• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crystal Structures and Physicochemical Properties of Solvated Estradiol①

    2018-06-20 12:44:56WANGHuiPingXUJuanNINGLiFengLIPengChenXiaoFeng
    結(jié)構(gòu)化學(xué) 2018年5期

    WANG Hui-Ping XU Juan NING Li-Feng LI Peng Chen Xiao-Feng

    ?

    Crystal Structures and Physicochemical Properties of Solvated Estradiol①

    WANG Hui-Ping XU Juan NING Li-Feng LI Peng Chen Xiao-Feng②

    (100081)

    Polymorphscreening is currently one of the most important tasks for innovators and for generic companies from both pharmaceutical and intellectual property rights aspects. The hemihydrate form (Form I) and formamide solvate (Form II) of estradiol are isolated and prepared via systemic crystallization screening in this paper, and the formamide solvate form is reported for the first time. Both polymorphic forms were characterized by single-crystal X-ray structure analysis (SXRD), powder X-ray diffraction (PXRD), and thermal analysis (TGA and DSC). The PXRD experiments indicate that the samples in this study are the pure polymorphic forms via comparing the patterns with the simulated ones. The stability and equilibrium solubility data of the solid-state phase were also examined in order to check the impact of the differences observed in their crystalline structures. It has been found that Forms I and II are of conformational polymorph and Form II is the more thermodynamically stable solid form, while Form I possesses higher solubility, indicating its possibility as an alternate solid form for its further solid formulation development if necessary.

    estradiol, crystalline structure, solubility, stability;

    1 INTRODUCTION

    Steroids are naturally found in animals, microor- ganisms and plants and possess a construction of three cyclohexane carbon rings in companion with one pentagonal carbon ring (arranged in a 6-6-6-5 structure), which is attached to various functional groups and side chains. All steroidal compounds are derived from cholesterol. Estrone (E1), 17b-estradiol (E2) and estriol (E3) (main natural estrogens) are C18 steroids that have different oxidation states of their rings. These compounds induce female second- dary sexual characteristics and reproductive structures, which was widespread used in hormonal replacement therapy for the treatment of postme- nopausal symptoms and the protection against long-term consequences of estrogen deficiency[1-3]. E2 (Estra-1,3,5(10)-triene-3,17-diol, Fig. 1) appears as white crystals or pale yellow crystalline powder, which is a member of the estrogen family of hormones. In recent years, interest in these mole- cules has focused primarily on understanding their biological role in initiating breast cancer. It is well known that their ability to form hydrogen bonds in the active site of estrogen receptor (ER) influences biological activity. This ability to form hydrogen bonds has been clearly demonstrated in an array of crystal structures, especially in that of E2, containing different solvent molecules or other hydrogen-bond acceptors[4-9].

    Fig. 1. Schematic representation of the estradiol molecule

    Estradiol has a poor water solubility, and indicates lower oral bioavailability[10].And the dissolution rate is slow, leading to low bioavailability (about 10% of the body). Due to its excellent pharma- cological activity and good clinical application value, estradiol ought to be further developed. The bioavailability of most insoluble drugs is associated with polymorphs. Most compounds can exist one or more crystalline forms[11-15]. The different crystalline forms of the same compound are called polymorphs or modifications[16-19]. Different polymorphs of a drug can show different physicochemical properties, including stability, dissolution rate, bioavailability and solubility, which can affect pharmacokinetics and pharmacodynamics[20-25]. Different crystals of drugs show different chemical stability, such as amisulpride[26], carbamezepine[27]and enalapril maleate[28]. A lot of researches on polymorph-de- pendent bioavailability or absorption rate had been reported, for example chiortetracycline[29], chloram- phenicol palmitate[30]and cimetidine[31]. Even a polymorph may be ineffective, as occurring with polymorph II of ritonavir[32]. Therefore, it is important to pay attention to the solid-state forms of estradiol to improve the physicochemical properties.

    Many studies have been made on the polymer- phism of estradiol in the anhydrous solvents,such as ethyl acetate, chloroform, absolute ethanol[33-35]. However, no emphasis has been put on the pharma- ceutical relevant parameters (physicochemical pro- perties) of these reported polymorphs. This insti- gated us to investigate the polymorphic potential of estradiol and to further investigate its biopharma- ceutical profile.

    The most common methods for the charac- terization of various polymorphs are powder X-ray diffractomerty (XRPD), single-crystal X-ray diffrac- ttometry (SC-XRD), differential scanning calorime- try (DSC), optical and electron microscopy, infrared (IR), Raman, and more recently solid-state nuclear magnetic resonance spectroscopy (ssNMR)[36-42]. Following our ongoing researches to determine the crystal structures of estradiol, we report here two crystalline structures of estradiol. The first estradiol crystal structure, which was determined by single-crystal X-ray diffraction, shows the estradiol molecule in an orthorhombic form. Because the crystal is a hemihydrate, this structure is termed Form I. Form I was characterized by various analytical technics, such as thermal analysis (TG/DSC), infrared spectroscopy, and powder X-ray diffraction. A second crystalline (Form II), the Estradiol formamide solvate (1:1), was firstly discovered through comprehensive polymorph screening, and then the crystal structures and physic- cochemical properties of Forms I and II were comparatively studied.

    2 EXPERIMENTAL

    2. 1 Reagents and instruments

    Single-crystal X-ray diffraction data were collected by Rigaku AFC-10/Saturn 724+CCD dif- fractometer equipped with a graphite-monochro- matized Moradiation (0.71073 ?) up to a 2H limit of 50.0° at room temperature (25 ℃). Indexing and scaling of the data were performed using DENZO and SCALEPACK. The structure was solved by direct methods and expanded by difference Fourier techniques with Shelxs-97 and refined on2by successive full-matrix least-squares techniques for the non-hydrogen atoms.

    XRPD spectra were recorded with a BRUKER D8 Advance diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) system with Curadiation (= 1.5406 ?) over the interval 5~90°/2. The measurement conditions were as follows: target, Cu; filter, Ni; voltage, 40 kV; current, 40 mA; time constant, 0.1 s; angular step 0.016°. Detecor: NaI (l) scintillation detector.

