張善強(qiáng) 姚立杰 李宇 鄧?guó)P春 金海峰 沈雷
[摘要] 目的 探討神經(jīng)營(yíng)養(yǎng)因子-3(NT-3)在低氧環(huán)境中對(duì)人骨髓間充質(zhì)干細(xì)胞(hBMSC)增殖能力的影響。 方法 在齊齊哈爾醫(yī)學(xué)院分子生物學(xué)研究室利用三氣培養(yǎng)體系建立低氧體外細(xì)胞培養(yǎng)模型,選取2016年5月購(gòu)買的hBMSC,在低氧環(huán)境下,未行任何刺激的hBMSC為低氧對(duì)照組;用100 ng/mL人NT-3 重組蛋白刺激的hBMSC為NT-3組;先以MK2206作用30 min,再以NT-3刺激的hBMSC為Akt抑制劑組;正常氧濃度條件下培養(yǎng)的hBMSC為常氧對(duì)照組,各組均行成骨誘導(dǎo)實(shí)驗(yàn)21 d。分別用噻唑藍(lán)細(xì)胞增殖、Western blot、酶聯(lián)免疫吸附試驗(yàn)(ELISA)等實(shí)驗(yàn)檢測(cè)各組細(xì)胞增殖、凋亡,及VEGF和BMP-1等蛋白的表達(dá)。 結(jié)果 與低氧對(duì)照組相比,NT-3組hBMSC增殖OD值(1.438±0.116)明顯提高差異有統(tǒng)計(jì)學(xué)意義(P<0.01),NT-3組VEGF及BMP-1蛋白含量(1.704±0.132)ng/mL;(1.794±0.098)ng/mL較低氧對(duì)照組均有增高差異有統(tǒng)計(jì)學(xué)意義(P<0.01);相對(duì)于NT-3組,Akt抑制劑組hBMSC增殖OD值(0.927±0.103)降低差異有統(tǒng)計(jì)學(xué)意義(P<0.01),且Akt抑制劑組VEGF和BMP-1蛋白含量(1.428±0.205)ng/mL;(1.157±0.102)ng/mL均低于NT-3組差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。結(jié)論 NT-3可提高h(yuǎn)BMSC抗缺氧功能,促進(jìn)hBMSC在低氧狀態(tài)下增殖。
[關(guān)鍵詞] 神經(jīng)營(yíng)養(yǎng)因子-3;骨髓間充質(zhì)干細(xì)胞;增殖; 缺氧
[中圖分類號(hào)] R392.12 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1674-0742(2018)02(c)-0003-05
Neurotrophin-3 Promoting the Proliferation of Human Bone Marrow Mesenchymal Stem Cells in Hypoxic Environment
ZHANG Shan-qiang, YAO Li-jie, LI Yu, DENG Feng-chun, JIN Hai-feng, SHEN Lei
Department of Anatomy, Qiqihar Medical College of Basic Medical College, Qiqihar, Heilongjiang Province, 161006 China
[Abstract] Objective This paper tries to investigate the effect of Neurotrophin-3 (NT-3) on proliferation of human bone marrow mesenchymal stem cell (hBMSC) in hypoxic environment. Methods The hypoxic cell culture model in vitro was established by using three gas culture systems in the molecular biology laboratory of Qiqihar medical college, and the hBMSC purchased in May 2016 were selected. Under the hypoxic environment, the hBMSCs without any stimulation was used as the hypoxic control group; the hBMSCs supplemented with 100 ng/mL human NT-3 recombinant protein composed the NT -3 group; the rBMSCs with MK2206, added to the NT -3 group composed the Akt inhibitor group; the rBMSCs cultured with normal oxygen concentration as the normoxic control group, each group was subjected to osteogenic induction for 21 days. The MTT, Western blot, and ELISA assay was used to detect the cell proliferation, apoptosis, and the expression of VEGF and BMP-1 in each group, respectively. Results The OD value of hBMSC proliferation in NT-3 group was significantly higher than that in hypoxia control group(1.438 ± 0.116),The difference was statisically significant(P<0.01), and the levels of VEGF and BMP-1 protein in NT-3 group(1.704±0.132)ng/mL;(1.794±0.098)ng/mL were higher than those in hypoxia control group,The difference was statisically significant(P<0.01). Compared with NT-3 group, OD value of hBMSC proliferation decreased (0.927±0.103) in Akt inhibitor group,The difference was statisically significant(P<0.01), and the levels of VEGF and BMP-1 in Akt inhibitor group Protein content (1.428±0.205)ng/mL;(1.157±0.102)ng/mL was lower than NT-3 group,The difference was statisically significant(P<0.01). Conclusion NT-3 can improve the anti hypoxia function of hBMSC and promote the proliferation of hBMSC into osteoblasts under hypoxia.
