• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Crystal Structure and Theoretical Calculations of N-Benzyl-1-(5-(3-chlorophenyl)-1,3,4- oxadiazol-2-yl)cyclopentanamine①

    2018-06-20 12:00:38ALIRmzniFATEMEHZinliNsrbiYOUNESHnihpourSANGWOOJooMASOOMEShikhiKATARZYNAlpokurTADEUSZLisFARIDEHGournlou
    結(jié)構(gòu)化學(xué) 2018年5期

    ALI Rmzni FATEMEH Zinli Nsrbi, b YOUNES Hnihpour SANG WOO Joo MASOOME Shikhi KATARZYNA ?lpokur TADEUSZ Lis FARIDEH Gournlou

    ?

    Synthesis, Crystal Structure and Theoretical Calculations of N-Benzyl-1-(5-(3-chlorophenyl)-1,3,4- oxadiazol-2-yl)cyclopentanamine①

    ALI Ramazania②FATEMEH Zeinali Nasrabadia, bYOUNES Hanifehpourc②SANG WOO Jooc②MASOOME SheikhidKATARZYNA ?lepokuraeTADEUSZ LiseFARIDEH Gouranlouf

    a(45195-313,)b()c(712-749,)d()e(50-383)f()

    -benzyl-1-(5-(3-chlorophenyl)-1,3,4-oxadiazol-2-yl)cyclopentanamine was syn- thesized via one-pot reaction of appropriate benzylamine, cyclopentanone, (-isocyanimino)tri- phenylphosphorane and-chlorobenzoic acid. The quantum theoretical calculations for crystal structure were performed by density functional theory (DFT/B3LYP/6-311+G*). From the optimized structure, geometric parameters were obtained and experimental measurements were compared with the calculated data. Frontier molecular orbitals (FMOs), total density of states (DOS), molecular electrostatic potential (MEP), molecular properties, natural charges, NMR parameters and NBO analysis for the product were investigated by theoretical calculations.

    -isocyaniminotriphenylphosphorane, cyclopentanone,-chlorobenzoic acid, 1,3,4-oxadiazole, aza-Wittig reaction, DFT, NBO analysis;

    1 INTRODUCTION

    Multicomponent reactions (MCR) have appeared as an efficient and powerful tool in modern syn- thetic organic chemistry due to their valued features such as atom economy, straightforward reaction design, and the opportunity to construct target com- pounds by the introduction of several diversity elements in a single chemical event[1]. MCR, leading to interesting heterocyclic scaffolds, are especially useful for the construction of diverse chemical libraries of ‘druglike’ molecules. The iso- cyanide-based MCR are very important in this area[2-4]. Isocyanide-based multicomponent reactions (abbreviated to IMCRs by Ugi and D?mling) by virtue of their synthetic potential, their inherent atom efficiency, convergent nature, ease implemen- tation, and the generation of molecular diversity,have attracted considerable attention because of the advantages that they offer to the field of combina- torial chemistry[5-7].

    In recent years, there has been considerable inves- tigation on different classes of oxadiazoles. Particu- larly, compounds containing 1,3,4-oxadiazole nuc- leus have been shown to possess a wide range of pharmacological and therapeutic activities. Some 1,3,4-oxadiazoles have shown analgesic, anti- inflammatory, anticonvulsant, tranquilizing, myore- laxant, antidepressant, vasodilatatory, diuretic, antiulcer, antiarythmic, antiserotoninic, spasmolytic, hypotensive, antibronchocontrictive, anticholinergic, and antiemetic activities. Additionally, many 1,3,4- oxadiazole derivatives have been reported as active inhibitors of several enzymes[8-11].

    Recently, the intramolecular version of the- Wittig-type reaction has attracted much attention because it has exhibited high potential for the synthesis of a wide variety of nitrogen heterocycles, which can be attributed, in good measure, to the rapid progress in the preparation of functionalized iminophosphoranes. Existence of the nucleophilicity at the nitrogen is a factor of essential mechanistic importance in the use of these iminophosphoranes as-Wittig reagents. Iminophosphoranes are important reagents in synthetic organic chemistry, especially in the synthesis of naturally occurring products, compounds with biological and pharmaco- logical activity[12, 13]. However, the organic chemi- stry of (-isocyanimino) triphenylphosphorane 4 remains almost unexplored. (-isocyanimino)tri- phenylphosphorane 4 is expected to have synthetic potential because it provides a reaction system in which the iminophosphorane group can react with a reagent having a carbonyl functionality[12, 13]. In recent years, we have established a one-pot method for the synthesis of organophosphorus com- pounds[14-16]. In this paper, we report an interesting four-component reaction of (-isocyanimino)tri- phenylphosphorane 4 (Scheme 1).

