• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and Structural Characterization of N,N-disubstituted Acylguanidines①

    2018-06-20 12:00:40WANGFanFanHOUXianHuiZHUChengBenLIHaiPuYANGYing
    結(jié)構(gòu)化學(xué) 2018年5期
    關(guān)鍵詞:系統(tǒng)化生命周期產(chǎn)品質(zhì)量

    WANG Fan-Fan HOU Xian-Hui ZHU Cheng-Ben LI Hai-Pu YANG Ying

    ?

    Synthesis and Structural Characterization of,-disubstituted Acylguanidines①

    WANG Fan-Fan HOU Xian-Hui ZHU Cheng-Ben LI Hai-Pu YANG Ying②

    (410083)

    acylguanidine, acylthiourea, intramolecular hydrogen bond;

    1 INTRODUCTION

    Guanidines that contain the Y-shaped CN3core have long attracted extensive attention in different fields including chemistry[1, 2], biology[3], catalysts[4]and pharmacology[5]. In the synthetic or applied aspect, they can act as nucleophile and devolve chiral information to the substrate via hydrogen bonding or ionic non-covalent interactions[6]. When acyl substituent was introduced, acylguanidines[7]were formed to play as,-chelating ligands for different metal cations[8-10]. In solid state, the intramolecular hydrogen bonds were always present in the-mono-substituted acylguanidines[3,11-18]R1C(O)N= C[N(H)R2]-N(H)R3(Scheme 1) in spite of tautomeric or con- formational preferences[19]. In contrast, the presence of intramolecular hydrogen bonds seems to be elusive in the,-disubstituted acylguanidines R1C(O)N=C[N(H)R2]NR32(Scheme 1) as suggested by1H NMR spectroscopy in one case[20]or excluded by the solid structural characterization in other cases[21-24].

    Scheme 1. Acylguanidines concerned in study

    It arouses our research interestin investigating how the R groups of,-disubstituted acylguani- dines affect the presence or absence of intramolecular hydrogen bonds. Herein, we report the synthesis and structural characterization of,-disubstituted acylguanidines R1C(O)N=C[N(H)R2]NR32(R1= Mes or Ph; R2= Ar?? or Ar?; R3= Cy, Bn,Pr, or Et) (Mes = 2,4,6-Me3C6H2, Ar?? = 2,6-Pr2C6H3, Ar? = 2,6-Me2C6H3) by reacting respective acylthioureas with secondary amines.

    2 EXPERIMENTAL

    2.1 Materials and measurements

    All chemicals commercially available were of analytical grade and used as received. Melting points were measured in a sealed glass tube using a Büchi B-540 instrument without correction. Elemental analyses for carbon, hydrogen, and nitrogen were performed with a Thermo Quest Italia SPA EA1110 instrument. The1H and13C NMR spectra were recorded with 5 mm tubes in CDCl3solution using AVANCE III 400 and AVANCE III HD 500 spectrometers. Infrared spectra were recorded by using KBr pellets with a NEXUS670 (Thermo Fisher Scientific) FT-IR spectrometer. Acylthioureas were prepared according to the previous procedures[25-27].

    2.2 General synthetic procedure

    To a solution of the parent acylthiourea (20 mmol) in 50 mL of CH3CN were added the corresponding second amines (20 mmol) and Et3N (40 mmol, 5.6 mL). Then NaBiO3(20 mmol, 5.60 g) and BiI3(10 mmol, 0.6 g) were added to the above solution with vigorous magnetic stirring. The suspension was left stirring for 10 min at room temperature and became black. The progress of the reaction was monitored by TLC (Hexane-EtOAc). After complete conversion, the solvent was evaporated and the obtained residue was re-dissolved in CH2Cl2(50 mL). The suspension was filtered through a pad of Celite and the filtrate was dried in a rotary evaporator under reduced pressure to give a white solid.

    2.3 MesC(O)N=C[N(H)Ar??]NCy2 (1)

    -(2,6-diisopropylphenyl)-?-(2,4,6-trimethyl benzoyl)thiourea (20 mmol, 7.61 g) and dicyclohexylamine (20 mmol, 4.0 mL) were used for the synthesis of 1. Yield 46.5%. m.p.: 163~164 °C.1H NMR (500 MHz, CDCl3, ppm)= 12.26 (s, 1H, N), 7.15~7.19 (m, 1H, Ar–), 7.09~7.11 (m, 2H, Ar–), 6.71 (s, 2H, Mes–), 3.19 (sept,= 6.6 Hz, 2H, C(CH3)2), 2.44~2.94 (br., 2H, N–C), 2.27 (s, 6H, Mes-C3), 2.19 (s, 3H, Mes-C3), 1.27~1.78 (m, 20H, Cy–), 1.27 (d,= 6.9 Hz, 6H, CH(C3)2), 1.11 (d,= 6.8 Hz, 6H, CH(C3)2).13C NMR (126 MHz, CDCl3, ppm)= 180.83 (=O), 160.91 (=N), 145.09, 140.33, 135.66, 135.49, 132.66, 127.63, 127.52, 123.57 (Mes/Ar–), 57.68 (N–H), 31.48 (Cy–), 28.82 (H(CH3)2), 25.59, 25.32 (Cy–), 21.58 (CH(H3)2), 21.09, 19.55 (Ar–H3). FT-IR (KBr, cm–1): 3070.97 (vw, NH). Anal. Calcd. for C35H51N3O (529.81): C, 79.35; H, 9.70; N, 7.93%.Found: C, 79.22; H, 9.79; N, 7.90%.

    2.4 PhC(O)N=C[N(H)Ar??]NBn2 (2)

    -(2,6-diisopropylphenyl)-?-benzoyl thiourea (20 mmol, 6.81 g) and dibenzylamine (20 mmol, 4.0 mL) were used. Yield 67.9%. m.p.: 146~147 °C.1H NMR (500 MHz, CDCl3,ppm)= 12.66 (s, 1H, N), 8.25~8.30 (m, 2H, Ar–), 7.38~7.44 (m, 1H, Ar–), 7.33~7.37 (m, 2H, Ar–), 7.15~7.24 (m, 6H, Ar–), 7.03~7.14 (m, 5H, Ar–), 6.97~7.00 (m, 2H, Ar–), 4.48 (br., 4H, Ph–C2), 3.03 (sept,= 6.8 Hz, 2H, C(CH3)2), 1.03 (d,= 6.8 Hz, 6H, CH(C3)2), 0.80 (d,= 6.9 Hz, 6H, CH(C3)2).13C NMR (101 MHz, CDCl3, ppm)= 175.72 (=O), 160.28 (=N), 144.09, 137.82, 135.90, 133.15, 130.07, 128.16, 127.61, 126.88, 126.73, 126.44, 122.61 (Ar/Ph–), 49.47 (Ph–H2), 27.53 (H(CH3)2), 23.92, 20.54 (CH(H3)2). FT-IR (KBr, cm–1): 3060.21 (vw, NH). Anal. Calcd. For C34H37N3O (503.69): C, 81.08; H, 7.40; N, 8.34%. Found: C, 81.19; H, 7.55; N, 8.27%.