    A Spectrum RX-FTIR spectrometer (Perkin Elmer, UK) was employed in the KBr diffuse-reflectance mode (sample concentration 2 mg in 20 mg of KBr) for collecting the IR spectra of samples. Dry KBr (50 mg) was finely ground in mortar and sample (1~2 mg) was subsequently added and gently mixed in order to avoid trituration of the crystals. A manual press was used to form the pellet. The spectra were measured over the range of 4000~450 cm-1. Data were analyzed using Spectrum software.

    Thermo gravimetric analysis (TGA) was conduc- ted on a Netzsch TG 209F3 equipment (Netzsch, Selb, Germany) under a flow of nitrogen (20 mL×min-1) at a scan rate of 10 ℃×min-1from 25~300 ℃. Differential scanning calorimetry (DSC) was performed with a PerkinElmer DSC 8500 instrument (Perkin Elmer Co., Schelton, USA) at a heating rate 10 ℃×min-1from 25~300 ℃. For TGA and DSC, typical samples of weighing 2~20 mg were used.

    A Jeol JSM-6100 scanning electron microscope (SEM) was used to obtain photomicrographs. Samples were mounted on a metal stub with an adhesive tape and coated under vacuum with gold.

    For the study on stability, the powder samples of Forms I and II were exposed to three sets of stress conditions with 60 ℃ in a temperature controlled oven, 90 ± 5% RH at 25 ℃in a sealed humidity container and light exposure of 5000 lx at 25 ℃ in a light chamber for 10 days, respectively. The stress samples were characterized by PXRD for the form confirmation and further by the HPLC method purity assay.

    2. 2 Materials and measurements

    Estradiol raw material was purchased from ZIZU Pharmaceuticals Co., Ltd. (Beijing, China, batch number: 20170517). The chemical purity of this lot is higher than 99.0% mass fractions, whichis determined by high-performance liquid chromato- graphy (HPLC). All of the solvents used for recrystallization were of analytical reagent grade.

    2. 3 Preparation of two crystal forms of estradiol

    Different techniques were used for the preparation of polymorphs. Hemihydrate was obtained by dis- solving estradiol completely in the mixing solution (THF:water = 2:1, volume), then recrystallized at the constant temperature of 10 ℃ for about 1 day. The formamide solvate form was prepared by dissolving estradiolcompletely in formamide, then recrystalli- zed at the constant temperature of 10 ℃ for about 2 days. For convenience of description, hemihydrate form and formamide solvate of estradiol are represented by Forms I and II, respectively.

    2. 4 Methods

    We studied the dissolution curves of two crystal forms of estradiol by pharmacopoeia method. Solid samples were sieved using a Gilson mesh sieve (No. 80) to obtain uniform particle size.The two forms were added in the following media: pH = 1 buffer (0.01 mol·L-1), pH = 4.5 acetate buffer (0.050 mol·L-1), pH = 5.8 potassium phosphate buffer (0.054 mol·L-1), pH = 6.8 potassium phosphate buffer (0.072 mol·L-1),0.2% sodium dodecyl sulfate (SDS) buffer and 0.5% sodium dodecyl sulfate buffer.

    The dissolution of experiment was performed on the dissolution apparatus (FADT-800RC) with the rotation speed set at 100 rpm, and the samples were taken at 10, 20, 30, 45, 60, 90, 120, 180, 240 and 300 min, respectively. Then filtered through 0.45 μm membrane filters and the solution concentrations were measured on HPLC (Agilent-1100) with UV/Vis detector set at 275 nm. A Discovery C18 HPLC column (Octadecyl silane, 4.6mm × 250mm, 5m) was used with column oven kept at 40 ℃. The mobile phase consisted of acetonitrile-phos- phate buffer (30 mM, pH 6.4) (20:80,/). The flow rate of mobile phase was 1 mL/min, and the injection volume was 10L. For data acquisition and processing, the LC solution software was used.

    3 RESULTS AND DISCUSSION

    3. 1 Structure determination by single-crystal X-ray diffraction (SXRD)

    In order to obtain more details of the polymorphic structure information at the atomic level, high quality singlecrystals of polymorphic forms I and II were submitted to single-crystal X-ray diffraction analysis.

    Fig. 2. Molecular view of the compound, showing 50%probability displacement ellipsoids and atom labeling scheme

    The molecular structure of the title compound with atom labeling scheme drawn at 50% probability displacement ellipsoid is depicted in Fig. 2, and the corresponding packing diagram is shown in Fig. 3. For a better comparison, a summary of the conditions for data collection and structure refinement parameters is given as follows. Form Icrys- tallizes in the orthorhombic system, space group21212 with= 2,= 12.061(2),= 19.260(4),= 6.5490(13) ?,= 1521.3(5) ?3,D= 1.229 g·cm-3, formula C36H5O5,(000) = 612,= 0.080 mm-1, the final= 0.0659 and= 0.1439 with> 2(). Another polymorphic Form II belongs to the orthorhombic system, space group212121with= 8,= 8.1564(16),= 16.937(3),= 24.686(5) ?,= 3410.3(12) ?3,D= 1.236 g·cm3, formula C19H27NO3,(000) = 1376,= 0.083 mm-1, the final= 0.0651 and= 0.1298 with> 2(). We can see that the two polymorphs are of the same crystal system, but with different unit cell parameters. Both Forms I and II adopt a head-to-tail packing configuration and form a one-dimensional infinity chain along theoraxis with the intermolecular hydrogen bonding interaction. The two independents have the same configuration but different conformations. The conformational dif- ferences from the rings and the rotating of the single bond of the side-chain substituents are the main causes of the bimolecular phenol- mena. Although ring A is planar, rings B, C and D adopt envelope, chair and envelope conformations in the two polymorphs, respectively, the twist degrees of the rings are rather not the same. The dihedral angles between C(4)–C(5)–C(7) and C(8)–C(9)– C(10) of Forms I and II are 129.24° and 146.52° respectively. A significant difference was observed in the O(2)–C(17)–C(16) bond angles (Table 1). The key parameters that describe doubtlessly the different confor- mations are the torsional angles of the mole- cular backbone. The most relevant torsion angles responsible for this polymorphic conformation of E2 are compared in Table 2. The differences of these angles confirmed the existence of two conformational polymorphs. The number of molecules in the asymmetric unit of the two polymorphs is different, too (Fig. 3).