    In recent years, computational chemistry has become an important tool for chemists and a well- accepted partner for experimental chemistry[17-19]. Density functional theory (DFT) method has become a major tool in the methodological arsenal of computational organic chemists. Wang et al. investigated intramolecular charge-transfer in symmetric bi-1,3,4-oxadiazole derivatives with TD-CAM-B3LYP method (CAM-B3LYP/6- 311+G**)[20]. Ge et al. studied frontier molecular orbitals of the novel 5-(3-aryl-1H-pyrazol-5-yl)-2-(3-butyl-1-chloroimidazo[1,5-a]-pyridin-7-yl)-1,3,4-oxadiazole derivatives with existence different substitutions using the DFT calculations[21]. Srinivas et al. reported DFT and TD-DFT studies of 1,3,4-oxadiazole derivatives. In fact, they investigated the effect of various substituents on electronic, optical and geometric properties of compounds[22]. Behzad et al. studied four possible tautomers of 5-amino- 1,3,4-oxadiazole-2(3H)-one by calculations at the DFT-B3LYP/6-311++G* level of theory in the gas phase and in solution and in a micro hydrated environment[23]. In the present work, we investigate the energetic and structural properties of the crystal structures of-benzyl-1-(5-(3-chlorophenyl)-1,3,4- oxadiazol-2-yl)cyclopentanamine using the DFT calculations. The optimized geometry, frontier mole- cular orbitals (FMO), detail of quantum molecular descriptors, molecular electrostatic potential (MEP), chemical tensors, natural charge and NBO analysis were calculated.

    2 EXPERIMENTAL

    2. 1 Materials and methods

    (-Isocyanimino)triphenylphosphorane 4 was prepared based on reported procedures[13]. Other starting materials and solvents were obtained from Merck (Germany) and Fluka (Switzerland) and were used without further purification. The methods used to follow the reactions are TLC and NMR which indicated that there is no side product. Melting point was measured on an Electrothermal 9100 apparatus and uncorrected. IR spectrum was measured on a Jasco 6300 FTIR spectrometer.1H and13C NMR spectra (CDCl3) were recorded on a BRUKER DRX-250 AVANCE spectrometer at 250.1 and 62.9 MHz, and a BRUKER AVANCE III spectrometer at 400.2 and 100.6 MHz, respectively. Elemental analyses were performed using a Heraeus CHN- O-Rapid analyzer. Preparative layer chromato- graphy (PLC) plates were prepared from Merck silica gel (F254) powder.

    2. 2 General procedure for the preparation of compound 5

    To a magnetically stirred solution of benzyl amine 2 (1 mmol), cyclopentanone 1 (1 mmol) and (-isocyanimino)triphenylphosphorane 4 (1 mmol) in CH2Cl2(5 mL) was added dropwise a solution of-chlorobenzoic acid 3 (1 mmol) in CH2Cl2(5 mL) at room temperature over 15 min. The mixture was stirred for 12 h. The solvent was removed under reduced pressure, and the viscous residue was purified by preparative layer chromatography (PLC) (silica gel (F254) powder; petroleum ether-ethyl acetate 4:1). The characterization data of the compound are given below.

    2. 2. 1-benzyl-1-(5-(3-chlorophenyl)- 1,3,4-oxadiazol-2-yl)cyclopentanamine (5)

    White powder, m.p. 81~83; yield: 90%. IR (KBr): 3289, 2971, 1694, 1547,1440, 884, 791, 693 cm?1.1H NMR (250.0 MHzCDCl3):= 1.42~2.33 (9H, m, CH2of cyclopentan and NHamine), 3.67 (2H, s, CH2), 7.27~8.00 (9H,m, CHarom).13C NMR (62.5 MHzCDCl3):= 32.88, 37.56 (CH2of cyclopentan), 48.99 (CH2), 64.38 (C of cyclopentan), 124.97, 126.83, 127.04, 128.10, 128.41, 130.39, 131.64 (9CH), 125.65, 135.12, 140.10 (3C), 163.82, 171.00 (2C=N). Anal. Calcd. (%) for C20H20ClN3O (353.85): C, 67.89; H, 5.70; N, 11.88. Found (%): C, 67.81; H, 5.76; N, 11.80.

    2. 3 Preparation of single crystals of N-benzyl-1-(5-(3-chlorophenyl)-1,3,4-oxadiazol-2 yl)cyclopentanamine (5)

    Colorless single crystals of-benzyl-1-(5-(3- chlorophenyl)-1,3,4-oxadiazol-2-yl)cyclopentanamine (5) were obtained from slow evaporation of its dichloromethane/light petroleum ether (1:3) solution (20~25 ℃). The colorless single crystals were filtered off, washed with a cold mixture of dichloro- methane/light petroleum ether (1:3) and dried at room temperature.