[Key words] Neurotrophin-3 (NT-3); Bone marrow mesenchymal stem cell (hBMSC); Prolifertaion; Hypoxia
目前,來(lái)源于骨髓的間充質(zhì)干細(xì)胞(Mesenchymal stem cell, MSC)因具備取材方便、免疫原性低、易在體外培養(yǎng)增殖和多向分化等優(yōu)勢(shì)已成為組織工程治療骨折、骨缺損等骨損傷疾病的首選種子細(xì)胞[1]。然而,骨損傷部位的持續(xù)缺血缺氧環(huán)境會(huì)減少M(fèi)SC的存活時(shí)間、抑制MSC的增殖和分化能力,從而降低細(xì)胞的組織修復(fù)功能[2]。因此,提高M(jìn)SC抗缺氧能力,將對(duì)組織工程利用MSC治療骨損傷具有重要意義。作為骨組織工程的三個(gè)關(guān)鍵因素之一,生物活性因子常被用以參與調(diào)節(jié)成骨的多種因子表達(dá)以及成骨細(xì)胞的活性來(lái)提高成骨效能。神經(jīng)營(yíng)養(yǎng)因子-3(Neurotrophin-3, NT-3)由中樞神經(jīng)系統(tǒng)和肌肉組織產(chǎn)生,具有促進(jìn)神經(jīng)和血管再生的功能[3]。近來(lái)發(fā)現(xiàn),NT-3在調(diào)節(jié)MSC增殖和成骨分化等方面具有積極作用[4]。但是,有關(guān)NT-3在低氧環(huán)境中調(diào)節(jié)MSC增殖的研究卻鮮有報(bào)道。有研究發(fā)現(xiàn),在缺氧狀態(tài)下,缺氧誘導(dǎo)因子(Hypoxia-inducible Factor-1, HIF-1)會(huì)激活氧調(diào)節(jié)基因NTRK2,促使神經(jīng)營(yíng)養(yǎng)因子受體TrkB高表達(dá),進(jìn)而促進(jìn)BDNF、NT-3、NT-4等神經(jīng)營(yíng)養(yǎng)因子水平升高[5]。這提示應(yīng)用NT-3可能會(huì)發(fā)揮保護(hù)MSC抗低氧的作用。該實(shí)驗(yàn)擬在低氧環(huán)境中闡明NT-3在成骨誘導(dǎo)21 d中對(duì)hBMSC生長(zhǎng)及分化能力的影響,為組織工程治療骨損傷提供奠定研究基礎(chǔ)。
1 材料與方法
1.1 材料和儀器
人骨髓間充質(zhì)干細(xì)胞(HUXMA-01101)。α-MEM培養(yǎng)基(SH30265.01B)、胎牛血清(FBS)(SH30071.03)、磷酸鹽緩沖液(PBS)(SH30256.01B)。L-谷氨酰胺(G8540-100G)、青霉素(K0035)、鏈霉素(K0035)、地塞米松(50-02-2)、抗壞血酸(PV0001)、-甘油磷酸鈉(50020)、3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴鹽(MTT)(M-0283)、二甲基亞砜(DMSO)(D2650)。MK2206(S1078 e3-L1200-02)。人神經(jīng)營(yíng)養(yǎng)因子-3(Neurotrophin-3, NT-3)重組蛋白(YB-1294)。人血管內(nèi)皮生長(zhǎng)因子(Vascular endothelial growth factor, VEGF)(KHG0111)、骨形態(tài)發(fā)生蛋白-1(Bone morphogenetic protein-1, BMP-1)(xyA653Hu)的酶聯(lián)免疫吸附試驗(yàn)(Enzyme linked immunosorbent assay, ELISA)試劑盒。胰蛋白酶-EDTA(25300062)。小鼠抗人Caspase-3抗體(ab13586)(1:150)、辣根過(guò)氧化物酶(HRP)標(biāo)記山羊抗小鼠IgG(ab20043)、-actin(ab8227)。RIPA細(xì)胞裂解液(P0013B)。Emax 酶標(biāo)儀。
1.2 方法