    Fig. 3. Packing diagram of E2 molecules in the unit cell of Forms I (left) and II (right)

    Table 1. Selected Bond Angles (°) of Form II in Comparison to That of Form I

    Molecular packing diagrams with main hydrogen bonds viewed down the-axis are shown in Fig. 4. Detailed parameters of main hydrogen-bonding interactions with symmetry codes are listed in Table 3. The inclusion of solvents plays a vital role in forming different crystalline forms. The adduction of a particular solvent, which acts as intermolecular hydrogen-bonding acceptors and/or donors, were manifested to explicitly or implicitly affect the intermolecular arrangements and therefore stabilize crystal lattices by fostering stronger interact ions. In form I, the red spheres representing the water molecules (Fig. 4) coincide with the tetramer linkage points[43]. In Form II, an asymmetric unit consists of two E2 and two formamide molecules. Hydrogen- bonding interactions in Form II gives rise to two-dimensional networks by fostering two ind- ependent chains of O–H···O and N–H···O hydrogen bonds, and there are some non-classical hydrogen bonds in Form II, such as C(6)–H(6)···O(6) (–1/2+, 3/2–, 1–), C(37)–H(37)···O(3)(1–, 1/2+, 3/2–) and C(38)–H(38)···O(3)(1–, 1/2+, 3/2–), and such interactions are likely to strengthen the stability of the crystal.

    Table 2. Relevant Torsion Angles (°) of Form II in Comparison with Corresponding Torsion Angles (°) of Form I

    Fig. 4. Hydrogen bonds of E2 molecules in the unit cell of Forms I (left) and II (right)

    3. 2 Powder X-ray diffraction (PXRD)

    PXRD is always the definitive method for the identification of polymorphs. The PXRD results of the two novel polymorphs are illustrated in Fig. 5. Form I shows the characteristic peaks at 2= 11.71, 13.35, 15.65, 18.42, 20.56 and 26.85° while Form II presents the characteristic peaks at 2= 12.5, 15.0, 20.82 and 21.65°, indicating the presence of twodistinctive polymorphs. The PXRD patterns measured from powder samples are also in goodagreement with those patterns calculated from thesingle-crystal structures.

    3. 3 Thermal analysis (TG-DSC)

    It is observed there is noticeable weight lossoccurring before its decomposition appears, whichindicates Forms I and II are solvated crystallineforms. In form I, the dehydration (0.5 mol of waterper mol of E2) of the sample was shown to be a hemihydrate by the diffraction techniques (= 175℃; Δm= 3.158%/Δm= 3.2%) (Fig. 6). The melting of Form I is observed as a pronounced endothermic peak with an extrapolated onset temperature of 181.94 ℃ and an associated heat of absorption of –79.42 J×g-1. Therefore, the molar ratio of 1:2 for water:E2 was confirmed in the raw material by TG/DTA analysis. In form II, the dehydration (1 mol of formamide per mol of E2) of the sample thatwas shown to be a solvate form by the diffraction techniques (= 145.94 ℃; Δm= 14.05%/Δm= 14.2%) in Fig. 6. The melting of Form II is observed as a pronounced endothermic peak with an extrapolated onset temperature of 179.72 ℃ and an associated heat of absorption of –57.67 J×g-1.

    Table 3. Hydrogen Bonds for Estradiol Forms (?), where D = Donor and A = Acceptor

    Symmetry codes as in Forms I and II : (a) 1–, 1–,; (b) –1+,, –1+; (c) 1+,,; (d) –1+,,; (e) 1/2–, 1–, 1/2+; (f) –1/2+, 1/2-, 1–; (g) 1/2+, 1/2–, 1–; (h) –1/2+, 3/2–, 1–; (i) 1–, 1/2+, 3/2–

    Fig. 5. Experimental and calculated PXRD patterns of E2

    3. 4 Infrared spectroscopy with attenuated total reflectance by Fourier transform (FTIR-ATR)

    Both polymorphs of estradiol can be easily identified and assigned by their IR spectra which are shown in Fig. 7. Prominent differences in the IR spectra can be found in the region above 3000 cm-1which reflects the X–H stretching vibrations. Form I is a Hemihydrate modification and its molecule of crystalline water formed hydrogen bonds with nitrogen and oxygen atoms in E2 molecule. There are two broadened bands at 3426 and 3228 cm-1, contributed to the O–H stretching asymmetrical deformation vibration of the intro and intermolecular hydrogen bonding. Form II is a formamide solvate form. There is a broadened band at 3444 cm-1which is contributed to the N–H stretching asymmetrical deformation vibration. The pinnacles at 1654 and 1463 cm-1are contributed to C=O and C–N stretching asymmetrical deformation vibration, respectively.

    Fig. 6. TGA-DSC profiles of Forms I and II

    Fig. 7. IR spectra for polymorphs of E2 with scanning region of 4000~450 cm-1

    3. 5 Scanning electron microscopy (SEM)

    The SEM pictures (Fig. 8) reveal that the crystals of the polymorphs present differences in size, morphology and surface. Form I tends to be scattered and crystal nucleus growth more evenly. However, Form II tends to clump together and presents an irregular block structure. These outcomes indicated that Forms I and II displayed the obvious differences due to the different molecular arrangement.

    Fig. 8. SEM pictures of Forms I and II

    3. 6 Study on stability

    In order to evaluate the potential physicochemical stability of the estradiol polymorphs, the powder samples of Forms I and II were exposed to stress conditions of high temperature of 60 ℃, high humidity of 90 ± 5% RH and light exposure of 5000 lx, respectively. After 10 days under the stress conditions, the powder samples were subjected to PXRD characterization to confirm the crystal phase and it was found that the stress samples of Forms I and II kept consistence with the original forms (data not shown herewith). Furthermore, the purity of the samples was measured by the HPLC method and no obvious degradation occurred (Table 4).

    Table 4. Purity Assay (%) of Forms I and II before Stress Testing and after 10 Days under Stress Conditions

    Fig. 9. Dissolution profiles in different buffer of Forms I and II

    3.7 Studies on the solubility of hemihydrated and solvated form of estradiol

    The dissolution profiles for Forms I and II were obtained from the dissolution experiments perfor- med in different buffer at 25 ℃. The samples collected at pre-set time were filtered prior to HPLC analysis and the surplus solids after dissolution experiments were identified by PXRD. The PXRD patterns measured from the surplus solids are in good agreement with those of the original forms, indicating the consistence of polymorphs during the dissolution experiments process. The contents of estradiol were determined using the external standard method. As shown in Fig. 9, the con- centrations of the two forms in buffer increase rapidly at first, then approach equilibrium slowly with the increasing time. The equilibrium solubility of Form I is found to be approximately higher than that of Form II in all the buffers, which further indicates Form II is the more thermodynamically stable form.