    2. 4 X-ray crystallography of compound 5

    The crystallographic measurement of 5 was performed on a Kuma KM4-CCD κ-geometry auto- mated four-circle diffractometer with graphite-monochromatizedMoradiation (= 0.71073 ?) (Fig. 1). The data were collected at 110(2) K by using the Oxford-Cryosystems cooler. Data were corrected for Lorentz and polarization effects. Data collection, cell refinement, data reduction, and analysis were carried out with CrysAlisCCD and CrysAlisRED, respectively[24]. The structure was solved by direct methods with the SHELXS97 program[25], and refined by full-matrix least-squares technique with SHELXL2013[25]and anisotropic thermal parameters for non-H atoms. All H atoms were found in difference Fourier maps and refined isotropically. In the final refinement cycles, the C-bonded H atoms were repositioned in their cal- culated positions and refined using a riding model, with C–H = 0.95~0.99 ? andiso(H) = 1.2eq(C). N-bonded H atom was refined isotropically withiso(H) = 1.2eq(N). Figures were made with the Diamond program[26].

    C20H20ClN3O,M= 353.84, colorless block, crystal size 0.27 × 0.17 × 0.10 mm3,monoclinic, space group21/,= 5.420(2),= 36.782(8),= 8.814(3) ?,= 93.67(3)°,= 1753.5(10) ?3,= 110(2) K,= 4,= 0.23 mm-1(for Mo,= 0.71073 ?),absorption correction: multi-scan,min= 0.968,max= 1.000, 28708 reflections measured, 7811 unique (int= 0.029), 5561 observed (2()), (sin/)max= 0.844 ??1, parameters = 229, restraints = 0,=0.043 (observed refl.),= 0.112 (all refl.),= 1.01, (Δmax) = 0.52 and (Δmin) = –0.20 e·??3.

    3 COMPUTATIONAL DETAILS

    In this work, we have carried out quantum theoretical calculations and optimized its structure (starting from the solid-state structure) using B3LYP/6-311+G* level (DFT)[27]by the Gaussian 09W program package[28]and calculate its pro-perties. The electronic properties such as EHOMO, ELUMO, HOMO-LUMO energy gap (?),HOMO-1,LUMO+1, natural charges, molecular properties, dipole moment (μ) and point group were detec- ted[17]. The optimized molecular structure, HOMO and LUMO surfaces were visualized using GaussView 05 program[29]. Also we calculated NMR parameters such as chemical shift isotropic (CSI) and chemical shift anisotropic (CSA) for the title structures using B3LYP/6-311+G* level[30, 31]. The electronic structure of the title compound was studied by using Natural Bond Orbital (NBO) analysis at the same level in order to understand various second-order interactions between the filled orbitals of one subsystem and vacant orbitals of another subsystem, which is a measure of the inter-molecular delocalization or hyper conjugation[32].

    4 RESULTS AND DISCUSSION

    The 1:1 imine intermediate generated by the condensation reaction of cyclopentanone 1 with benzyl amine 2 is trapped by 4 in the presence of-chlorobenzoic acid 3 and leads to the formation of 1,3,4-oxadiazole derivatives 5 and triphenylphos- phine oxide 6 (Scheme 2). The reaction proceeds smoothly and cleanly under mild and neutral conditions and no side reactions were observed.

    Scheme 1. Four-component synthesis of 1,3,4-oxadiazole 5

    We also used 3-chlorobenzoperoxoic acid instead of 3-chlorobenzoic acid in this reaction, but the same product of 1,3,4-oxadiazole was observed.

    A mechanistic pathway for the reaction is provided in Scheme 2. On the basis of the chemistry of isocyanides, it is reasonable to assume that the first step may involve the formation of imine 7 by the condensation reaction of cyclopentanone 1 with the benzyl amine 2. The next step may involve nucleophilic addition of the (-isocyanimino)tri- phenylphosphorane 4 to the imine intermediate 7, which is facilitated by its protonation with the-chlorobenzoic acid 3, leading to nitrilium intermediate 8. This intermediate may be attacked by the conjugate base of the carboxylic acid to form the 1:1:1 adduct 9. The intermediate 9 then under- goes intramolecular-Wittig reaction[33-36]of iminophosphorane moiety with the ester carbonyl group to afford the isolated sterically congested 1,3,4-oxadiazole 5 by the removal of triphenyl- phosphine oxide 6 from intermediate 10.