1.2.1 細(xì)胞培養(yǎng)與實(shí)驗(yàn)分組 hBMSC以含10%FBS、2 mmol/L谷氨酰胺、1 μmol/L青霉素和100 μ/mL鏈霉素的α-MEM基本培養(yǎng)基培養(yǎng)。在α-MEM基本培養(yǎng)基中添加100 μmmol/L地塞米松、0.1 mmol/L抗壞血酸C和10 mmol/L β- 甘油磷酸鈉則為成骨誘導(dǎo)培養(yǎng)基。
以5% CO2、94% N2 和 1% O2的三氣體系建立低氧體外細(xì)胞培養(yǎng)模型,在低氧環(huán)境下,未行任何添加的hBMSC為低氧對(duì)照組;用100 ng/mL人NT-3 重組蛋白作用的hBMSC為NT-3組;先以50 μmol/L MK2206作用30 min,0.01 mmol/L PBS清洗3次,再以100 ng/mL NT-3刺激的hBMSC為Akt抑制劑組;在95%空氣和 5% CO2的條件下培養(yǎng)的hBMSC為常氧對(duì)照組。各組均行成骨誘導(dǎo)實(shí)驗(yàn)3周,結(jié)束后行如下實(shí)驗(yàn)。
1.2.2 噻唑藍(lán)(MTT)細(xì)胞增殖實(shí)驗(yàn) 根據(jù)實(shí)驗(yàn)分組情況,在96孔板中按1×104/孔接種各組細(xì)胞,繼續(xù)在各組實(shí)驗(yàn)環(huán)境下培養(yǎng)24 h后,加入20 μL的5%MTT孵育4 h,然后添加100 μL DMSO,振蕩10 min,Emax酶標(biāo)儀在490 nm波長(zhǎng)檢測(cè)各組樣品吸光度值(OD值)。
1.2.3 Western bolt檢測(cè)Caspase-3蛋白 取5×106各組實(shí)驗(yàn)細(xì)胞,進(jìn)行細(xì)胞裂解,在4 ℃下 離心 10 min(12 000 r/min)后,提取蛋白液并測(cè)定蛋白濃度。將25 μg各組蛋白樣品經(jīng)SDS-PAGE 凝膠電泳 90 min (100 V)后轉(zhuǎn)至至硝酸纖維素薄膜 (300 mA,40 min),封閉60 min,依次添加一抗小鼠抗人Caspase-3 抗體(1∶150)和二抗HRP標(biāo)記山羊抗小鼠IgG;室溫條件下培育90 min后洗膜,使用增強(qiáng)化學(xué)發(fā)光法(enhanced chemiluminescence,ECL)檢測(cè)蛋白表達(dá),Image-Pro Plus 6.0.1軟件分析各蛋白條帶相對(duì)吸光度值作定量計(jì)算。β-actin作為內(nèi)參對(duì)照組。
1.2.4 酶聯(lián)免疫吸附試驗(yàn)(ELISA) 按照實(shí)驗(yàn)分組,培養(yǎng)5×106各組細(xì)胞,用含1%FBS的α-MEM培養(yǎng)基繼續(xù)在各組實(shí)驗(yàn)條件下培養(yǎng)24 h后,提取各組樣品上清液,抽濾,使用ELISA試劑盒檢測(cè)各組細(xì)胞中VEGF、BMP-1蛋白的表達(dá),實(shí)驗(yàn)步驟嚴(yán)格按照說(shuō)明書操作。
1.3 統(tǒng)計(jì)方法
各實(shí)驗(yàn)均至少重復(fù)3次,采用SPSS 19.0統(tǒng)計(jì)學(xué)軟件對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行分析,計(jì)量資料以(x±s)表示,進(jìn)行t檢驗(yàn)或F檢驗(yàn),P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 各實(shí)驗(yàn)組細(xì)胞增殖檢測(cè)結(jié)果
通過(guò)方差分析發(fā)現(xiàn),常氧對(duì)照組、低氧對(duì)照組、NT-3組和Akt抑制劑組的hBMSC增殖OD值的差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。低氧環(huán)境下,與低氧對(duì)照組相比,NT-3組的hBMSC增殖OD值顯著增高,兩者比較差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。相較于NT-3組,Akt抑制劑組的hBMSC增殖OD值明顯降低,兩者比較差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。比較結(jié)果詳見表1。
