ● Antenna coordinatesS?Xp Yp Zp’: It has its origin at the mass center of satellite, the antenna coordinates consist with the `LVLH’frame when nadir pointing is implemented.Figure.4 illustrates the relation between

    VVLH and LVLH coordinates. Suppose the direction normal in the antenna frame is Ap=[0,0,1]┬. If the direction normal of the antenna is changed, the components of direc-tion normal in the VVLH coordinates is given by

    Fig. 3. Antenna radiation patterns in the downlink.

    where Ψ , Θ and Φ are roll angle, pitch angle and yaw angle, and Rx, Ryand Rzare the Euler rotation matrix respect tox,yandzaxis respectively (see [17]). Then the components of the direction normal in the LVLH coordinates is given by

    The components of the direction normal in the ECI coordinates is given by

    where ? is Right Ascension of Ascending Node (RAAN),iis inclination and ω is argument of perigee. The components of the direction normal in the ECF coordinates is given by

    Finally, the components of the direction normal in the ECF coordinates are evaluated with Eq.(11), and the interference calculation are introduced in the following section.

    3.4 Interference calculation with analytic approach

    For simplicity, lets assume an interference scenario in the down link mode with tilted phased array antenna, which is illustrated in figure 2(b). The expression for Carrier to Noise ratio(C/N) at the LEO earth station can be expressed as

    Fig. 4. VVLH and LVLH coordinates.

    wherePtlsis the transmit power of the LEO satellite,GtlsandGrleare the gain of LEO satellite and LEO earth station respectively. λ is wavelength anddis the distance between the LEO station and the LEO satellite. In addition,Kis Boltzmann’s constant,Trleis the receive noise temperature of the LEO earth station antenna, andWis the bandwidth.

    Furthermore, the Interference to Noise ratio(I/N) at the GEO earth station due to the presence of LEO link can be written as

    whereGrge(β) is the gain of GEO earth station when the angular separation between two links equals to β.Trgeis the receive noise temperature of the GEO earth station. In order to ensure the desired Quality of Service(QoS) of LEO system without interfering with the existing GEO system, the value ofC/Nat the LEO earth station should exceed the threshold of (C/N)th, and the value ofI/Nat the GEO earth station should not exceed the threshold of (I/N)th.

    Let’s assume a more complex interference scenario with a LEO constellation and a set of GEO satellites uniformly placed on the equator. For a fixed earth station, suppose there existNivisible LEO satellites andNjvisible GEO satellites at time instancetbased on the visible condition (i.e., Eq.(4)). Denote (C/N)iand (I/N)i,j,i=1,2,…,Ni,j=1,2,…,Njas Carrier to Noise ratio and Interference to Noise ratio involving thei-th LEO satellite and thej-th GEO satellite. The variable δiof thei-th LEO link is defined as

    where δiis a 0-1 variable, and it is used to measure thei-th LEO link can satisfy the desired (C/N)thof the LEO link while guaranteeing the interference limit (I/N)thwith all visible GEO satellites. Define δ~ as the availability function for the earth station compressingNiLEO links, which is given by

    where δ~ is a 0-1 variable, 1 means there exist at least one available LEO link for the earth station. Suppose only one LEO link with the best Carrier to Noise ratio is connected by the earth station, the corresponding (C/N)*is given by

    In order to obtain the statistical significant results of the earth station, the available percentageand effective signal levelcan be evaluated at a number of sampling points, which is given by

    wherek=1,2,…,Nkis the index of sampling points.

    In general, statistical analysis via computer simulation of Eq.(17) requires an extremely long computer time, an analytical approach proposed by Fortes [8] can be implemented to assess interference without requiring lengthy computer simulation runs. The rationale behind it takes into account the fact that the position of constellation can be defined once the positions of the reference satellite x are given. As a special case, if Walker constellation[18, 19] is used in the LEO system. Denote x=[?0,M0]┬as the position of the reference satellite, where ?0andM0are the RAAN and mean anomaly. The location of all other satellites can be given by

    where,Nis the number of satellites,Pis the number of planes, andFis the phasing factor, the transformation from orbital elements to the corresponding Cartesian components under ECI frame can be found in [20, 21]. For analytic approach, by modeling x as a random variable with probability density function(PDF)px(,M) , where the argument of ascending nodeand mean anomalyMare considered to be continuous random variables,uniformly distributed over interval (?π , π].When non-repeated track satellite system is involved, the PDF function of the vector x is given by (see [9] for PDF function of repeated ground track system)

    Because the available percentage and desired average signal levels (i.e.,andare deterministic functions of the position of the reference satellites, their statistical characterization can be obtained while considering the reference satellite location varies in theandMspace.