    2.5 PhC(O)N=C[N(H)Ar??]NiPr2 (3)

    -(2,6-diisopropylphenyl)-?-benzoyl thiourea (20 mmol, 6.81 g) and diisopropylamine (20 mmol, 2.8 mL) were used. Yield 24.5%. m.p.: 215~216 °C.1H NMR (500 MHz, CDCl3, ppm)= 12.25 (s, 1H, N), 8.25~8.29 (m, 2H, Ar–), 7.43~7.49 (m, 2H, Ar–), 7.23~7.30 (m, 2H, Ar–), 7.18~7.19 (m, 2H, Ar–), 3.93~3.40 (br., 2H, N–C), 3.28 (sept,= 6.8 Hz, 2H, Ar–C(CH3)2), 1.28 (d,= 6.9 Hz, 12H, CH(C3)2), 1.15 (d,= 6.8 Hz, 12H, CH(C3)2).13C NMR (126 MHz, CDCl3, ppm)= 175.72 (=O), 161.45(=N), 145.19, 135.47, 130.69, 129.00, 127.84, 127.56, 123.70 (Ar/Ph–), 48.16 (N–H(CH3)2), 28.62 (C6H3-H(CH3)2), 25.02, 21.64 (CH(H3)2). FT-IR (KBr, cm–1): 3066.54 (s, NH). Anal. Calcd. for C26H37N3O (407.60): C, 76.62; H, 9.15; N, 10.31%. Found: C, 76.66; H, 9.23; N, 10.18%.

    2. 6 PhC(O)N=C[N(H)Ar?]NCy2 (4)

    -(2,6-diisopropylphenyl)-?-benzoyl thiourea (20 mmol, 6.81 g) and dicyclohexylamine (20 mmol, 4.0 mL) were used. Yield 14.6%. m.p.: 172~173 °C.1H NMR (400 MHz, CDCl3, ppm)= 12.04 (s, 1H, N), 8.19~8.25 (m, 2H, Ar–), 7.33~7.41 (m, 3H, Ar–), 6.98 (s, 3H, Ar–), 3.03 (br., 2H, N–C), 2.22 (s, 6H, C3), 0.54~1.96 (br., 20H, Cy–).13C NMR (126 MHz, CDCl3, ppm)= 174.23 (=O), 160.65 (=N), 138.31, 137.47, 133.96, 129.65, 127.95, 127.59, 126.76, 125.53 (Ar/Ph–), 57.07, 30.37, 25.27, 24.45 (Cy–), 17.70 (H3). FT-IR (KBr, cm–1): 3137.64(m, NH). Anal. Calcd. for C28H37N3O (431.62): C, 77.92; H, 8.64; N, 9.74%. Found: C, 77.84; H, 8.71; N, 9.73%.

    2. 7 PhC(O)N=C[N(H)Ar?]NEt2 (5)

    -(2,6-dimethylphenyl)-?-benzoyl thiourea (20 mmol, 5.60 g) and diethylamine (20 mmol, 2.1 mL) were used. Yield 15.4%. m.p.: 118~119 °C.1H NMR (500 MHz, CDCl3, ppm)= 11.85 (s, 1H, N), 8.17~8.21 (m, 2H, Ar/Ph–), 7.32~7.40 (m, 3H, Ar/Ph–), 6.98 (s, 3H, Ar/Ph–), 3.23 (br., 4H, C2CH3), 2.19 (s, 6H, Ar–C3), 0.93 (br., 6H, CH2C3).13C NMR (126 MHz, CDCl3, ppm)= 175.15 (=O), 160.52 (=N), 137.95, 136.51, 133.52, 129.88, 127.97, 127.60, 126.76, 125.51 (Ar/Ph–), 41.73 (H2CH3), 17.59 (Ar–H3), 11.71 (CH2H3). FT-IR (KBr, cm–1): 3461.34 (m, NH). Anal. Calcd. for C20H25N3O (323.44): C, 74.27; H, 7.79; N, 12.99%. Found: C, 74.37; H, 7.77; N, 13.02%.

    2.8 X-ray structure determination and refinement

    Colorless crystals of 1~6 in X-ray quality were grown from concentrated ethanol solutions. The single crystals with dimensions around 0.20mm × 0.20mm × 0.20mm were used for structure determi-nation. The crystallographic data were collected on a Bruker SMART APEX II CCD diffractometer equipped with a graphite-monochromated Moradiation (= 0.71073 ?) at room temperature using an-2scan technique. Empirical absorption co-rrection was applied using the SADABS program[28]. Structures were solved by direct methods and refined by full-matrix least-squares on2using the SHELXL-97 program[29, 30]. All non-hydrogen atoms were located by difference Fourier synthesis and refined anisotropically, and hydrogen atoms were included using the riding model withisorelated toisoof the parent atoms. The final= 0.0522 in 1 for 359 parameters and 5640 observed reflections with> 2() and= 0.1621 (= 1/[2(F2) + (0.0861)2+ 0.6739], where= (F2+ 2F2)/3) for all 40683 reflections; (D)max= 0.317 and (D)min= –0.212 e/?3. And in 2 the final= 0.0497 for 347 parameters and 5113 observed reflections with> 2() and= 0.1398 (= 1/[2(F2) + (0.0796)2+ 0.2790] for all 26512 reflections; (D)max= 0.272 and (D)min= –0.282 e/?3. In 3 the final= 0.0514 for 279 parameters and 4452 observed reflections with> 2() and= 0.1522 (= 1/[2(F2) + (0.0727)2+ 0.5274] for all 37280 reflections; (D)max= 0.304 and (D)min= –0.342 e/?3. In 4 the final= 0.0453 for 291 parameters and 4723 observed reflections with> 2() and= 0.1331 (= 1/[2(F2) + (0.0682)2+ 2.5601] for all 23753 reflections; (D)max= 0.260 and (D)min= –0.238 e/?3. In 5 the final= 0.0603 for 222 parameters and 2821 observed reflections with> 2() and= 0.1972 (= 1/[2(F2) + (0.1311)2+ 0.1375] for all 24112 reflections; (D)max= 0.260 and (D)min= –0.238 e/?3.