    Scheme 2. Proposed mechanism for the formation of sterically congested 1,3,4-oxadiazole 5

    4. 1 Crystal structure and optimized geometry

    The optimized structure of compound 5 has been calculated by DFT (B3LYP/6-311+G*) (see Fig. 1b) and the selected bond lengths and bond angles of the crystal structure and the theoretical parameters (for the molecule of the opposite configuration,with the opposite values of torsion angles) are listed in Table 1.

    The crystal of 5 is built up from molecules shown in Fig. 1a. The values of bond lengths and valence angles correspond well with those typical for the respective types of chemical connections[37]. In the crystal structure of 5 the angle between 1,3,4-oxa- diazole and phenyl rings is about 63°. The chloro- phenyl ring is only slightly twisted relative to the oxadiazole, which is reflected in the value of O(1)– C(14)–C(15)–C(20) torsion angle close to 10° (see Table 1 for details). Cyclopentyl ring adopts enve- lope conformation with the C(8) atom puckered (Cremer--Pople puckering parameters2 and2[38]= 0.429(1) ? and 352.1(2)°, respectively; pseudoro- tation parametersandm[39]= 154.0(1)° and 44.1(1)°, respectively; calculated with Platon[40]).

    In the crystal lattice, molecules of 5 are joined to each other via N–H×××N hydrogen bonds giving rise to chains running down the-axis as shown in Fig. 2a (for geometrical details see Table 2). The adjacent chains are further linked by C–H×××and C–Cl×××interactions to form double layers parallel to the (010) plane (Fig. 2b).

    As can be seen in Table 1, the calculated para- meters reveal good approximation and can be used as a foundation to calculate the other parameters for the title compound. We found that most of the calcu- lated bond lengths are slightly longer than X-ray values due to the fact that experimental result corresponds to interacting molecules in the crystal lattice, whereas computational method deals with an isolated molecule in gaseous phase[41]. The average differences of the theoretical parameters from the experimental for bond lengths of compound 5 were found to be about 0.001 ? (O1–C14), 0.003 ? (O1–C13), 0.009 ? (N1–C1), 0.003 ? (N1–C8), 0.001 ? (N2–C13), 0.02 ? (N2–N3) and 0.004 ? (N3–C14). According to Table 1, the bond lengths of N1–C1in X-ray and optimized structure of compound 5 are 1.4602(13) and 1.4689 ? respectively, whereas experimental and theoretical values for the bond lengths of N1–C8are 1.4707(12) and 1.4686 ?, respectively. It is shown the N1–C1is shorter than N1–C8.

    Fig. 1. (a) X-ray crystal structure of compound 5 at 50% probability displacement ellipsoids(b) Theoretical geometric structure of compound 5 (optimized using the B3LYP/6-311+G* level)

    Table 1. Selected Experimental and Calculated Interatomic Distances (?), Dihedral Angles (°) and Torsion Angles (°) for 5

    Fig. 2. Arrangement of molecule 5 within the () molecular chain running down the-axis, and () the layer parallel to (010) plane. N–H···N, C–H···and C–Cl···interactions are shown as dashed and dotted lines, respectively. H atoms not involved in these contacts are omitted for clarity. Symmetry codes are as in Table 1

    Table 2. Geometry of N–H···N, C–H···π and C–Cl···π Interactions (?, o) in 5

    Symmetry codes: (i)+1,,; (ii)–1,,; (iii),,+1; (iv), –+0.5,-0.5;1 isthe centroid of C2~C7 ring;2 is the centroid of the oxadiazole ring

    4. 2 Electronic properties

    Quantum chemical methods are important for obtaining information about molecular structure and electrochemical behavior. A frontier molecular orbitals (FMO) analysis[42]was done for the compound using at the B3LYP/6-311+G* level. FMO results such asHOMO,HOMO-1,LUMO,LUMO+1and the HOMO-LUMO energy gap (?) of the title compound, are summarized in Table 3. The values of energy of the highest occupied molecular orbital (HOMO) can act as an electron donor and the lowest unoccupied molecular orbital (LUMO) can act as the electron acceptor[43]. As shown in Fig. 3 and Table 3,HOMO,HOMO-1,LUMOandLUMO+1of the title compound are –6.65, 7.02, –2.0 and –1.11 eV, respectively. As seen in Fig. 4, charge transfer is taking place within molecule. The graphic pictures of orbitals show the HOMO-1 orbital of molecule is localized mainly on oxadiazole ring and CH2–NH group, whereas the HOMO orbital of molecule is localized mainly on chlorinated ring and the Cl atom. The LUMO orbital of molecule is localized mainly on the oxadiazoleand chlorinated rings, whereas the LUMO+1 orbital of molecule is localized mainly on the phenyl ring. As seen in Fig. 3, the HOMO-LUMO energy gap (?) of the compound is 4.65 eV that reflects the chemical activity of the molecule. Also the calculated energy gap clearly is shown in DOS plot (see Fig. 4)[42].