    Suppose theandMspace are equally divided intoNddiscrete points. The calculation process ofandwith analytic approach is illustrated in algorithm 1.

    The algorithm 1 can be further extended to analyze global distributed earth stations, supposeNesearth stations are uniformly placed on the earth surface, and the tilted phased array is used to improve the link performance for all earth stations, the optimization problem can be formalized as below

    The formalization of Eq.(20) target to maximize the effective signal level while guarantying the available percentage greater than 95% by tilting the phased array (suppose yaw angle Φ=0).

    IV. SIMULATION

    In this section, the method proposed in the previous section is implemented in a complex simulation scenario, whereNes=337 earth stations, a Walker type LEO constellation anda GEO belt with equally spaced satellites on the equator are considered. The orbital parameters of the two constellations are listed in the Table 1, and the simulation parameters are listed in Table 2.

    Algorithm 1. The evaluation of and(C/ N)* with analytic approach

    Algorithm 1. The evaluation of and(C/ N)* with analytic approach

    1: Initialize Earth stations, LEO constellation and GEO belt.2: Evaluate Earth station positon res with Eq.(1)3: Determine all visible GEO satellites with Eq.(2) and Eq.(4).4: for i=1→Nd do 5: ?= ? ?π(i )(N )6: for j=1→Nd do 7: 2 1/ 1~0,id 2 1/ 1 π( )( )8: Evaluate LEO constellation position with Eq.(18).9: Determine all visible LEO satellite positions with Eq.(2) and Eq.(4).10: Evaluate δ~ and (C/ N)* with Eq.(14). to Eq.(16).11: end for 12: end for 13: Evaluate MjN 0,jd=? ?δ~ and (C/ N)*.

    Table I. Parameters of LEO constellation and GEO belt.

    Suppose the same strategy is implemented for all phased array antennas in the LEO constellation. Figure 5 illustrates the surface of min available percentage and min effective signal level of all earth stations with different tilting angles, wherexandyaxis are the roll and pitch angles respectively. It can be found that if nadir pointing array is implemented(i.e., Ψ =0°and Θ =0°, which is marked by red point), the min available percentage is 69.23%, and the effective signal level is 23.18 dB. Because the saddle shape and the symmetrical feature of figure 5(a), antenna tilting in the pitch direction (both positive or negative)significantly improves the performance of available percentage with minor reduction of received signal level. The optimal direction normal which is marked by blue circle can be found by solving the nonlinear programming program stated in Eq.(20). Table 3 compares simulation results of nadir pointing array with the optimal tilted array. It can be found that the min available percentage is greatly improved from 69.23% to 95.11% at the expense of tolerable loss of effective signal level, which is decreased from 23.18 dB to 22.08 dB. Figure 6 and figure 7 compare the contour map of available percentage and effective signal level for two cases in Table 3. It can be found that latitude earth stations most likely to receive interference from LEO constellation, which is consistent with the conclusion illustrated in figure 1, and the minor reduction of received signal level is the cost of improving available percentage for low latitude earth stations.Figure 8 shows the coverage area of two LEO constellations listed in Table 3 respectively,it can be found that the coverage area of each satellite is enlarged, which leads to better coverage performance of the constellation.

    Fig. 5. Min available percentage and effective signal level of all Earth stations with different tilting angles.

    Fig. 6. Available percentage of global distributed Earth stations.

    Fig. 7. Effective signal level of global distributed Earth stations.

    Fig. 8. The constellation and coverage area of two cases (black line is direction normal of phased array).

    Table II. Simulation parameters.

    Table III. Comparison of nadir pointing array and optimal tilted array.

    V. CONCLUSION

    To ensure the desired link quality of the LEO constellation while mitigating the aggressive interference to the GEO belt, a specific mitigation method is proposed by tilting the phased array antennas of the LEO constellation without changing the configuration of constellation, the variation of direction normal of phased array antenna is analyzed and the optimal direction is found by solving a nonlinear programming problem. The simulation result demonstrates that the LEO constellation can be coordinated with the GEO system while guaranteeing the desired signal level of the LEO earth stations.

    ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China (grant no.91738101 and 91438206).

    [1] T. G. R. Reid, A. M. Neish, T. F. Walter and et al.Leveraging Commercial Broadband LEO Constellations for Navigation.Proc. 29th international technical meeting of the satellite division of the Institute of Navigation,2016.

    [2] V. L. Foreman, A. Siddiqi, and D. W. Olivier. Large Satellite Constellation Orbital Debris Impacts:Case Studies of Oneweb and SpaceX Proposals.Proc. AIAA SPACE and Astronautics Forum and Exposition,2017.

    [3] L. Wood, Y. X. Lou, and O. Olusola. Revisiting Elliptical Satellite Orbits to Enhance the O3b Constellation.Physics, 67:110-118, 2014.

    [4] V. R. Anpilogov, A. V. Shishlov, and A. G. Eidus.Analysis LEO-HTS Systems and Feasibility of Phased Array Antennas for the Subscriber Terminals.Communication Technologies and Equipment Magazine, 2016.

    [5] R. A. Nelson, and W. L. Pritchard. Interference between Satellite Systems in Non-Geostationary Orbits.International Journal of Satellite Communications and Networking, 12(1):95-105,1994.

    [6] E. Lansard, J. L. Palmade, and V. Martinot. The Skybridge Constellation Design.Proc. 17th AIAA International Communications Satellite Systems Conference and Exhibit, 1998.

    [7] E. Lansard, E. Frayssinhes, and J. L. Palmade.Global Design of Satellite Constellations: A Multi-Criteria Performance Comparison of Classical Walker Patterns and New Design Patterns.Acta Astronautica, 42(9):555-564, 1998.

    [8] J. M. P. Fortes, R. Sampaio-Neto, and J. E.Amores Maldonado. An Analytical Method for Assessing Interference in Interference Environments Involving NGSO Satellite Networks.International Journal of Satellite Communications,17(6):399-419, 1999.

    [9] J. M. P. Fortes, R. Sampaio-Neto, and J. M. O. Goicochea. Fast Computation of Interference Statistics in Multiple Non-GSO Satellite Systems Environments using the Analytical Method.IEE Proceedings - Communications, 151(1):44-49, 2006.

    [10] A. W. Wang. Optimization on Constellation Design for Spectrum Sharing among Satellite Networks.Proc. 17th AIAA International Communications Satellite Systems Conference and Exhibit, 1998.

    [11] A. W. Wang. Key Issues in Constellation Design Optimization for NGSO Satellite Systems.Space Technology and Applications, pages 249-254, 1998.

    [12] Y. L. Zhang, L. Fan, Y. Zhang, and J. H. Xiang.Theory and Design of Satellite Constellations.Science Press, 2008

    [13] S. K. Sharma and S. Chatzinotas. In-line Interference Mitigation Techniques for Spectral Coexistence of GEO and NGEO Satellites.International Journal of Satellite Communications and Networking, 34(1):11-39, 2016.

    [14] P. B. Selding. Oneweb get (slide) Decked by Competitor of Casbaa,Spacenews, 2015. http://spacenews.com/oneweb-gets-slide-decked-bycompetitor-at-casbaa/

    [15] V. R. Anpilogov. Problems of Realization and Implementation LEO-HTS Systems.Communication Technologies and Equipment Magazine, 2017.

    [16] P. Chiavacci. Some Performance/Cost Considerations on the use of Phased-Array Antennas in LEO Satellite Constellations.Proc. 18th International Communications Satellite Systems Conference and Exhibit, International Communications Satellite Systems Conferences (ICSSC), 2000.

    [17] A. Tewari. Atmospheric and Space Flight Dynamics.Birkhuser Boston, 2007.

    [18] J. G. Walker. Satellite Constellations.Journal of the British Interplanetary Society, 37:559-572, 1984.

    [19] J. R. Wertz. Mission Geometry; Orbit and Constellation Design and Management.Microcosm Press, 2002.

    [20] V. A. Chobotov. Orbital Mechanics, third edition.Aiaa Education, 2015.