    (2)重當(dāng)前輕發(fā)展。產(chǎn)品質(zhì)量大數(shù)據(jù)需要對產(chǎn)品全生命周期各離散環(huán)節(jié)的信息進(jìn)行全面采集。我國對產(chǎn)品質(zhì)量信息的采集主要集中于產(chǎn)品的設(shè)計(jì)和生產(chǎn)過程,特別是成品的標(biāo)準(zhǔn)符合性信息。近年來,售后服務(wù)信息也成為企業(yè)信息采集的重點(diǎn),但物料采購環(huán)節(jié)和進(jìn)貨環(huán)節(jié)的信息仍較為匱乏。同時(shí),各地、各部門、各行業(yè)都在采集信息、發(fā)布信息,而這些數(shù)據(jù)都是從某一主體自身當(dāng)前需要出發(fā)進(jìn)行采集、發(fā)布的,缺乏系統(tǒng)化、前瞻性設(shè)計(jì),相對于企業(yè)、產(chǎn)業(yè)發(fā)展需要的整體數(shù)據(jù)而言,往往呈現(xiàn)碎片化特征。企業(yè)、特別是大多數(shù)中小微企業(yè),其不熟悉產(chǎn)品質(zhì)量大數(shù)據(jù)的應(yīng)用場景,質(zhì)量基礎(chǔ)設(shè)施和信息化建設(shè)薄弱,故數(shù)據(jù)的碎片化特征更為明顯。

    3 RESULTS AND DISCUSSION

    The reaction of-(2,6-diisopropylphenyl)-?-(2,4,6-trimethylbenzoyl) thiourea[26]with dicyclo-hexylamine was carried out in acetonitrile in the presence of bismuth salts and Et3N (Scheme 2) using a modified one-pot protocol[20]. MesC(O)N=C[N(H)Ar??]NCy2(1) was separated as a while solid in a moderate yield (46.5%).

    Scheme 2. Synthesis of acylguanidines 1~4

    In the FT-IR spectrum of 1 the weak band observed at 3070.97 cm–1can be assigned to the N–H stretching vibration, which is in consistence with the formation of intramolecular hydrogen bond for those related-mono-substituted acylguanidines[5,16]. Likewise, in the1H NMR spectrum of 1 recorded in CDCl3, the low-field singlet at=12.26 ppm was due to the NH proton, also suggesting the presence of hydrogen bond within 1 in solution[5,16].

    The methine protons of the isopropyl groups give a signal in the form of a septet at=3.19 ppm, and the signals of their methyl groups were observed as two doublets at=1.11 and 1.27 ppm, respectively. Signals resonate at=2.27 and 2.19 ppm due to the methyl protons of Mes group. Peaks between=1.27 and 1.78 ppm were for cyclohexyl protons with correct integral ratios. The composition of 1 was further confirmed by13C NMR spectroscopy and elemental analysis. Single crystals suitable for X-ray structural analysis were obtained from saturated ethanol solution of 1 by slow evaporation at room temperature. The molecular structure of 1 is depicted in Fig. 1 and the selected bond lengths and bond angles are listed in Table 1. MesC(O)N=C[N(H)Ar??]-NCy2(1) crystallizes in the monoclinic space group21/. It shows that a single intramolecular hydrogen bond is present within the solid structure of 1 involving the atoms N(1)–H(1)···O(1) (Table 2)to form a pseudo six-membered ring. Under such a condition, the O(1) atom almost locates on the least-squares plane NCNC fitted through the atoms N(l), C(1), N(2), and C(2) by only slight deviation of 0.168 ?. When reviewingthe structure of parent-(2,6-diisopropylphenyl)-?-(2,4,6-trimethylbenzoyl) thiourea[26], it seems that the intramolecular hydrogen bond was ?inherited? by 1.

    Fig. 1. Molecular structure of 1. Thermal ellipsoids are drawn at 30% level. Other hydrogen atoms except for NH are omitted for clarity

    Compound 1 represents the rare example of,-disubstituted acylguanidines to bear the intra- molecular hydrogen bond within the solid structure in contrast to the previously known cases[21-24]. Another structural feature of 1 is that the Mes plane is nearly perpendicular to the NCNC quasi-plane (79.51°) due to the steric resistance. Correspondingly, the N(1)–C(1)–N(3) bond angle (123.35°) is more or less larger than those for-mono-substituted acylguani- dines[3,11-18](114.7~120.6°). There was no short contact like intermolecular hydrogen bond found among molecules of 1.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°) of Compounds 1~5

    Table 2. Hydrogen Bond Lengths (?) and Bond Angles (°) of Compounds 1~5

    Symmetry code: #1:–1/2, –+1/2, –+1

    Fig. 2. Molecular structure of 2. Thermal ellipsoids are drawn at 30% level. Other hydrogen atoms except for NH are omitted for clarity

    The core structure of C(O)N=C[N(H)Ar??]N of 2 owes a conformation similar to that of 1, while the N(1)–C(1)–N(3) bond angle is found to slightly shrink to 121.84° relative to that of 1 (123.35°). In sharp contrast, the Ph plane is almost parallel to the least-squares plane NCNC by 12.80°, which is in line with the observations in those related-mono-subs-tituted acylguanidines involving R1= Ph[3,11-18]. Similarly, no short contact was found among the molecules of 2.

    Starting from PhC(O)N=C[N(H)Ar??]NBn2(2), the ?change? of R3substituent from Bn to the further less bulkyPr led to the formation of an analogue PhC(O)N=C[N(H)Ar??]NPr2(3, Scheme 2). It also presents the intramolecular hydrogen bond (molecular structure of 3 not shown here). In the case of 3, the N(1)–C(1)–N(3) bond angle is further decreased to 121.50°. When Ar? = 2,6-Me2C6H3was introduced as R2, another,-disubstituted acy-lguanidine PhC(O)N=C[N(H)Ar?]NCy2(4) (Scheme 2) was obtained. The spectroscopic and structural characterization of 4 (not shown) revealed that it is highly analogous to 1~3.

    A closer examination of structures 1~4 indicated that the rough reduction of the steric hindrance of R substitutents of R1C(O)N=C[N(H)R2]NR32(abbre- viated here as R1-R2-R3for comparison purposes) led to the slight enlongation of N(1)–C(1) bond lengthes and mariginal decrease of N(1)–C(1)–N(3) bond angles from Mes–Ar??–Cy (1) to Ph–Ar??–Bn (2), Ph–Ar??–Pr (3) and Ph–Ar?–Cy (4) (Scheme 3). It is therefore suggested that the further modification of R substituents may bring about substantial change in structure.

    Scheme 3. C(1)–N(1) bond lengths and N(1)–C(1)–N(3) bond angles of 1~4

    To put forward this consideration, PhC(O)N=C[N(H)Ar?]NEt2(5) was prepared by reacting-(2,6-dimethylphenyl)-?-benzoyl thiourea with diethylamine (Scheme 4), where the R3substituent was taken as the less bulky Et group instead of Cy in 4.