    4 CONCLUSION

    Two crystal forms of estradiol are found and pre- pared during the polymorph screening via changing the different solvents, temperature, speed and other parameters of recrystallization, and one is reported firstly. The solid-state properties of two polymorphs are studied by various analytical technics. SXRD analysis shows that one polymorph is a hemihydrate while the other one is a formamide solvate form, and they crystallize in different symmetric lattices. Besides that, two forms exhibit different conforma- tions and hydrogen bonds. The PXRD experiments indicated that the samples in this study are the pure polymorphic forms via comparing the patterns with the simulated ones, and furthermore, these PXRD patterns can be considered as the standard reference maps of estradiol polymorphs. This article also provides that IR characterization can be usedfor polymorphic identification because of the obvious differences at the regions of hydrogen bonds, functional groups and fingerprint. In addition to the solid-state properties, the stability properties are also studied. It has been found that Forms I and II are of conformational polymorph and Form II is the more thermodynamically stable solid form, while Form I possesses higher solubility, indicating its possibility as an alternate solid form for its further solid formulations development if necessary.

    (1) Aufartová, J.; Mahugo-Santana, C.; Sosa-Ferrera, Z.; Santana-Rodríguez, J. J.; Nováaková, L.; Solich, P. Determination of steroid hormones in biological and environmental samples using green microextraction techniques.2011, 704, 33-46.

    (2) Russo, R.; Cavaliere, F.; Watanabe, C.; Nucci, C.; Bagetta, G.; Corasaniti, M. T.; Sakurada, S.; M orrone, L. A. 17b-Estradiol prevents retinal ganglion cell loss induced by acute rise of intraocular pressure in rat.. 2008, 173, 583-590.

    (3) Noppe, H.; Le Bizec, B.; Verheyden, K.; De Brabander, H. Novel analytical methods for the determination of steroid hormones in edible matrices.2008, 611, 1-16.

    (4) Yildirim, N.; Long, F.; Gao, C.; He, M.; Shi, H. C.; Gu, A. Z. Aptamer-based optical biosensor for rapid and sensitive detection of 17b-estradiol in water samples.2012, 46, 3288-3294.

    (5) Lin, Z.; Chen, L.; Zhang, G.; Liu, Q.; Qiu, B.; Cai, Z.; Chen, G. Label-free aptamerbased electrochemical impedance biosensor for 17b-estradiol.2012, 137, 819-822.

    (6) Shapiro, S.; Rosenberg, L.; Hoffman, M.; Truter, H.; Cooper, D.; Rao, S.; Dent, D.; Gudgeon A.; van Zyl, J.; Katzenellenbogen, J. Risk of breast cancer in relation to the use of injectable progestogen contraceptives and combined estrogen/progestogen contraceptives.. 2000, 151, 396-403.

    (7) Shulman, L. P. Oral contraceptives: risks. Obstet. Gynecol. Clin.. 2000, 27, 695-704.

    (8) Ganmaa, D.; Sato, A. The possible role of female sex hormones in milk from pregnant cows in the development of breast, ovarian and corpus uteri cancers.2005, 65, 1028-1037.

    (9) Diamanti-Kandarakis, E.; Bourguignon, J. P.; Giudice, L. C.; Hauser, R.; Prins, G. S.; Soto, A. M.; Zoeller, R. T.; Gore, A. C. Endocrine-disrupting chemicals: an endo-society scientific statement.. 2009, 30, 293-342.

    (10) Hulsmann, S.; Backensfeld, T.; Keitel, S. Melt extrusion-an alternative method for enhancing the dissolution rate of 17 beta-estradiol hemihydrate.. 2000, 49, 237-242.

    (11) Sudha, R. V.; Harry, G. B.; David, J. W. G. Crystalline solids..2001, 48, 3-26.

    (12) Desiraju, G. R. Crystal engineering: a holistic view.. 2007, 46, 8342-8356.

    (13) Byrn, S. R.; Pfeiffer, R. R.; Stephenson, G.; Grant, D. J. W.; Gleason, W. B. Solid-state pharmaceutical chemistry.. 1994, 6, 1148-1158.

    (14) Vippagunta, S. R.; Brittain, H. G.; Grant, D. J. W. Crystalline solids.. 2001, 48, 3-26.

    (15) Lee, A. Y.; Erdemir, D.; Myerson, A. S. Crystal polymorphism in chemical process development.2011, 2, 259-280.

    (16) Brittain, H. G. Polymorphism in pharmaceutical solids.1999, 71, 354-355.

    (17) Haleblian, J.; McCrone, W. Pharmaceutical applications of polymorphism.1969, 589, 911-929.

    (18) Bauer, J.; Spanton, S.; Henry, R.; Quick, J.; Dziki, W.; Porter, W.; Morris, J. Ritonavir: an extraordinary example of conformational polymorphism.. 2001, 18, 859-866.

    (19) Price, S. L. The computational prediction of pharmaceutical crystal structures and polymorphism.. 2004, 56, 301-319.

    (20) Censi, R.; Di Martino, P. Polymorph impact on the bioavailability and stability of poorly soluble drugs.2015, 20, 18759-18776.

    (21) Talaczy′nska, A.; Dzitko, J.; Cielecka-Piontek, J. Benefits and limitations ofpolymorphic and amorphous forms of active pharmaceutical ingredients.. 2016, 22, 4975-4980.

    (22) Singhal, D.; Curatolo, W. Drug polymorphism and dosage form design: apractical perspective.. 2004, 56, 335-347.

    (23) Huang, L. F.; Tong, W. Q. Impact of solid state properties on developability assessment of drug candidates.2004, 56, 321-334.

    (24) Peterson, M. L.; Hickey, M. B.; Zaworotko, M. J.; Almarsson, O. Expanding the scope of crystal form evaluation in pharmaceutical science.. 2006, 9, 317-326.

    (25) Li, Y.; Chow, P. S.; Tan, R. B. H. Quantification of polymorphic impurity in an enantiotropic polymorph system using differential scanning calorimetry, X-ray powder diffraction and Raman spectroscopy.. 2011, 415, 110-118.