    [21] H. D. Curtis. Orbital Mechanics for Engineering Students (Second Edition).Elsevier Aerospace Engineering, 2013.

    99国产精品99久久久久| 亚洲成人精品中文字幕电影| 99国产精品一区二区三区| 国产激情久久老熟女| tocl精华| 国产精品精品国产色婷婷| 久久精品人人爽人人爽视色| 在线视频色国产色| 在线观看www视频免费| 中文亚洲av片在线观看爽| 岛国在线观看网站| 国产精品一区二区免费欧美| 性欧美人与动物交配| 欧美人与性动交α欧美精品济南到| 亚洲av成人av| 国产一级毛片七仙女欲春2 | 男女下面进入的视频免费午夜 | 国产亚洲精品第一综合不卡| 香蕉久久夜色| 国产日韩一区二区三区精品不卡| 成人三级做爰电影| 国产麻豆69| 欧美日韩中文字幕国产精品一区二区三区 | 涩涩av久久男人的天堂| 变态另类成人亚洲欧美熟女 | 中文字幕最新亚洲高清| 国产区一区二久久| 搡老妇女老女人老熟妇| 日韩精品免费视频一区二区三区| 国产精品99久久99久久久不卡| 日韩国内少妇激情av| 亚洲中文日韩欧美视频| svipshipincom国产片| 国产精品亚洲av一区麻豆| 青草久久国产| 色综合站精品国产| 国产精品影院久久| 正在播放国产对白刺激| 久久九九热精品免费| 日韩中文字幕欧美一区二区| 久久精品亚洲熟妇少妇任你| 日韩大尺度精品在线看网址 | 两人在一起打扑克的视频| 99国产精品一区二区蜜桃av| 免费在线观看影片大全网站| 欧美国产精品va在线观看不卡| 老司机福利观看| 国产成人一区二区三区免费视频网站| 久久久久国内视频| av视频在线观看入口| 国内毛片毛片毛片毛片毛片| 啦啦啦 在线观看视频| avwww免费| 黑人巨大精品欧美一区二区蜜桃| 国产aⅴ精品一区二区三区波| 亚洲精华国产精华精| 免费高清在线观看日韩| av在线播放免费不卡| 久久婷婷成人综合色麻豆| 亚洲人成网站在线播放欧美日韩| 97人妻天天添夜夜摸| 狂野欧美激情性xxxx| 成在线人永久免费视频| 日本五十路高清| 好看av亚洲va欧美ⅴa在| 热99re8久久精品国产| 国产精品免费一区二区三区在线| 精品第一国产精品| 宅男免费午夜| 久久国产精品人妻蜜桃| 中文字幕人妻丝袜一区二区| 国产精品一区二区免费欧美| 亚洲久久久国产精品| 免费观看精品视频网站| 88av欧美| 国产成人av激情在线播放| 免费少妇av软件| 韩国精品一区二区三区| 国产一级毛片七仙女欲春2 | 曰老女人黄片| 男女下面插进去视频免费观看| 老司机深夜福利视频在线观看| 久久中文字幕人妻熟女| 看免费av毛片| 亚洲av美国av| 亚洲成国产人片在线观看| 成人国产综合亚洲| 亚洲国产欧美一区二区综合| 成人永久免费在线观看视频| 90打野战视频偷拍视频| 国产成人精品久久二区二区免费| 免费人成视频x8x8入口观看| 天天躁夜夜躁狠狠躁躁| 美女扒开内裤让男人捅视频| 女生性感内裤真人,穿戴方法视频| 色婷婷久久久亚洲欧美| 一区在线观看完整版| 男人舔女人下体高潮全视频| 日日夜夜操网爽| 免费搜索国产男女视频| 好男人电影高清在线观看| 日本在线视频免费播放| 国产成人精品在线电影| 亚洲国产精品久久男人天堂| 又黄又爽又免费观看的视频| 国产成人精品久久二区二区91| 欧美精品啪啪一区二区三区| 中亚洲国语对白在线视频| 嫩草影院精品99| av欧美777| 老司机深夜福利视频在线观看| 久久久国产成人精品二区| 久久九九热精品免费| 