    Scheme 4. Synthesis of acylguanidine 5

    In the FT-IR spectrum of 5, the strong band observed at 3461.34 cm–1is attributable to N–H stretching, and it is found to be greatly blue-shifted relative to those of1~4 (3060.21~3137.64 cm–1). On the other side, resonance for NH proton was observed at=11.85 ppm in the1H NMR spectrum, which is generally high-field shifted when compared to those of 1~4 (=12.04~12.66 ppm). These observations could provide a hint for the existence of possible but different hydrogen bond in 5.

    As characterized by the single-crystal X-ray diffraction, 5 crystallizes in orthorhombic system212121space group. The molecular structure of 5 is depicted in Fig. 3, in which no intramolecular hydrogen bond exists.

    Fig. 3. Molecular structure of 5. Thermal ellipsoids are drawn at 30% level. Other hydrogen atoms except for NH are omitted for clarity

    The torsion angle of N(1)–C(1)–N(2)–C(2) is found to be –108.6(3)°, in sharp contrast to those of the structurally known,-disubstituted acylguani-dines that contain no intramolecular hydrogen bonds either, including PhC(O)N=C[N(H)Ph]NEt2(42.2°)[21], PhC(O)N=C[N(H)Ph]N(Me)Bn (52.2°)[23],and-NO2–C6H4–C(O)N=C[N(H)Fc?]NMe2(122.2°) (Fc? = 2-ethoxycarbonyl-1-ferrocenylethyl)[24], but still somewhat comparable to that for MeC(O)N=C[N(H)Bu]N(Bu)C(O)Me (–168.1°)[22]. These structural differences could be related to the spatial preference of nucleophile amine to attack the thiocarbonyl site during the desulfurization-con- densation reaction[31]. Structural analyses of the those above reported,-disubstituted acylguanidines revealed that they form intermolecular bonds instead[21-24], by which the adjacent molecules of them were linked into dimers[21]or zigzag long chains[22-24]. The packing diagram of 5 molecules in the unit cell viewed down theaxis is illustrated in Fig. 4, showing intermolecular hydrogen bonds N(1)–H(1)···O(1)#1 to generate zigzag chains along theaxis (symmetry operation #1: #1:–1/2, –+1/2, –+1), as shown in Table 2.

    Fig. 4. Packing diagram of 5 with intermolecular hydrogen bonds

    In a reference reaction of-(2,6-dimethylphenyl)-?-benzoyl thiourea with diisopropylamine, the obtained product (6) turned out to be a new acylurea PhC(O)N(H)C(O)N(H)Ar? other than the expected,-disubstituted acylguanidine PhC(O)N=C[N(H)Ar?]NPr2. It was suggested that under such a condition the above acylthiourea PhC(O)N(H)C(S)N(H)Ar? was much more reactive with the residual water in reaction system to undergo a desulfurization hydrolysis. This finding is in agreement with our previous practices that the acylthioureas show a facile reactivity with water, alcohol, or amine under catalytic conditions[27]. In practical ways, acylureas can be prepared from amides[32]or carboxamides[33].

    4 CONCLUSION

    In summary, we have synthesized and charac-terized five new,-acylguanidines R1C(O)N=C[N(H)R2]NR32(R1= Mes or Ph; R2= Ar?? or Ar?; R3= Cy, Bn,Pr, or Et) (Mes = 2,4,6-Me3C6H2, Ar?? = 2,6-Pr2C6H3, Ar? = 2,6-Me2C6H3) by the modification of R substituents. The structures of 1~5 were well characterized by single-crystal X-ray diffraction. Compounds 1~4 each contained a single intramolecular hydrogen bond N(1)–H(1)···O(1), while 5 formed an intermolecular hydrogen bond instead. It was suggested that the steric hindrance of R substituents could play a significant role therein.

    (1) Katritzky, A. R.; Rogovoy, B. V.; Cai, X. H.; Kirichenko, N.; Kovalenko, K. V. Efficient synthesis of polysubstituted acylguanidines and guanylureas.2004, 69, 309-313.

    (2) Bailey, P. J.; Pace, S. The coordination chemistry of guanidines and guanidinates.2001, 214, 91-141.

    (3) Murtaza, G.; Badshah, A.; Said, M.; Khan, H.; Khan, A.; Khan, S.; Siddiq, S.; Choudhary, M. I.; Boudreau, J.; Fontaine, F. G. Urease inhibition and anti-leishmanial assay of substituted benzoylguanidines and their copper(II) complexes.2011, 40, 9202-9211.

    (4) Saczewski, F.; Balewski, ?. Biological activities of guanidine compounds.2009, 19, 1417-1448.

    (5) Pape, S.; Wessig, P.; Brunner, H. Iron trichloride and air mediated guanylation of acylthioureas. An ecological route to acylguanidines: scope and mechanistic insights.2016, 81, 4701-4712.

    (6) Taylor, J. E.; Bull, S. D.; Williams, J. M. J. Amidines, isothioureas, and guanidines as nucleophilic catalysts.2012, 41, 2109-2121.

    (7) Dodd, D. S.; Zhao, Y. Solid-phase synthesis of,?-substituted acylguanidines.2001, 42, 1259-1262.

    (8) Wagner, A.; Litters, S.; Elias, J.; Kaifer, E.; Himmel, H.J. Chemistry of guanidinate-stabilised diboranes: transition-metal-catalysed dehydrocoupling and hydride abstraction.2014, 20, 12514-12527.

    (9) B?rner, J.; dos Santos Vieira, I.; Jones, M. D.; D?ring, A.; Kuckling, D.; Fl?rke, U.; Herres-Pawlis, S. Zinc complexes with guanidine-pyridine hybrid ligands – Guanidine effect and catalytic activity.2011, 4441-4456.

    (10)Schr?der, U.; Beyer, L.; Richter, R.; Angulo-Cornejo, J.; Castillo-Montoya, M.; Lino-Pacheco, M. Complex formation of N∩N-ethylene bridged bis(N′-benzoyl-O-ethyl-isourea) and N-benzoylguanidines with late transition metals.2003, 353, 59-67.

    (11) Cunha, S.; Costa, M. B.; Napolitano, H. B.; Lariucci, C.; Vencato, I. Study of N-benzoyl-activation in the HgCl2-promoted guanylation reaction of thioureas. Synthesis and structural analysis of N-benzoyl-guanidines.2001, 57, 1671-1675.

    (12) Bisaha, S. N.; Malley, M. F.; Pudzianowski, A.; Monshizadegan, H.; Wang, P.; Madsen, C. S.; Gougoutas, J. Z.; Stein, P. D. A switch in enantiomer preference between mitochondrial F1F0-ATPase chemotypes.2005, 15, 2749-2751.

    (13) Murtaza, G.; Ebihara, M.; Said, M.; Khawar Rauf, M.; Anwar, S. 2-Benzoyl-1-(2,4-dichlorophenyl)-3-phenylguanidine.2009, 65, o2297-o2298.