    (26) Zhang, W. P.; Chen, D. Y. Crystal structures and physicochemical properties of amisulpride polymorphs.2017, 140, 252-257.

    (27) Matsuda, Y.; Akazawa, R.; Teraoka, R.; Otsuka, M. Pharmaceutical evaluation of carbamazepine modifications: comparative study of photostability for carbamazepine polymorphs by using Fourier-transformed reflection-absorption infrared spectroscopy and calorimetric measurement.. 1993, 46, 162-167.

    (28) Eyjolfsson, R. Enalapril maleate polymorphs: instability of form II in a tablet formulation.2002, 57, 347-348.

    (29) Miyazaki, S.; Arita, T.; Hori, R.; Ito, K. Effect of polymorphism on the dissolution behavior and gastrointestinal absorption of chlortetracycline hydrochloride.. 1974, 22, 638-642.

    (30) Maeda, T.; Takenaka, H.; Yamahira, Y.; Noguchi, T. Use of rabbits for absorption studies on polymorphs of chloramphenicol palmitate.. 1980, 28, 431-436.

    (31) Kokubo, H.; Morimoto, K.; Ishida, T.; Inoue, M.; Morisaka, K. Bioavailability and inhibitory effect for stress ulcer of cimetidine polymorphs in rats.. 1987, 35, 181-183.

    (32) Bauer, J.; Spanton, S.; Henry, R. Ritonavir: an extraordinary example of conformational polymorphism.. 2001, 18, 859-866.

    (33) Variankaval, N. E.; Jacob, K. I.; Dinh. S. M. Characterization of crystal forms of b-estradiol thermal analysis, Raman microscopy, X-ray analysis and solid-state NMR.. 2000, 217, 320-331.

    (34) Variankaval, N. E.; Jacob K. I.; Dinh. S. M. Polymorphism of 17b-estradiol in a transdermal drug delivery system.2002, 13, 271-280.

    (35) Parka, J. S.; Kangb, H. W.; Jean, S.; Kim, C. K. Use of CP/MAS solid-state NMR for the characterization of solvate molecules within estradiol crystal forms.. 2005, 60, 407-412.

    (36) Aaltonen, J.; Alles, M.; Mirza, S.; Koradia, V.; Gordon, K.; Rantanen, C. J. Solid form screening-a review.. 2009, 71, 23-37.

    (37) Bugay, D. E. Characterization of the solid-state: spectroscopic techniques.2001, 48, 43-65.

    (38) Stephenson, G. A.; Forbes, R. A.; Reutzel-Edens, S. M. Characterization of the solid state: quantitative issues.2001, 48, 67-90.

    (39) Newman, A. W.; Byrn, S. R. Solid-state analysis of the active pharmaceutical ingredient in drug products.. 2003, 8, 898-905.

    (40) Shan, B.; Kakumanu, V. K.; Bansal, A. K. Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids.. 2006, 95, 1641-1665.

    (41) Aaltonen, J.; Gordon, K. C.; Strachan, C. J.; Rades, T. Perspectives in the use of spectroscopy to characterise pharmaceutical solids.. 2008, 364, 159-169.

    (42) Burger, A.; Ramberger, R. On the polymorphism of pharmaceuticals and other molecular crystals.1979, 2, 259-271.Busetta, B.; Hospital, M. Strucrure crystalline et moleculaire de estradiol hemihydrate.1972, 28, 560-567.

    18 January 2017;

    16 March 2018 (CCDC 1576901 for Form I and 1561687 for Form II)

    ①This research was supported by National Key R&D Program of China (No. 2016YFC1000901), and thePostdoctoral Innovation Fund of National Research Institute for Family Planning (No. KYS [2017] BSHCX001)

    . Associate professor, majoring in medical chemistry. E-mail: saintcxf2017@163.com