嫩草影视91久久| 午夜福利视频1000在线观看 | 亚洲成人久久性| 日本vs欧美在线观看视频| 精品人妻1区二区| 老司机午夜十八禁免费视频| 乱人伦中国视频| 成人亚洲精品av一区二区| 午夜福利在线观看吧| 精品国产美女av久久久久小说| 自线自在国产av| 亚洲精品在线美女| 一级毛片高清免费大全| 国产麻豆成人av免费视频| 久久中文看片网| 女人高潮潮喷娇喘18禁视频| 正在播放国产对白刺激| 亚洲专区中文字幕在线| 国产97色在线日韩免费| 国产欧美日韩一区二区三| 国内精品久久久久精免费| 国产三级黄色录像| 午夜福利影视在线免费观看| 亚洲中文av在线| 国产熟女xx| 免费搜索国产男女视频| 不卡一级毛片| 天天添夜夜摸| 成人欧美大片| 精品久久久久久,| 1024视频免费在线观看| 侵犯人妻中文字幕一二三四区| 黄片大片在线免费观看| 日韩免费av在线播放| 操出白浆在线播放| 最好的美女福利视频网| www.熟女人妻精品国产| 亚洲色图综合在线观看| 亚洲男人天堂网一区| 欧美乱码精品一区二区三区| 亚洲一码二码三码区别大吗| 亚洲欧美精品综合一区二区三区| 久久午夜亚洲精品久久| 国产亚洲精品第一综合不卡| www.熟女人妻精品国产| 十八禁网站免费在线| 欧美日本视频| 国产成人影院久久av| 国产一区二区三区视频了| 十分钟在线观看高清视频www| 欧美午夜高清在线| 亚洲av成人一区二区三| 国产精品美女特级片免费视频播放器 | 久久中文字幕一级| 久久人人精品亚洲av| 国产亚洲精品综合一区在线观看 | 成人三级黄色视频| 神马国产精品三级电影在线观看 | 亚洲精品粉嫩美女一区| 国产精品久久久久久亚洲av鲁大| 亚洲国产日韩欧美精品在线观看 | 午夜免费鲁丝| av福利片在线| 亚洲天堂国产精品一区在线| 亚洲五月天丁香| 国产av一区二区精品久久| 村上凉子中文字幕在线| 精品国产一区二区三区四区第35| 午夜免费观看网址| 国产成人精品无人区| 一级,二级,三级黄色视频| 亚洲五月天丁香| 视频在线观看一区二区三区| 欧美成人一区二区免费高清观看 | 男人舔女人下体高潮全视频| 一级黄色大片毛片| 我的亚洲天堂| 国产精品秋霞免费鲁丝片| 91av网站免费观看| 午夜福利欧美成人| 午夜两性在线视频| 91精品国产国语对白视频| 99久久精品国产亚洲精品| 国产高清有码在线观看视频 | 搡老岳熟女国产| 日韩精品中文字幕看吧| 中文字幕人妻熟女乱码| 久久中文看片网| 精品电影一区二区在线| 美国免费a级毛片| 日韩欧美在线二视频| 成年人黄色毛片网站| 视频区欧美日本亚洲| 人人妻人人澡欧美一区二区 | 天堂动漫精品| 伊人久久大香线蕉亚洲五| 91九色精品人成在线观看| 午夜福利成人在线免费观看| 高清毛片免费观看视频网站| 长腿黑丝高跟| 91成人精品电影| 欧美日韩精品网址| 亚洲在线自拍视频| 99久久精品国产亚洲精品| 母亲3免费完整高清在线观看| 亚洲av美国av| 亚洲精品一区av在线观看| 亚洲av成人一区二区三| www.精华液| 别揉我奶头~嗯~啊~动态视频| 99国产综合亚洲精品| 色综合亚洲欧美另类图片| 日韩免费av在线播放| 757午夜福利合集在线观看| 亚洲在线自拍视频| 亚洲一区高清亚洲精品| 日韩大码丰满熟妇| 嫩草影院精品99| 他把我摸到了高潮在线观看| 999久久久国产精品视频| 欧美激情久久久久久爽电影 | 91字幕亚洲| 色综合亚洲欧美另类图片| 久久香蕉国产精品| 叶爱在线成人免费视频播放| 啪啪无遮挡十八禁网站| 香蕉国产在线看| 久久久精品国产亚洲av高清涩受| 99国产精品一区二区蜜桃av| 