    (14) Gul, R.; Khan, A.; Badshah, A.; Tahir, M. N. 2-(3-Chlorobenzoyl)-3-(3,4-dichlorophenyl)-1-(4-ferrocenylphenyl)guanidine.2013, 69, m486-m486.

    (15) Gul, R.; Khan, A.; Badshah, A.; Rauf, M. K.; Shah, A.; Ziaur, R.; Bano, A.; Naz, R.; Tahir, M. N. New supramolecular ferrocenyl phenylguanidines as potent antimicrobial and DNA-binding agents.2013, 66, 1959-1973.

    (16) Murtaza, G.; Rauf, M. K.; Badshah, A.; Ebihara, M.; Said, M.; Gielen, M.; de Vos, D.; Dilshad, E.; Mirza, B. Synthesis, structural characterization and in vitro biological screening of some homoleptic copper(II) complexes with substituted guanidines.2012, 48, 26-35.

    (17) Jeyalakshmi, K.; Selvakumaran, N.; Bhuvanesh, N. S. P.; Sreekanth, A.; Karvembu, R. DNA/protein binding and cytotoxicity studies of copper(II) complexes containing,?,??-trisubstituted guanidine ligands.2014, 4, 17179-17195.

    (18) Esteves, H.; de Fatima, A.; Castro, R. D. P.; Sabino, J. R.; Macedo, F. Jr.; Brito, T. O. A simple one-pot methodology for the synthesis of substituted benzoylguanidines from benzoylthioureas using tert-butyl hydroperoxide.2015, 56, 6872-6874.

    (19) O?Donovan, D. H.; Kelly, B.; Diez-Cecilia, E.; Kitson, M.; Rozas, I. A structural study of,?-bis-aryl-??-acylguanidines.2013, 37, 2408-2418.

    (20) Cunha, S.; Rodrigues, M. T. The first bismuth(III)-catalyzed guanylation of thioureas.2006, 47, 6955-6956.

    (21) Murtaza, G.; Hanif Ur, R.; Rauf, M. K.; Ebihara, M.; Badshah, A. 2-Benzoyl-1,1-diethyl-3-phenylguanidine.2009, 65, o343-o343.

    (22) Lysenko, S.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. Tungsten alkylidyne complexes with ancillary imidazolin-2-iminato and imidazolidin-2-iminato ligands and their use in catalytic alkyne metathesis.2013, 744, 7-14.

    (23) Murtaza, G.; Said, M.; Rauf, K.; Ebihara, M.; Badshah, A. 2-Benzoyl-1-benzylmethyl-3-phenylguanidine.2007, 63, o4664-o4664.

    (24) Klimova, E. I.; Sotelo Dominguez, V. H.; Sanchez Garcia, J. J.; Klimova, T.; Backinowsky, L. V.; Flores-Alamo, M.; García, M. M. 1,3-Insertion of amidines into ethyl-2-acyl-3-ferrocenylacrylates.2011, 21, 307-308.

    (25)Zhao, X. Y.; Zhu, C. B.; Li, H. P.; Yang, Y.; Roesky, H. W. Synthesis and characterization of copper(I) halide complexes with N-(2,6-diisopropylphenyl)-N?-benzoylthiourea: monomeric, dimeric, and cage structures.2014, 640, 1614-1621.

    (26) Wu, S. Y.; Zhao, X. Y.; Li, H. P.; Yang, Y.; Roesky, H. W. Synthesis and characterization of N,N-di-substituted acylthiourea copper(II) complexes.2015, 641, 883-889.

    (27)Wang, D.; Wu, S. Y.; Li, H. P.; Yang, Y.; Roesky, H. W. Synthesis and characterization of copper complexes with the N-(2,6-diisopropylphenyl)-N?-acylthiourea ligands.2017, 1406-1413.

    (28) Sheldrick, G. M.. University of G?ttingen: G?ttingen, Germany1997.

    (29) Sheldrick, G. M.University of G?ttingen: G?ttingen, Germany1997.

    (30) Sheldrick, G. M.University of G?ttingen, Germany1997.

    (31) Isao, S.; Yoichi, T.; Tohru, T.; Akihiro, O.; Eisaku, K. Silver(I) ion-mediated desulfurization-condensation of thiocarbonyl compounds with several nucleophiles.1994, 67, 3048-3052.

    (32) Bjerglund, K.; Lindhardt, A. T.; Skrydstrup, T. Palladium-catalyzed N-acylation of monosubstituted ureas using near-stoichiometric carbon monoxide.2012, 77, 3793-3799.

    (33) Singh, A. K.; Chawla, R.; Yadav, L. D. S.slow release of isocyanates: synthesis and organocatalytic application of N-acylureas.2013, 54, 5099-5102.

    25 September 2017;

    8 February 2018 (CCDC 1575244~1575249 for compounds 1~6)

    This work was supported by the National Natural Science Foundation of China (21771194),and the Special Fund for Agro-scientific Research in the Public Interest (201503108)

    . Born in 1974, Ph D, majoring in inorganic chemistry. E-mail: yangy@csu.edu.cn. ORCID: 0000-0003-4531-8349