2.2 各實(shí)驗(yàn)組細(xì)胞凋亡檢測(cè)結(jié)果
實(shí)驗(yàn)結(jié)果發(fā)現(xiàn),低氧對(duì)照組的Caspase-3蛋白含量明顯低于常氧對(duì)照組組,經(jīng)方差分析,兩者差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。在低氧環(huán)境下,NT-3組的Caspase-3蛋白含量顯著高于低氧對(duì)照組,經(jīng)方差分析,兩者差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。Akt抑制劑組的Caspase-3蛋白含量明顯低于NT-3組,經(jīng)方差分析,兩者差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。比較結(jié)果詳見表2。
2.3 各實(shí)驗(yàn)組VEGF和BMP-1蛋白檢測(cè)結(jié)果
經(jīng)方差分析,發(fā)現(xiàn)常氧對(duì)照組、低氧對(duì)照組、NT-3組和Akt抑制劑組的VEGF和BMP-1蛋白濃度間的差異均有統(tǒng)計(jì)學(xué)意義(P<0.01)。低氧環(huán)境下,相對(duì)于低氧對(duì)照組,NT-3組的EGF和BMP-1蛋白濃度均明顯增高,組間比較差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。與NT-3組比較,Akt抑制劑組的VEGF和BMP-1蛋白濃度均明顯降低,組間比較差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。比較結(jié)果詳見表3。
3 討論
在骨折、骨缺損等骨損傷疾病中,受損區(qū)域常因血管和神經(jīng)的缺失導(dǎo)致局部組織微環(huán)境出現(xiàn)嚴(yán)重的缺血缺氧,從而引起骨延遲愈合,骨不連等一系列并發(fā)癥發(fā)生[6]。持續(xù)的缺氧環(huán)境會(huì)破壞細(xì)胞的內(nèi)質(zhì)網(wǎng)、高爾基復(fù)合體等細(xì)胞內(nèi)結(jié)構(gòu),從而降低細(xì)胞生物活性,影響細(xì)胞的增殖和分化[7]。因此,糾正缺氧損傷一直是組織工程應(yīng)用MSC療法治療骨損傷的研究熱點(diǎn)。
研究發(fā)現(xiàn),組織微環(huán)境的氧濃度對(duì)細(xì)胞的生物活性影響顯著。由于人體骨髓內(nèi)的氧分壓為2%~7%,是MSC正常的生理氧環(huán)境,加之骨損傷部位的氧分壓低于1%等原因,于是有學(xué)者提出對(duì)MSC進(jìn)行低氧預(yù)處理可提高其在移植區(qū)域內(nèi)的增殖能力[8]。但是,由于受損骨質(zhì)周圍缺乏血管營(yíng)養(yǎng)和神經(jīng)支配,持續(xù)的缺氧狀態(tài)會(huì)抑制MSC的成骨分化能力[9]。因此設(shè)想,如果既能保護(hù)MSC抗缺氧損傷,又能促進(jìn)血管和神經(jīng)再生,將對(duì)促進(jìn)骨質(zhì)修復(fù)、縮短治療進(jìn)程具有重要意義。
近年來(lái),NT-3因具有支持神經(jīng)元存活、再生、促進(jìn)神經(jīng)元功能恢復(fù)能等特點(diǎn)已被組織工程廣泛應(yīng)用于神經(jīng)系統(tǒng)的損傷治療[10]。同時(shí),有學(xué)者發(fā)現(xiàn)NT-3在促進(jìn)血管新生方面也發(fā)揮積極作用[10]。前期研究發(fā)現(xiàn),NT-3在高糖環(huán)境下可有效促進(jìn)MSC分化為血管內(nèi)皮細(xì)胞,加快糖尿病性皮膚潰瘍愈合[11]。結(jié)合Zhang等人[12]的研究,認(rèn)為NT-3可能在低氧環(huán)境中對(duì)MSC的增殖具有促進(jìn)作用。