视频区欧美日本亚洲| 男女下面进入的视频免费午夜 | 亚洲av第一区精品v没综合| 免费高清视频大片| 日本 av在线| 99国产极品粉嫩在线观看| 亚洲五月色婷婷综合| 国产熟女xx| 国产成人av激情在线播放| 亚洲男人的天堂狠狠| 好看av亚洲va欧美ⅴa在| 亚洲色图av天堂| 91成人精品电影| 欧美激情极品国产一区二区三区| 狠狠狠狠99中文字幕| 香蕉国产在线看| 久久草成人影院| 国语自产精品视频在线第100页| 欧美日本亚洲视频在线播放| 亚洲少妇的诱惑av| 一区二区日韩欧美中文字幕| 国产成人精品在线电影| АⅤ资源中文在线天堂| 国产91精品成人一区二区三区| 一级a爱片免费观看的视频| 精品电影一区二区在线| 成人特级黄色片久久久久久久| 亚洲国产精品合色在线| 亚洲午夜理论影院| 亚洲色图综合在线观看| 欧美大码av| 亚洲男人的天堂狠狠| 欧美黄色淫秽网站| 一进一出抽搐动态| tocl精华| 18禁裸乳无遮挡免费网站照片 | 欧美 亚洲 国产 日韩一| 久久国产亚洲av麻豆专区| 9色porny在线观看| 法律面前人人平等表现在哪些方面| 国产成人一区二区三区免费视频网站| 欧美成人一区二区免费高清观看 | 精品国产一区二区久久| 亚洲五月婷婷丁香| 亚洲精品中文字幕一二三四区| 亚洲视频免费观看视频| 黄片大片在线免费观看| 欧美老熟妇乱子伦牲交| 亚洲国产看品久久| 国产三级在线视频| 伊人久久大香线蕉亚洲五| 身体一侧抽搐| 黄网站色视频无遮挡免费观看| 老司机在亚洲福利影院| 不卡av一区二区三区| 搡老熟女国产l中国老女人| 国产精品野战在线观看| 亚洲欧美日韩高清在线视频| 国产精品一区二区在线不卡| 法律面前人人平等表现在哪些方面| 性欧美人与动物交配| 亚洲欧美激情综合另类| 国产精品美女特级片免费视频播放器 | 日日爽夜夜爽网站| 我的亚洲天堂| 两个人看的免费小视频| 成人18禁在线播放| 法律面前人人平等表现在哪些方面| 久久草成人影院| 国产成人欧美在线观看| 久久久久久亚洲精品国产蜜桃av| 中文字幕高清在线视频| 亚洲熟女毛片儿| av在线播放免费不卡| 免费看美女性在线毛片视频| 国产欧美日韩综合在线一区二区| 国产片内射在线| 国产精品99久久99久久久不卡| 亚洲欧美日韩另类电影网站| 久热爱精品视频在线9| 黑人巨大精品欧美一区二区mp4| 麻豆成人av在线观看| 亚洲成人免费电影在线观看| 日韩中文字幕欧美一区二区| 妹子高潮喷水视频| 黄色 视频免费看| 国产高清视频在线播放一区| 午夜福利高清视频| 国产精品综合久久久久久久免费 | 国产精品久久久av美女十八| 日本精品一区二区三区蜜桃| 久久精品成人免费网站| 欧美中文综合在线视频| 国产视频一区二区在线看| 色综合站精品国产| 在线观看免费午夜福利视频| 亚洲天堂国产精品一区在线| 国产乱人伦免费视频| 欧美在线黄色| 性色av乱码一区二区三区2| 热99re8久久精品国产| 午夜日韩欧美国产| 一边摸一边抽搐一进一出视频| 一二三四在线观看免费中文在| 国产亚洲av高清不卡| 老司机靠b影院| 亚洲精品一区av在线观看| 亚洲第一av免费看| 国产高清激情床上av| 国产精品二区激情视频| 视频区欧美日本亚洲| 免费观看人在逋| 妹子高潮喷水视频| 一区二区三区高清视频在线| 亚洲少妇的诱惑av| 国产一区在线观看成人免费| 两个人免费观看高清视频| 美女高潮喷水抽搐中文字幕| 国产一区二区激情短视频| 免费观看人在逋| 国产精品久久久久久人妻精品电影| 99riav亚洲国产免费| 久久香蕉激情| 少妇的丰满在线观看| 正在播放国产对白刺激| 