    10.14102/j.cnki.0254-5861.2011-1835

    猜你喜歡
    系統(tǒng)化生命周期產(chǎn)品質(zhì)量
    動物的生命周期
    全生命周期下呼吸機(jī)質(zhì)量控制
    堅(jiān)持系統(tǒng)化思維 構(gòu)建大安全格局
    系統(tǒng)化推進(jìn)回遷提速
    杭州(2020年23期)2021-01-11 00:54:44
    產(chǎn)品質(zhì)量監(jiān)督抽查的本質(zhì)與拓展
    從生命周期視角看并購保險(xiǎn)
    中國外匯(2019年13期)2019-10-10 03:37:46
    加強(qiáng)PPE流通領(lǐng)域產(chǎn)品質(zhì)量監(jiān)督
    民用飛機(jī)全生命周期KPI的研究與應(yīng)用
    “望聞問切”在產(chǎn)品質(zhì)量鑒定工作中的應(yīng)用
    產(chǎn)品質(zhì)量好 認(rèn)證不能少
    日韩免费高清中文字幕av| 午夜老司机福利剧场| 九色亚洲精品在线播放| 久久婷婷青草| 午夜福利网站1000一区二区三区| 18禁裸乳无遮挡动漫免费视频| 啦啦啦中文免费视频观看日本| 日韩亚洲欧美综合| 下体分泌物呈黄色| 99久久精品国产国产毛片| 国内精品宾馆在线| 亚洲av免费高清在线观看| 午夜福利影视在线免费观看| 在线免费观看不下载黄p国产| 免费看av在线观看网站| 亚洲四区av| 亚洲精品日本国产第一区| 久久国产亚洲av麻豆专区| 欧美日韩视频高清一区二区三区二| 成人漫画全彩无遮挡| 久久影院123| 黄片播放在线免费| 午夜免费鲁丝| 日韩成人av中文字幕在线观看| 黄色毛片三级朝国网站| 精品少妇内射三级| 18禁在线无遮挡免费观看视频| 久久国内精品自在自线图片| 色婷婷久久久亚洲欧美| 亚洲第一av免费看| 边亲边吃奶的免费视频| 97在线视频观看| 亚洲精品日本国产第一区| 在线观看一区二区三区激情| 国产女主播在线喷水免费视频网站| 中国三级夫妇交换| 色婷婷久久久亚洲欧美| 国产午夜精品一二区理论片| 久久99精品国语久久久| 精品少妇久久久久久888优播| 建设人人有责人人尽责人人享有的| 一区二区日韩欧美中文字幕 | 久久久久久久亚洲中文字幕| 久久久欧美国产精品| 精品国产乱码久久久久久小说| 性高湖久久久久久久久免费观看| 亚洲丝袜综合中文字幕| 国产亚洲av片在线观看秒播厂| 日韩精品免费视频一区二区三区 | xxxhd国产人妻xxx| 欧美日韩视频高清一区二区三区二| 色哟哟·www| 国产男女内射视频| 久久影院123| 亚洲精品av麻豆狂野| 日韩欧美精品免费久久| 国产精品熟女久久久久浪| 午夜激情av网站| 热re99久久精品国产66热6| 黑人巨大精品欧美一区二区蜜桃 | 亚洲国产精品一区二区三区在线| 18禁裸乳无遮挡动漫免费视频| 午夜福利影视在线免费观看| 男女无遮挡免费网站观看| 寂寞人妻少妇视频99o| 99久久中文字幕三级久久日本| videossex国产| 久久精品国产a三级三级三级| 免费大片黄手机在线观看| 一个人看视频在线观看www免费| 久久青草综合色| 国产成人91sexporn| 91久久精品电影网| 人成视频在线观看免费观看| 这个男人来自地球电影免费观看 | 亚洲精品久久午夜乱码| 国产免费一区二区三区四区乱码| 国产亚洲精品久久久com| 亚洲欧美一区二区三区国产| 亚洲精品国产av蜜桃| 中文字幕久久专区| 性高湖久久久久久久久免费观看| 麻豆成人av视频| 久久久国产精品麻豆| 久久久久精品久久久久真实原创| 夜夜骑夜夜射夜夜干| 国产高清三级在线| 亚洲精品乱码久久久久久按摩| 国产成人a∨麻豆精品| 99久久人妻综合| 亚洲精品日本国产第一区| 亚洲国产色片| 性色av一级| 久久精品国产a三级三级三级| 99久久精品一区二区三区| 国产成人午夜福利电影在线观看| 不卡视频在线观看欧美| 午夜福利在线观看免费完整高清在| 蜜臀久久99精品久久宅男| 人人妻人人澡人人看| 久久人人爽人人爽人人片va| 亚洲欧美日韩卡通动漫| 久久久久精品性色| 久久精品国产鲁丝片午夜精品| av在线app专区| 久久国产精品大桥未久av| av免费在线看不卡| 最近的中文字幕免费完整| 亚洲精华国产精华液的使用体验| 亚洲天堂av无毛| 男男h啪啪无遮挡| 亚洲图色成人| av网站免费在线观看视频| 国产片内射在线| 久久99热6这里只有精品| 欧美+日韩+精品| 婷婷色综合大香蕉| 国产亚洲精品久久久com| 久久精品熟女亚洲av麻豆精品| 天天躁夜夜躁狠狠久久av| 亚洲情色 制服丝袜| 晚上一个人看的免费电影| 日韩,欧美,国产一区二区三区| 成人国产麻豆网| 午夜老司机福利剧场| 乱码一卡2卡4卡精品| 丝袜在线中文字幕| 如日韩欧美国产精品一区二区三区| 男女床上黄色一级片免费看| 人妻一区二区av| 亚洲成av片中文字幕在线观看| 一二三四社区在线视频社区8| 久久国产精品大桥未久av| 国产精品成人在线| 亚洲综合色网址| 91九色精品人成在线观看| 成人av一区二区三区在线看| 18禁国产床啪视频网站| 精品免费久久久久久久清纯 | 欧美精品一区二区大全| 桃花免费在线播放| 怎么达到女性高潮| 国产亚洲av高清不卡| 日韩精品免费视频一区二区三区| 亚洲黑人精品在线| 老司机午夜十八禁免费视频| 午夜福利视频精品| 成年动漫av网址| 免费看十八禁软件| 人人澡人人妻人| 好男人电影高清在线观看| 中文字幕另类日韩欧美亚洲嫩草| 免费久久久久久久精品成人欧美视频| 免费在线观看影片大全网站| 国产免费福利视频在线观看| 黄色怎么调成土黄色| 国产深夜福利视频在线观看| 免费看十八禁软件| 午夜福利影视在线免费观看| 国产av一区二区精品久久| 欧美乱妇无乱码| 久久 成人 亚洲| 欧美在线黄色| 别揉我奶头~嗯~啊~动态视频| 亚洲午夜理论影院| 久久这里只有精品19| 欧美乱码精品一区二区三区| 9色porny在线观看| 国产99久久九九免费精品| 亚洲五月色婷婷综合| 少妇精品久久久久久久| 老司机影院毛片| 最黄视频免费看| 人人妻人人添人人爽欧美一区卜| 一二三四在线观看免费中文在| 国产精品 国内视频| 我的亚洲天堂| 女人爽到高潮嗷嗷叫在线视频| 丝袜在线中文字幕| 99re6热这里在线精品视频| 中国美女看黄片| 熟女少妇亚洲综合色aaa.