在該實(shí)驗(yàn)中,模擬受損骨質(zhì)的氧分壓環(huán)境,利用5% CO2、94% N2 和 1% O2的三氣培養(yǎng)體系對(duì)細(xì)胞進(jìn)行培養(yǎng),發(fā)現(xiàn)低氧對(duì)照組的hBMSC增殖OD值(0.536±0.145)顯著低于常氧對(duì)照組(1.837±0.104),且凋亡率升高(2.607±0.131),證實(shí)了細(xì)胞的增殖與分化功能在低氧環(huán)境中會(huì)受到抑制,并與高文魁等人[13]發(fā)現(xiàn)的在5% CO2、92% N2 和 3% O2的低氧環(huán)境下。低氧組成骨細(xì)胞的增殖OD值(0.405±0.008)低于常氧組成骨細(xì)胞的增殖OD值(0.859±0.012)的結(jié)果類似,說(shuō)明我們成功地建立了低氧體外細(xì)胞培養(yǎng)模型。
通過(guò)實(shí)驗(yàn)發(fā)現(xiàn),NT-3組的hBMSC增殖OD值(1.438±0.116)顯著高于低氧對(duì)照組(0.536±0.145)和Akt抑制劑組(0.927±0.103),凋亡率(1.537±0.116)低于低氧對(duì)照組(2.607±0.131)和Akt抑制劑組(1.846±0.109),可能是在低氧環(huán)境中,缺氧誘導(dǎo)因子HIF-1激活了細(xì)胞表面的Trk受體,進(jìn)而激活A(yù)kt通路促進(jìn)細(xì)胞增殖[14]。Stegeman等人[15]的研究也發(fā)現(xiàn)HIF-1會(huì)激活A(yù)kt通路,從而促進(jìn)頭頸部鱗狀癌細(xì)胞的增殖。Akt通路在MSC增殖和分化過(guò)程中發(fā)揮重要作用,我們?cè)谇捌谘芯恐凶C實(shí)了NT-3可激活A(yù)kt通路促進(jìn)MSC增殖[12]。當(dāng)然,也不排除在低氧環(huán)境中,Akt與PI3K、Erk、Wnt等通路也存在相互作用[16]。雖然有人認(rèn)為低氧環(huán)境也會(huì)促進(jìn)MSC增殖[9],但實(shí)驗(yàn)充分證實(shí)了NT-3對(duì)MSC成骨分化的促進(jìn)作用。VEGF是MSC分泌的重要細(xì)胞因子之一,它不僅能促進(jìn)血管新生,還能促進(jìn)MSC增殖和分化[17]。實(shí)驗(yàn)發(fā)現(xiàn),NT-3組的VEGF蛋白濃度(1.704±0.132)ng/mL均高于低氧對(duì)照組(0.827±0.140)ng/mL和Akt抑制劑組(1.428±0.205)ng/mL,間接證明了NT-3對(duì)MSC的增殖作用。同時(shí),作為檢測(cè)MSC成骨分化的重要指標(biāo),發(fā)現(xiàn)NT-3組的BMP-1濃度(1.794±0.098)ng/mL顯著高于低氧對(duì)照組(0.957±0.115)ng/mL和Akt抑制劑組(1.157±0.102)ng/mL,這也證明了NT-3不但能促進(jìn)MSC增殖,還能在低氧環(huán)境下促進(jìn)MSC成骨分化。
綜上所述,NT-3在低氧環(huán)境下能有效促進(jìn)MSC增殖與分化,在促進(jìn)血管和神經(jīng)再生的同時(shí),能夠發(fā)揮抗缺氧因子的功能。下一步,將著重研究NT-3在生物支架材料中的緩釋功能,通過(guò)對(duì)應(yīng)用間充質(zhì)干細(xì)胞組織工程技術(shù)促進(jìn)移植物血管化,加速骨缺損的修復(fù)。
[參考文獻(xiàn)]
[1] Gómez-Barrena E, Rosset P, Lozano D, et al. Bone fracture healing: Cell therapy in delayed unions and nonunions[J]. Bone, 2015, 70(3):93-101.