怎么达到女性高潮| 亚洲国产日韩欧美精品在线观看 | 不卡av一区二区三区| 在线观看免费视频日本深夜| 欧美一区二区精品小视频在线| 亚洲成人久久性| 91成人精品电影| 精品国产美女av久久久久小说| 啦啦啦 在线观看视频| 少妇裸体淫交视频免费看高清 | 久久精品国产亚洲av高清一级| 又大又爽又粗| 午夜老司机福利片| 免费久久久久久久精品成人欧美视频| 国产精品一区二区免费欧美| 国产激情欧美一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日本视频| 又紧又爽又黄一区二区| 一区二区三区高清视频在线| 久久国产精品男人的天堂亚洲| 美女高潮喷水抽搐中文字幕| 天天添夜夜摸| 丝袜人妻中文字幕| 99久久精品国产亚洲精品| 亚洲第一电影网av| 看黄色毛片网站| 国产精品免费视频内射| 嫩草影视91久久| 男女做爰动态图高潮gif福利片 | 日本免费a在线| 91国产中文字幕| 亚洲免费av在线视频| 国产日韩一区二区三区精品不卡| 亚洲 国产 在线| 丝袜美腿诱惑在线| 自拍欧美九色日韩亚洲蝌蚪91| 免费无遮挡裸体视频| 欧美午夜高清在线| 欧美成狂野欧美在线观看| 成人欧美大片| 国产99白浆流出| 日韩欧美一区视频在线观看| 亚洲性夜色夜夜综合| 成年人黄色毛片网站| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品av麻豆狂野| 麻豆成人av在线观看| 色在线成人网| 亚洲中文av在线| 这个男人来自地球电影免费观看| 日本撒尿小便嘘嘘汇集6| 久久久久久久久免费视频了| 色老头精品视频在线观看| 自线自在国产av| 99热只有精品国产| 热99re8久久精品国产| 欧美性长视频在线观看| 免费高清视频大片| 国产区一区二久久| 色哟哟哟哟哟哟| 国产高清有码在线观看视频 | 国产成+人综合+亚洲专区| 日韩 欧美 亚洲 中文字幕| 日韩大码丰满熟妇| 波多野结衣巨乳人妻| 欧美亚洲日本最大视频资源| 久久婷婷人人爽人人干人人爱 | 9色porny在线观看| 欧美精品亚洲一区二区| 99国产精品免费福利视频| 亚洲欧美精品综合久久99| 黑人巨大精品欧美一区二区蜜桃| 制服诱惑二区| 少妇 在线观看| 男女下面插进去视频免费观看| 99久久精品国产亚洲精品| 少妇熟女aⅴ在线视频| 久久久久精品国产欧美久久久| 正在播放国产对白刺激| 岛国在线观看网站| 免费看a级黄色片| 啦啦啦 在线观看视频| 午夜免费激情av| 欧美国产日韩亚洲一区| 两性午夜刺激爽爽歪歪视频在线观看 | 在线十欧美十亚洲十日本专区| 99国产极品粉嫩在线观看| 在线天堂中文资源库| 久久久久九九精品影院| 日本在线视频免费播放| 成人国产综合亚洲| 免费少妇av软件| 制服丝袜大香蕉在线| 黄色片一级片一级黄色片| 人妻丰满熟妇av一区二区三区| 一区二区三区激情视频| 亚洲视频免费观看视频| 日本 欧美在线| 亚洲国产中文字幕在线视频| 欧美绝顶高潮抽搐喷水| 婷婷精品国产亚洲av在线| 久久久久久久午夜电影| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久久久免费视频| 一边摸一边做爽爽视频免费| 国产高清激情床上av| 夜夜爽天天搞| 国产精品久久电影中文字幕| 9热在线视频观看99| 午夜福利欧美成人| 狠狠狠狠99中文字幕| 精品日产1卡2卡| 亚洲一区中文字幕在线| 午夜福利免费观看在线| 免费观看精品视频网站| www.