| 午夜久久久在线观看| 99九九在线精品视频| 不卡av一区二区三区| 在线亚洲精品国产二区图片欧美| 人妻 亚洲 视频| 国产成人精品无人区| 亚洲精品乱久久久久久| 日日爽夜夜爽网站| 美女视频免费永久观看网站| 久久久精品免费免费高清| 男女下面插进去视频免费观看| 亚洲成a人片在线一区二区| 色播在线永久视频| 少妇粗大呻吟视频| 亚洲久久久国产精品| 又大又爽又粗| av天堂久久9| 欧美精品亚洲一区二区| 色94色欧美一区二区| 高清av免费在线| 欧美日韩亚洲高清精品| 这个男人来自地球电影免费观看| 不卡av一区二区三区| 亚洲久久久国产精品| 日韩中文字幕视频在线看片| 日韩制服丝袜自拍偷拍| 高清毛片免费观看视频网站 | 亚洲欧美一区二区三区黑人| 一级毛片精品| kizo精华| 大码成人一级视频| 99国产极品粉嫩在线观看| 亚洲一区二区三区欧美精品| 高清欧美精品videossex| 亚洲成人国产一区在线观看| 在线av久久热| 狠狠精品人妻久久久久久综合| 亚洲av第一区精品v没综合| 正在播放国产对白刺激| 美女午夜性视频免费| 最黄视频免费看| 成年人午夜在线观看视频| 一本一本久久a久久精品综合妖精| 日本撒尿小便嘘嘘汇集6| 一边摸一边做爽爽视频免费| 国产亚洲精品久久久久5区| 久久影院123| 免费黄频网站在线观看国产| 欧美日韩视频精品一区| 亚洲专区国产一区二区| 亚洲av日韩在线播放| 精品国产乱子伦一区二区三区| 精品亚洲成国产av| 黄色片一级片一级黄色片| a级毛片黄视频| 十八禁网站免费在线| 午夜激情久久久久久久| 国产深夜福利视频在线观看| 欧美日韩视频精品一区| 国产老妇伦熟女老妇高清| 91精品三级在线观看| 国产成人欧美在线观看 | 欧美黄色片欧美黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 悠悠久久av| 99国产精品一区二区蜜桃av | 亚洲伊人色综图| 丝袜人妻中文字幕| 在线 av 中文字幕| 久久人妻福利社区极品人妻图片| 窝窝影院91人妻| 日韩成人在线观看一区二区三区| 51午夜福利影视在线观看| 久久久久久亚洲精品国产蜜桃av| 中文字幕最新亚洲高清| 精品久久久精品久久久| 国产精品香港三级国产av潘金莲| 中文欧美无线码| 亚洲午夜理论影院| 久久精品熟女亚洲av麻豆精品| 叶爱在线成人免费视频播放| 欧美成狂野欧美在线观看| 国产精品一区二区在线不卡| 国产精品久久久久久精品古装| 久久av网站| 青草久久国产| 国产av国产精品国产| 老熟女久久久| 天堂中文最新版在线下载| 免费久久久久久久精品成人欧美视频| av免费在线观看网站| 人妻一区二区av| 国产极品粉嫩免费观看在线| 丝袜美足系列| 无遮挡黄片免费观看| 国产免费福利视频在线观看| 一本久久精品| videosex国产| 国产精品欧美亚洲77777| 亚洲精品在线观看二区| 波多野结衣一区麻豆| 不卡av一区二区三区| 露出奶头的视频| 精品一区二区三区av网在线观看 | 操出白浆在线播放| 国产高清视频在线播放一区| 免费观看a级毛片全部| 又紧又爽又黄一区二区| 天天操日日干夜夜撸| 天天躁日日躁夜夜躁夜夜| 一二三四社区在线视频社区8| www.精华液| 精品亚洲成a人片在线观看| 亚洲色图 男人天堂 中文字幕| a级毛片黄视频| 欧美激情高清一区二区三区| av电影中文网址| 国产精品.久久久| 黄色a级毛片大全视频| 久久毛片免费看一区二区三区| 国产97色在线日韩免费| 91成人精品电影| 99久久国产精品久久久| 午夜视频精品福利| 最黄视频免费看| 天堂俺去俺来也www色官网| av网站免费在线观看视频| 亚洲自偷自拍图片 自拍| 老司机影院毛片| 丁香六月欧美| 亚洲熟妇熟女久久| 超碰成人久久| 国产免费现黄频在线看| 丁香六月欧美| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日韩福利视频一区二区| 久久久久网色| 国产亚洲精品久久久久5区| 亚洲中文日韩欧美视频| 国产一区二区激情短视频| 黑人欧美特级aaaaaa片| a级片在线免费高清观看视频| 国产亚洲欧美精品永久| 久久国产精品男人的天堂亚洲| 夜夜夜夜夜久久久久| 黑人巨大精品欧美一区二区蜜桃| 国产麻豆69| 免费在线观看影片大全网站| 99香蕉大伊视频| 亚洲精品中文字幕在线视频| 久9热在线精品视频| 午夜两性在线视频| 午夜福利在线观看吧| 老司机在亚洲福利影院| av网站免费在线观看视频| 在线 av 中文字幕| 亚洲av欧美aⅴ国产| 超碰成人久久| 久久99一区二区三区| 美国免费a级毛片| 午夜福利免费观看在线| 成人精品一区二区免费| videosex国产| 咕卡用的链子| 亚洲九九香蕉| 欧美国产精品va在线观看不卡| 黑丝袜美女国产一区| 热re99久久国产66热| 久久久水蜜桃国产精品网| 国产在线精品亚洲第一网站| 深夜精品福利| 日日夜夜操网爽| 国产一区二区三区综合在线观看| 啦啦啦在线免费观看视频4| 国产在线视频一区二区| 日日夜夜操网爽| 亚洲熟妇熟女久久| 成人精品一区二区免费| 欧美日韩中文字幕国产精品一区二区三区 | 国产一区二区三区视频了| 久久性视频一级片| 欧美日韩黄片免| 欧美乱妇无乱码| 精品一区二区三区视频在线观看免费 | 欧美日韩亚洲高清精品| 人人妻人人澡人人看| 伊人久久大香线蕉亚洲五| 99精品久久久久人妻精品| 婷婷成人精品国产| 午夜精品久久久久久毛片777| 免费在线观看影片大全网站| 一进一出抽搐动态| 新久久久久国产一级毛片| 久久这里只有精品19| 国产在线一区二区三区精| 三级毛片av免费| av线在线观看网站| 18禁裸乳无遮挡动漫免费视频| 欧美av亚洲av综合av国产av| 免费久久久久久久精品成人欧美视频| 精品一品国产午夜福利视频| 成人18禁在线播放| 深夜精品福利| 黄色毛片三级朝国网站| 亚洲性夜色夜夜综合| 一本综合久久免费| 欧美在线一区亚洲| 一级a爱视频在线免费观看| 视频在线观看一区二区三区| 超碰97精品在线观看| 一区在线观看完整版| 亚洲精品国产区一区二| av超薄肉色丝袜交足视频| 两性午夜刺激爽爽歪歪视频在线观看 | 69精品国产乱码久久久| 亚洲色图av天堂| 