[2] Wang T, Zhang X, Bikle DD. Osteogenic Differentiation of Periosteal Cells During Fracture Healing[J]. J Cell Physiol, 2017, 232(5):913-921.
[3] Cristofaro B, Stone OA, Caporali A, et al. Neurotrophin-3 is a novel angiogenic factor capable of therapeutic neovasc ularization in a mouse model of limb ischemia[J]. Arterioscler Thromb Vasc Biol, 2010, 30(6):1143-1150.
[4] 張善強(qiáng), 李永濤, 孫石柱,等. 神經(jīng)營(yíng)養(yǎng)因子-3通過(guò)Wnt通路促進(jìn)人骨髓間充質(zhì)干細(xì)胞生長(zhǎng)和成骨分化的研究[J]. 中國(guó)現(xiàn)代醫(yī)學(xué)雜志, 2016, 26(15):6-10.
[5] Martens LK, Kirschner KM, Warnecke C, et al. Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator of the TrkB neurotrophin receptor gene[J].J Biol Chem,2007, 282(19):14379-14388.
[6] Wilson SS, Wong A, Toupadakis CA, et al. Expression of angiopoietin-like protein 4 at the fracture site: Regulation by hypoxia and osteoblastic differentiation[J]. J Orthop Res, 2015, 33(9):1364-1373.
[7] Ejtehadifar M, Shamsasenjan K, Movassaghpour A, et al. The Effect of Hypoxia on Mesenchymal Stem Cell Biology[J]. Adv Pharm Bull, 2015, 5(2):141-149.
[8] Wang X, Liu C, Li S, et al. Hypoxia Precondition Promotes Adipose-Derived Mesenchymal Stem Cells Based Repair of Diabetic Erectile Dysfunction via Augmenting Angiogenesis and Neuroprotection[J]. Plos One, 2015, 10(3):e0118951.
[9] Jiejie L, Haojie H, Hong H, et al. Hypoxia regulates the therapeutic potential of mesenchymal stem cells through enhanced autophagy[J]. Int J Low Extrem Wounds, 2015, 14(1):63-72.
[10] Gratto KA,Verge VM.Neurotrophin-3 down-regulates trkA mRNA, NGF high-affinity binding sites,and associated phenotype in adult DRG neurons[J].Eur J Neur osci, 2003, 18(6):1535-1548.
[11] Shen L, Zeng W, Wu YX,et al. Neurotrophin-3 accelerates wound healing in diabetic mice by promoting a paracrine response in mesenchymal stem cells[J].Cell Transplant, 2013, 22(6):1011-1021.
[12] Zhang J, Shi Q, Chen X, et al. Hypoxia-regulated neurotrophin-3 expression by multicopy hypoxia response, elements reduces apoptosis in PC12 cells[J]. Int J Mol Med, 2012, 30(5):1173-1179.
[13] 高文魁, 王德元, 李智鋼,等.低氧條件下成骨細(xì)胞的增殖與分化[J]. 中國(guó)組織工程研究,2011, 15(46):8591-8594.
[14] Li GQ, Zhang Y, Liu D, et al. PI3 kinase/Akt/HIF-1α pathway is associated with hypoxia-induced epithelial–mesenchymal transition in fibroblast-like synoviocytes of rheumatoid arthritis[J]. Mol Cell Biochem, 2013, 372(1-2):221-231.
[15] Stegeman H, Span PN, Peeters WJ,et al.Interaction between hypoxia, AKT and HIF-1 signaling in HNSCC and NSCLC: implications for future treatment strategies[J]. Future Sci OA, 2016, 2(1):FSO84.
[16] Sheng L, Mao X, Yu Q, et al. Effect of the PI3K/AKT signaling pathway on hypoxia-induced proliferation and differentiation of bone marrow-derived mesenchymal stem cells[J]. Exp Ther Med, 2017, 13(1):55-62.
[17] Yan B, Li P, Yin G, et al. BMP-2, VEGF and bFGF synergistically promote the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells[J]. Biotechnol Lett, 2013, 35(3):301-308.
(收稿日期:2017-11-22)