自偷自拍.com| 电影成人av| 9191精品国产免费久久| 午夜免费观看网址| 在线av久久热| 国产一级毛片七仙女欲春2 | 国产私拍福利视频在线观看| 香蕉国产在线看| 中文字幕av电影在线播放| 此物有八面人人有两片| 嫩草影院精品99| 可以免费在线观看a视频的电影网站| 超碰成人久久| 日韩 欧美 亚洲 中文字幕| 夜夜爽天天搞| 最新美女视频免费是黄的| 不卡一级毛片| 亚洲av日韩精品久久久久久密| 性少妇av在线| 免费在线观看视频国产中文字幕亚洲| 国产又爽黄色视频| 啪啪无遮挡十八禁网站| 欧美大码av| 老熟妇仑乱视频hdxx| 亚洲av电影在线进入| 黄色毛片三级朝国网站| 啦啦啦 在线观看视频| 91大片在线观看| 亚洲视频免费观看视频| 色综合欧美亚洲国产小说| 97人妻精品一区二区三区麻豆 | 国产精品精品国产色婷婷| 黄色a级毛片大全视频| 欧美在线黄色| 国产成人一区二区三区免费视频网站| 亚洲欧美激情在线| 两个人视频免费观看高清| 99国产精品99久久久久| 日韩欧美三级三区| 黄色丝袜av网址大全| 国产精品综合久久久久久久免费 | 久久精品成人免费网站| 成人欧美大片| 亚洲第一av免费看| 男人的好看免费观看在线视频 | 男人舔女人的私密视频| 搡老妇女老女人老熟妇| 久久影院123| 波多野结衣高清无吗| 欧美在线一区亚洲| 日韩大尺度精品在线看网址 | 久久久久国内视频| 看片在线看免费视频| 中文字幕人成人乱码亚洲影| 大香蕉久久成人网| 热re99久久国产66热| 亚洲第一av免费看| 成年人黄色毛片网站| 美国免费a级毛片| 免费av毛片视频| 非洲黑人性xxxx精品又粗又长| 亚洲午夜精品一区,二区,三区| 99国产精品免费福利视频| 亚洲成国产人片在线观看| 日韩中文字幕欧美一区二区| 国产成人精品在线电影| 午夜成年电影在线免费观看| 99久久久亚洲精品蜜臀av| 51午夜福利影视在线观看| 国产在线精品亚洲第一网站| 亚洲精品在线观看二区| 麻豆av在线久日| 精品国产国语对白av| 午夜免费观看网址| 女人精品久久久久毛片| 国产成人影院久久av| 一级毛片高清免费大全| 久久婷婷人人爽人人干人人爱 | 岛国在线观看网站| 亚洲熟妇熟女久久| 国产成人啪精品午夜网站| 午夜福利高清视频| av超薄肉色丝袜交足视频| 波多野结衣巨乳人妻| 黄色女人牲交| 夜夜夜夜夜久久久久| 不卡一级毛片| 国产成人精品久久二区二区91| 脱女人内裤的视频| av欧美777| 国内精品久久久久久久电影| 国产亚洲av高清不卡| 欧美日韩乱码在线| 啦啦啦韩国在线观看视频| avwww免费| 操美女的视频在线观看| 欧美日韩黄片免| 色播亚洲综合网| 韩国av一区二区三区四区| 国产精品二区激情视频| 亚洲男人的天堂狠狠| 亚洲精品一区av在线观看| 好男人在线观看高清免费视频 | 制服人妻中文乱码| 国产xxxxx性猛交| 国产成人一区二区三区免费视频网站| 中文亚洲av片在线观看爽| 两个人视频免费观看高清| 中文字幕高清在线视频| 日本精品一区二区三区蜜桃| 午夜成年电影在线免费观看| 人人妻人人澡欧美一区二区 | 亚洲va日本ⅴa欧美va伊人久久| 亚洲中文av在线| 久久久久久久久免费视频了| 男人舔女人下体高潮全视频| 亚洲成a人片在线一区二区| 午夜视频精品福利| 禁无遮挡网站| 又紧又爽又黄一区二区| av视频在线观看入口| 国产熟女xx| 久久精品人人爽人人爽视色| 高潮久久久久久久久久久不卡| 国产精品久久久人人做人人爽| 久久久国产成人精品二区| 黑人巨大精品欧美一区二区蜜桃| 后天国语完整版免费观看| 一二三四在线观看免费中文在| 亚洲七黄色美女视频| 国语自产精品视频在线第100页| 丝袜人妻中文字幕|