精品国产乱码久久久久久男人| 亚洲欧美日韩高清在线视频 | 免费观看a级毛片全部| 丰满迷人的少妇在线观看| 欧美精品啪啪一区二区三区| 精品国产一区二区三区四区第35| 99热国产这里只有精品6| 国产精品免费视频内射| 国产精品av久久久久免费| 国产高清videossex| 十八禁高潮呻吟视频| 亚洲天堂av无毛| 黑人巨大精品欧美一区二区mp4| 丝袜美腿诱惑在线| 少妇猛男粗大的猛烈进出视频| 一区福利在线观看| 日本av免费视频播放| 国产精品一区二区免费欧美| 亚洲国产成人一精品久久久| 人成视频在线观看免费观看| 久久精品亚洲精品国产色婷小说| 国产欧美日韩一区二区三| 国产成人欧美在线观看 | 久久久久网色| 成年动漫av网址| 黑人巨大精品欧美一区二区蜜桃| 麻豆av在线久日| 50天的宝宝边吃奶边哭怎么回事| 波多野结衣av一区二区av| 成在线人永久免费视频| 人人澡人人妻人| 国产又爽黄色视频| 国产精品99久久99久久久不卡| 国产不卡av网站在线观看| 欧美精品一区二区免费开放| 欧美精品啪啪一区二区三区| 国产欧美日韩精品亚洲av| 国产成人欧美在线观看 | 国产成人精品久久二区二区免费| 法律面前人人平等表现在哪些方面| 纯流量卡能插随身wifi吗| 欧美精品一区二区大全| 激情在线观看视频在线高清 | 美女高潮到喷水免费观看| svipshipincom国产片| 极品少妇高潮喷水抽搐| 亚洲国产av新网站| 老司机靠b影院| 一边摸一边抽搐一进一小说 | 王馨瑶露胸无遮挡在线观看| 天天影视国产精品| 日韩免费av在线播放| 丰满饥渴人妻一区二区三| 久久国产精品大桥未久av| 亚洲精品国产色婷婷电影| 国产xxxxx性猛交| 两人在一起打扑克的视频| 久久人人97超碰香蕉20202| 久久精品亚洲熟妇少妇任你| 99re6热这里在线精品视频| 欧美精品av麻豆av| 欧美精品高潮呻吟av久久| 久久国产精品男人的天堂亚洲| 丝袜人妻中文字幕| 亚洲自偷自拍图片 自拍| 大陆偷拍与自拍| 亚洲情色 制服丝袜| 一个人免费看片子| 热99re8久久精品国产| 中文字幕制服av| 欧美日韩一级在线毛片| 在线观看66精品国产| 纵有疾风起免费观看全集完整版| 亚洲精品av麻豆狂野| 欧美变态另类bdsm刘玥| 色综合欧美亚洲国产小说| 丁香欧美五月| aaaaa片日本免费| 女人被躁到高潮嗷嗷叫费观| 久久精品成人免费网站| 免费在线观看视频国产中文字幕亚洲| 久久久国产精品麻豆| 99精品在免费线老司机午夜| 91精品三级在线观看| 久久久精品94久久精品| 国产精品麻豆人妻色哟哟久久| 国产色视频综合| 高清欧美精品videossex| 99国产综合亚洲精品| 免费在线观看日本一区| 一个人免费看片子| 在线观看免费日韩欧美大片| 老司机亚洲免费影院| 亚洲熟妇熟女久久| 国产日韩一区二区三区精品不卡| 两个人免费观看高清视频| av片东京热男人的天堂| 日本黄色视频三级网站网址 | 久久亚洲精品不卡| e午夜精品久久久久久久| 日韩制服丝袜自拍偷拍| 女人精品久久久久毛片| 一个人免费看片子| 亚洲国产av影院在线观看| 亚洲美女黄片视频| 黄色片一级片一级黄色片| 狠狠精品人妻久久久久久综合| 日韩有码中文字幕| 精品国产亚洲在线| 日韩大码丰满熟妇| 亚洲成人免费电影在线观看| 一级黄色大片毛片| 一夜夜www| 国产精品电影一区二区三区 | 欧美日韩黄片免| 香蕉国产在线看| 丰满饥渴人妻一区二区三| 极品教师在线免费播放| 国产在视频线精品| 久久久久久久精品吃奶| 无限看片的www在线观看| 18禁美女被吸乳视频| 一本综合久久免费| 国产免费福利视频在线观看| 欧美国产精品va在线观看不卡| 99精国产麻豆久久婷婷| 精品国产国语对白av| 久久精品人人爽人人爽视色| 亚洲 欧美一区二区三区| 午夜福利一区二区在线看| 夫妻午夜视频| 黄片小视频在线播放| 色视频在线一区二区三区| 国产91精品成人一区二区三区 | 亚洲国产毛片av蜜桃av| 国产亚洲欧美精品永久| 国产精品久久久av美女十八| 国产精品免费大片| av视频免费观看在线观看| 久久人妻av系列| 99在线人妻在线中文字幕 | 无遮挡黄片免费观看| 亚洲国产欧美一区二区综合| 日韩免费高清中文字幕av| 日韩三级视频一区二区三区| 免费在线观看日本一区| 99re6热这里在线精品视频| av一本久久久久| 久热这里只有精品99| 国产精品 欧美亚洲| av天堂在线播放| 两人在一起打扑克的视频| 99re在线观看精品视频| 最近最新中文字幕大全电影3 | 日本av手机在线免费观看| 18禁国产床啪视频网站| 国产精品一区二区免费欧美| 十八禁网站网址无遮挡| 少妇猛男粗大的猛烈进出视频| 午夜两性在线视频| 亚洲视频免费观看视频| 久久热在线av| 人妻一区二区av| 久久久久精品国产欧美久久久| 欧美变态另类bdsm刘玥| 久久影院123| 精品人妻熟女毛片av久久网站| 亚洲欧美日韩高清在线视频 | 国产一区二区在线观看av| 免费在线观看影片大全网站| 视频区图区小说| 亚洲成人免费av在线播放| 亚洲免费av在线视频| 国产欧美日韩一区二区三区在线| 黄色片一级片一级黄色片| av天堂在线播放| 成年女人毛片免费观看观看9 | 国产高清视频在线播放一区| 一区二区av电影网| 久久久国产欧美日韩av| 女人精品久久久久毛片| tube8黄色片| 成人三级做爰电影| 久久国产精品男人的天堂亚洲| 丰满人妻熟妇乱又伦精品不卡| 一二三四社区在线视频社区8| 午夜福利影视在线免费观看| 又大又爽又粗| 亚洲精品在线观看二区| 亚洲avbb在线观看| 宅男免费午夜| 日日爽夜夜爽网站| 国产伦理片在线播放av一区| 黄频高清免费视频| 超碰成人久久| 国产成人影院久久av| 国产欧美日韩一区二区三区在线| 久久久久久亚洲精品国产蜜桃av| 精品视频人人做人人爽| 男女高潮啪啪啪动态图| 久久中文看片网| 国精品久久久久久国模美| 天天添夜夜摸| 欧美精品啪啪一区二区三区| 国产成人精品久久二区二区91| 日韩中文字幕欧美一区二区| 国产精品av久久久久免费| 9热在线视频观看99| 久久性视频一级片| 中文字幕制服av| 成人国产av品久久久| 国产精品久久久人人做人人爽| 午夜成年电影在线免费观看| 人人妻人人爽人人添夜夜欢视频| 色播在线永久视频| 精品福利永久在线观看| 亚洲三区欧美一区|