    10.14102/j.cnki.0254-5861.2011-1946

    午夜福利免费观看在线| 一区二区日韩欧美中文字幕| 国产日韩一区二区三区精品不卡| 叶爱在线成人免费视频播放| 日韩 欧美 亚洲 中文字幕| 国产亚洲精品久久久久久毛片| 国产99久久九九免费精品| 国产精品永久免费网站| www国产在线视频色| 麻豆国产av国片精品| 成人亚洲精品一区在线观看| 宅男免费午夜| 久久久久亚洲av毛片大全| 欧美日韩黄片免| 国产精品国产高清国产av| 久久久久国产精品人妻aⅴ院| 午夜老司机福利片| 在线观看午夜福利视频| 亚洲欧美一区二区三区黑人| 亚洲中文av在线| 日韩成人在线观看一区二区三区| 好男人电影高清在线观看| 久久欧美精品欧美久久欧美| 日韩成人在线观看一区二区三区| 91麻豆精品激情在线观看国产| 中文字幕人妻丝袜一区二区| 婷婷六月久久综合丁香| 国产三级在线视频| 无遮挡黄片免费观看| 免费看a级黄色片| 亚洲中文字幕日韩| 国产精品98久久久久久宅男小说| 99国产精品一区二区三区| 国产亚洲精品av在线| 国产99久久九九免费精品| 国产精品一区二区免费欧美| 成年女人毛片免费观看观看9| 国产极品粉嫩免费观看在线| 好男人在线观看高清免费视频 | 日本 av在线| 此物有八面人人有两片| 国产高清视频在线播放一区| 在线观看免费视频日本深夜| 又黄又粗又硬又大视频| 国内精品久久久久精免费| 人妻丰满熟妇av一区二区三区| 中文字幕久久专区| 欧美国产日韩亚洲一区| 日本vs欧美在线观看视频| tocl精华| 1024视频免费在线观看| 91av网站免费观看| 长腿黑丝高跟| www.999成人在线观看| 成在线人永久免费视频| 一级片免费观看大全| 香蕉丝袜av| 免费观看人在逋| 亚洲精品粉嫩美女一区| 国产欧美日韩一区二区三| 国产又爽黄色视频| 日韩欧美国产一区二区入口| 不卡一级毛片| 亚洲av成人不卡在线观看播放网| 老熟妇仑乱视频hdxx| 自线自在国产av| 亚洲精品一区av在线观看| 一区二区三区高清视频在线| 国产午夜福利久久久久久| 国产精品99久久99久久久不卡| 国产乱人伦免费视频| 在线十欧美十亚洲十日本专区| 欧美性长视频在线观看| 国产精品亚洲美女久久久| 美国免费a级毛片| 亚洲国产精品合色在线| 丰满人妻熟妇乱又伦精品不卡| √禁漫天堂资源中文www| 日韩欧美在线二视频| 午夜久久久久精精品| 欧美国产日韩亚洲一区| 人人澡人人妻人| 日本三级黄在线观看| 国产精品一区二区在线不卡| 国产av一区在线观看免费| 丰满人妻熟妇乱又伦精品不卡| 久久国产亚洲av麻豆专区| 成人永久免费在线观看视频| 超碰成人久久| 两性午夜刺激爽爽歪歪视频在线观看 | 免费久久久久久久精品成人欧美视频| 人人妻人人澡人人看| 精品国产一区二区久久| 热99re8久久精品国产| 在线观看日韩欧美| 非洲黑人性xxxx精品又粗又长| 视频在线观看一区二区三区| 69av精品久久久久久| 18禁美女被吸乳视频| 91av网站免费观看| 又大又爽又粗| 国产成人影院久久av| 久久亚洲真实| 日韩av在线大香蕉| 丝袜人妻中文字幕| 少妇裸体淫交视频免费看高清 | 一区二区三区精品91| 十八禁人妻一区二区| 久久久久国内视频| 两性夫妻黄色片| 亚洲人成电影观看| 在线观看免费午夜福利视频| 香蕉国产在线看| 免费女性裸体啪啪无遮挡网站| 日本a在线网址| 欧美激情高清一区二区三区| 精品国产乱码久久久久久男人| 国产精品精品国产色婷婷| 大陆偷拍与自拍| 日本a在线网址| 这个男人来自地球电影免费观看| 黄片大片在线免费观看| 69精品国产乱码久久久| 国产欧美日韩综合在线一区二区| 国产97色在线日韩免费| 大码成人一级视频| 日韩欧美在线二视频| 国产人伦9x9x在线观看| 精品第一国产精品| 啦啦啦韩国在线观看视频| 中文字幕高清在线视频| 亚洲av片天天在线观看| 国产精品98久久久久久宅男小说| 又紧又爽又黄一区二区| 国产三级在线视频| 亚洲国产看品久久| 欧美日本中文国产一区发布| 亚洲av日韩精品久久久久久密| av在线天堂中文字幕| 男女之事视频高清在线观看| 色精品久久人妻99蜜桃| 香蕉国产在线看| 久久久精品国产亚洲av高清涩受| 亚洲第一欧美日韩一区二区三区| 亚洲欧洲精品一区二区精品久久久| 日日夜夜操网爽| 亚洲国产欧美网| 不卡av一区二区三区| 中文亚洲av片在线观看爽| 欧美亚洲日本最大视频资源| 久久久久亚洲av毛片大全| 久久精品aⅴ一区二区三区四区| 岛国视频午夜一区免费看| av有码第一页| 狠狠狠狠99中文字幕| 久久精品91无色码中文字幕| 欧美人与性动交α欧美精品济南到| 午夜福利视频1000在线观看 | 欧美精品啪啪一区二区三区| 亚洲色图av天堂| 日本黄色视频三级网站网址| 少妇粗大呻吟视频| 久久国产精品男人的天堂亚洲| 黄色视频不卡| 亚洲熟妇熟女久久| 亚洲国产精品成人综合色| 欧美日韩福利视频一区二区| 久久久精品国产亚洲av高清涩受| 成人国语在线视频| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久免费视频了| 国产精品野战在线观看| 亚洲精品av麻豆狂野| 日日夜夜操网爽| 淫妇啪啪啪对白视频| 久久久久精品国产欧美久久久| 免费在线观看日本一区| 在线av久久热| 欧美黄色淫秽网站| 亚洲人成电影观看| 99在线视频只有这里精品首页| 午夜老司机福利片| 精品久久蜜臀av无| 国产成人免费无遮挡视频| 亚洲一区二区三区不卡视频| 国产99白浆流出| av中文乱码字幕在线| 男女下面进入的视频免费午夜 | 无限看片的www在线观看| 亚洲一区中文字幕在线| 亚洲精品国产区一区二| 神马国产精品三级电影在线观看 | 成人18禁高潮啪啪吃奶动态图| 欧美精品啪啪一区二区三区| 波多野结衣av一区二区av| 日韩视频一区二区在线观看| 欧美人与性动交α欧美精品济南到| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕最新亚洲高清| 国产亚洲精品av在线| 又黄又粗又硬又大视频| 亚洲成人久久性| 国产真人三级小视频在线观看| 亚洲视频免费观看视频| 久久久国产精品麻豆| 亚洲黑人精品在线| 国产熟女午夜一区二区三区| 精品一区二区三区四区五区乱码| 欧美另类亚洲清纯唯美| 成人精品一区二区免费| 麻豆成人av在线观看| 神马国产精品三级电影在线观看 | 亚洲成国产人片在线观看| 精品午夜福利视频在线观看一区| 一级毛片女人18水好多| 看黄色毛片网站| 一区二区三区激情视频| 搡老岳熟女国产| 亚洲成人国产一区在线观看| 久久中文字幕人妻熟女| 亚洲五月婷婷丁香| 久久久久久亚洲精品国产蜜桃av| 亚洲专区字幕在线| 悠悠久久av| 精品一品国产午夜福利视频| 嫩草影院精品99| 免费看十八禁软件| 国产精品亚洲av一区麻豆| 夜夜躁狠狠躁天天躁| 成人永久免费在线观看视频| 亚洲专区中文字幕在线| 免费av毛片视频| 两个人视频免费观看高清| 国产麻豆69| 在线播放国产精品三级| 亚洲一区二区三区不卡视频| 欧美亚洲日本最大视频资源| 免费少妇av软件| 视频区欧美日本亚洲| 久久久久九九精品影院| 三级毛片av免费| 免费观看精品视频网站| 国产视频一区二区在线看| 神马国产精品三级电影在线观看 | 淫妇啪啪啪对白视频| 人人妻,人人澡人人爽秒播| 国产亚洲av嫩草精品影院| 12—13女人毛片做爰片一| 久久人妻av系列| 色播在线永久视频| 成年女人毛片免费观看观看9| 亚洲九九香蕉| 久久精品国产亚洲av高清一级| 精品免费久久久久久久清纯| 亚洲av电影在线进入| 久久天躁狠狠躁夜夜2o2o| 黄片大片在线免费观看| 69av精品久久久久久| 午夜福利视频1000在线观看 | 久久久久国产一级毛片高清牌| 国产精品一区二区在线不卡| 久久久久国产一级毛片高清牌| 97超级碰碰碰精品色视频在线观看| 首页视频小说图片口味搜索| 欧美大码av| 精品国产国语对白av| 黄色成人免费大全| 亚洲全国av大片| 亚洲国产精品sss在线观看| 美女高潮喷水抽搐中文字幕| 黄色视频,在线免费观看| 99国产精品一区二区蜜桃av| 麻豆国产av国片精品| 一卡2卡三卡四卡精品乱码亚洲| 日韩大尺度精品在线看网址 | 久久中文看片网| 女人精品久久久久毛片| 国产熟女午夜一区二区三区| 午夜福利成人在线免费观看| 亚洲第一欧美日韩一区二区三区| 国产成人啪精品午夜网站| 九色国产91popny在线| 午夜免费鲁丝| 一级a爱视频在线免费观看| 亚洲中文字幕日韩| av中文乱码字幕在线| 他把我摸到了高潮在线观看| 琪琪午夜伦伦电影理论片6080| www.www免费av| 久久久国产成人精品二区| 中文字幕av电影在线播放| 少妇 在线观看| 在线视频色国产色| 国产一区二区在线av高清观看| 日韩大码丰满熟妇| 欧美日韩福利视频一区二区| 国产精品 欧美亚洲| 一级毛片女人18水好多| 国产精品乱码一区二三区的特点 | 亚洲熟妇中文字幕五十中出| 午夜亚洲福利在线播放| 两性夫妻黄色片| 成熟少妇高潮喷水视频| 国内精品久久久久精免费| 国产免费男女视频| 久热爱精品视频在线9| 村上凉子中文字幕在线| 国产精品免费一区二区三区在线| 免费女性裸体啪啪无遮挡网站| 欧美人与性动交α欧美精品济南到| 欧美中文综合在线视频| 香蕉久久夜色| 男人舔女人的私密视频| 精品一品国产午夜福利视频| 亚洲性夜色夜夜综合| 黄色片一级片一级黄色片| 亚洲在线自拍视频| 一边摸一边做爽爽视频免费| 99re在线观看精品视频| 国产一区二区三区在线臀色熟女| 国内精品久久久久久久电影| 啦啦啦韩国在线观看视频| 欧美亚洲日本最大视频资源| 亚洲,欧美精品.| 亚洲精华国产精华精| 欧美另类亚洲清纯唯美| 欧美绝顶高潮抽搐喷水| 亚洲 国产 在线| 久热这里只有精品99| 国产伦人伦偷精品视频| 欧美日韩福利视频一区二区| 久久国产亚洲av麻豆专区| 午夜影院日韩av| 日本精品一区二区三区蜜桃| 成在线人永久免费视频| x7x7x7水蜜桃| 少妇的丰满在线观看| 在线观看舔阴道视频| 久久欧美精品欧美久久欧美| 日日干狠狠操夜夜爽| 在线观看日韩欧美| 啦啦啦韩国在线观看视频| 久久精品91蜜桃| 国产一卡二卡三卡精品| 国产精品久久视频播放| 欧美国产日韩亚洲一区| 成人特级黄色片久久久久久久| 午夜日韩欧美国产| 亚洲精品一卡2卡三卡4卡5卡| 一区二区三区高清视频在线| 亚洲第一青青草原| 91麻豆av在线| 欧美日韩瑟瑟在线播放| 亚洲专区中文字幕在线| 国产精品二区激情视频| 高清黄色对白视频在线免费看| 国产激情久久老熟女| 亚洲国产日韩欧美精品在线观看 | 亚洲精品美女久久久久99蜜臀| 好男人在线观看高清免费视频 | 极品人妻少妇av视频| 免费一级毛片在线播放高清视频 | 日韩欧美免费精品| 日韩三级视频一区二区三区| 制服丝袜大香蕉在线| 国产单亲对白刺激| 丝袜美足系列| 午夜视频精品福利| 天天躁狠狠躁夜夜躁狠狠躁| 视频区欧美日本亚洲| 国内精品久久久久久久电影| 波多野结衣巨乳人妻| 成人国产一区最新在线观看| 久久久久久国产a免费观看| 99在线视频只有这里精品首页| 亚洲色图综合在线观看| 自线自在国产av| av在线天堂中文字幕| 欧美黄色淫秽网站| 国产熟女xx| 18禁观看日本| 久久中文字幕人妻熟女| 欧美色欧美亚洲另类二区 | 成人三级黄色视频| 亚洲av日韩精品久久久久久密| 99久久国产精品久久久| 亚洲国产精品久久男人天堂| 黄色成人免费大全| 中文字幕人妻丝袜一区二区| 操出白浆在线播放| 国产1区2区3区精品| 亚洲专区中文字幕在线| 狠狠狠狠99中文字幕| 大香蕉久久成人网| 91麻豆av在线| 亚洲va日本ⅴa欧美va伊人久久| 国产精品影院久久| 亚洲成av片中文字幕在线观看| 日韩有码中文字幕| 色播在线永久视频| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久久久久久毛片微露脸| 久久久久久亚洲精品国产蜜桃av| 在线十欧美十亚洲十日本专区| 国产av在哪里看| 国产成人精品无人区| 国产高清videossex| 妹子高潮喷水视频| 19禁男女啪啪无遮挡网站| 无人区码免费观看不卡| 欧美绝顶高潮抽搐喷水| 精品国产美女av久久久久小说| 亚洲成av人片免费观看| 国产高清videossex| 久久精品亚洲熟妇少妇任你| 国产主播在线观看一区二区| 男女之事视频高清在线观看| 少妇的丰满在线观看| 亚洲国产精品久久男人天堂| 日韩一卡2卡3卡4卡2021年| 欧美日韩亚洲国产一区二区在线观看| 国产精品乱码一区二三区的特点 | 久久久久久大精品| 欧美黄色淫秽网站| 亚洲三区欧美一区| 久久久久久久午夜电影| 首页视频小说图片口味搜索| 亚洲专区国产一区二区| 天堂动漫精品| aaaaa片日本免费| 欧美乱色亚洲激情| 久久天堂一区二区三区四区| 99香蕉大伊视频| 欧美绝顶高潮抽搐喷水| 91精品三级在线观看| 国产国语露脸激情在线看| 99香蕉大伊视频| 久久精品91无色码中文字幕| 窝窝影院91人妻| av在线播放免费不卡| 大香蕉久久成人网| 欧美乱码精品一区二区三区| 欧美av亚洲av综合av国产av| 1024视频免费在线观看| 精品高清国产在线一区| 亚洲成人精品中文字幕电影| 最近最新免费中文字幕在线| 免费久久久久久久精品成人欧美视频| 精品国产超薄肉色丝袜足j| 91成年电影在线观看| 精品国产一区二区久久| av电影中文网址| 日韩精品青青久久久久久| 国产精品九九99| 亚洲人成电影免费在线| 看黄色毛片网站| 日本免费一区二区三区高清不卡 | 午夜福利在线观看吧| av天堂久久9| 99久久久亚洲精品蜜臀av| 天天添夜夜摸| 精品久久久久久成人av| 麻豆久久精品国产亚洲av| 久久精品人人爽人人爽视色| 久久草成人影院| 日本黄色视频三级网站网址| 19禁男女啪啪无遮挡网站| 女人被狂操c到高潮| 午夜两性在线视频| 亚洲无线在线观看| 亚洲第一电影网av| 女同久久另类99精品国产91| 国产欧美日韩一区二区三| 又大又爽又粗| 夜夜躁狠狠躁天天躁| 人人妻,人人澡人人爽秒播| 少妇裸体淫交视频免费看高清 | 欧美日韩一级在线毛片| 99国产精品99久久久久| 人人妻人人澡欧美一区二区 | 男男h啪啪无遮挡| 国产在线观看jvid| 后天国语完整版免费观看| 国产成+人综合+亚洲专区| 男女下面进入的视频免费午夜 | 女同久久另类99精品国产91| 日韩视频一区二区在线观看| 91大片在线观看| 亚洲第一av免费看| 日韩有码中文字幕| 成人特级黄色片久久久久久久| 国内毛片毛片毛片毛片毛片| 我的亚洲天堂| 欧美黑人精品巨大| 69精品国产乱码久久久| 岛国在线观看网站| 男女床上黄色一级片免费看| 可以免费在线观看a视频的电影网站| 国产亚洲精品久久久久久毛片| 国产精品九九99| 欧美另类亚洲清纯唯美| 日韩精品青青久久久久久| 久久精品91无色码中文字幕| 国产伦一二天堂av在线观看| 天堂√8在线中文| 免费久久久久久久精品成人欧美视频| 波多野结衣高清无吗| 两性夫妻黄色片| 一级a爱视频在线免费观看| 亚洲无线在线观看| 最近最新中文字幕大全电影3 | 黄色丝袜av网址大全| 最好的美女福利视频网| 满18在线观看网站| 中文字幕av电影在线播放| 少妇被粗大的猛进出69影院| 精品久久蜜臀av无| 成人av一区二区三区在线看| 免费看十八禁软件| 99国产精品一区二区三区| 国产欧美日韩精品亚洲av| 国产人伦9x9x在线观看| 99re在线观看精品视频| 国产精品秋霞免费鲁丝片| 欧美亚洲日本最大视频资源| 最近最新免费中文字幕在线| 国产伦一二天堂av在线观看| 久久香蕉国产精品| 久久午夜综合久久蜜桃| 久久狼人影院| 成人国语在线视频| 99国产极品粉嫩在线观看| 午夜精品久久久久久毛片777| 黑人巨大精品欧美一区二区mp4| 成人国产一区最新在线观看| www.www免费av| 日韩精品中文字幕看吧| 欧美日韩亚洲综合一区二区三区_| 亚洲欧洲精品一区二区精品久久久| 波多野结衣av一区二区av| 亚洲人成电影免费在线| 国产99白浆流出| 麻豆av在线久日| 亚洲国产高清在线一区二区三 | 88av欧美| 免费在线观看日本一区| 国产亚洲欧美在线一区二区| 成人欧美大片| 琪琪午夜伦伦电影理论片6080| 精品国内亚洲2022精品成人| 国产精品久久久久久精品电影 | 亚洲精品久久国产高清桃花| 国产精品一区二区精品视频观看| 制服丝袜大香蕉在线| netflix在线观看网站| 国产一区二区在线av高清观看| 9色porny在线观看| 国产91精品成人一区二区三区| √禁漫天堂资源中文www| 日本欧美视频一区| 在线av久久热| 国产男靠女视频免费网站| 国产成人一区二区三区免费视频网站| 亚洲一区二区三区色噜噜| 黄片大片在线免费观看| 日本黄色视频三级网站网址| 1024视频免费在线观看| 99国产精品一区二区三区| 精品免费久久久久久久清纯| 亚洲色图av天堂| 18禁裸乳无遮挡免费网站照片 | 亚洲av电影不卡..在线观看| 精品人妻1区二区| 99精品久久久久人妻精品| 亚洲精品在线美女| 欧美成人一区二区免费高清观看 | 中文字幕av电影在线播放| 国产精品,欧美在线| 熟女少妇亚洲综合色aaa.| 亚洲 欧美 日韩 在线 免费| 18美女黄网站色大片免费观看| 一级黄色大片毛片| 十八禁人妻一区二区| 日本黄色视频三级网站网址| 真人一进一出gif抽搐免费| 老司机靠b影院| 别揉我奶头~嗯~啊~动态视频| 亚洲电影在线观看av| 欧美乱妇无乱码| 久久婷婷成人综合色麻豆| 久9热在线精品视频| 亚洲一区二区三区色噜噜| 久9热在线精品视频| 欧美一区二区精品小视频在线| 在线观看免费午夜福利视频| 好男人电影高清在线观看| 国产成人av教育| 国产精品影院久久| 久久久久久亚洲精品国产蜜桃av| 波多野结衣av一区二区av| 久久草成人影院| 日韩精品免费视频一区二区三区| 色尼玛亚洲综合影院| 88av欧美| 国产1区2区3区精品| videosex国产| 国产亚洲精品综合一区在线观看 | 亚洲欧洲精品一区二区精品久久久| 免费av毛片视频| 制服人妻中文乱码| 美女高潮喷水抽搐中文字幕| 午夜免费鲁丝| 午夜福利,免费看| 一级毛片精品| 国产av精品麻豆|