    A detail of quantum molecular descriptors of the title compound such as ionization potential (), electron affinity (), chemical hardness (), electronic chemical potential () and electrophilicity () were calculated and are listed in Table 2. Dipole moment (μ) is a good measure for the asymmetric nature of a structure[17]. The size of the dipole moment depends on the composition and dimen- sionality of the 3structures. As shown in Table 3, dipole moment of the title structure is 4.143 Debye that the high value of dipole moment is due to its asymmetric character that the atoms are irregularly arranged which gives rise to the increased dipole moment. Also the point group of structure is1 (see Table 3).

    Table 3. Molecular Properties of Compound 5 Calculated Using the DFT (B3LYP/6-311+G*)

    Fig. 3. Calculated Frontier molecular orbitals of compound 5 (?E: energy gap between LUMO and HOMO)

    Fig. 4. Calculated DOS plots of compound (using the B3LYP/6-311+G* method)

    4. 3 Molecular electrostatic potential (MEP)

    The molecular electrostatic potential (MEP) was checked out by theoretical calculations using B3LYP/6-311+G* level of theory. Molecular elec- trostatic potential shows the electronic density and is useful in recognition sites for electrophilic attack and nucleophilic reactions as well as hydrogen bonding interactions[44]. The electrostatic potential at the surface is different values and different colors. The negative areas (red, orange and yellow color) of MEP were related to electrophilic reactivity, the positive areas (blue color) to the nucleophilic reactivity and green color is neutral regions. According to the MEP map in Fig. 5, negative region of the compound is mainly focused on N17and N18atoms and phenyl ring with more red color intensity. Therefore, there are three positions on the compound for electrophilic attack. Also the lowest electron density with the highest intensity blue color is observed for hydrogen atom in N8–H33. Therefore, it is the suitable site for nucleophilic activity.

    Fig. 5. Molecular electrostatic potential (MEP) maps of compound 5 calculated using the B3LYP/6-311+G* level

    4. 4 Atomic charge and NMR parameters

    We calculated the charge distributions for equilibrium geometry of molecule by NBO method (natural charge)[17]using the B3LYP/6-311+G* level (Atoms labeling is according to Fig. 2). The total charge of the investigated molecules is equal to zero. According to Table 4, the results of NBO analysis reveal the highest positive charge is observed for C10and C16atoms in the oxadiazole ring (0.519 and 0.488 e, respectively), while the highest value of negative charge is observed for the N8atom (–0.664 e). Also the O15atom has great negative charge (–0.494 e). All carbon atoms of the chlorinated ring and phenyl ring have negative charges. The carbon atoms of cyclopentan ring bear negative charges except the C9atom that has positive charge (0.073 e). All hydrogen atoms have positive charges and the H33atom in N–H group has the highest positive charge (0.354 e).

    The NMR parameters such as isotropic chemical shift (CSI) and anisotropic chemical shift (CSA) for the title compound are summarized in Table 3. Of carbon atoms, the C10and C16atoms have the lowest CSIvalue, so they are deshielded more (CSIvalue = 6.172 ppm and CSIvalue = 11.487 ppm, respec- tively) than the other carbons atoms due to their direct connect to O15atom. While the C12and C13atoms are shielded more (CSIvalue = 157.160 ppm and CSAvalue = 156.795 ppm) than the other carbon atoms. The Cl25atom has the highest CSI(677.527 ppm) and CSA(507.547 ppm) values. Therefore, it is shielded more than the other atoms.

    Table 4. Natural Charge (NBO Charges, e) and NMR Parameters (ppm) Such as Chemical Shift Isotropic (CSI) and Chemical Shift Anisotropic (CSA) for Compound 5 Using the B3LYP/6-311+G* Method (Atom Numbering is According to Fig. 2)

    4. 5 NBO analysis

    Natural bond orbital (NBO) analysis is an important method for studying intra- and intermo- lecular bonding and interaction between bonds[45]. The results of NBO analysis such as the occupation numbers with their energies for the interacting NBOs (interaction between natural bond orbital A and natural bond orbital B (A-B)) and the polariza- tion coefficient amounts of atoms for structure 5 are presented using the B3LYP/6-311+G* level is summarized in Table 5 (Atoms labeling is according to Fig. 2). The size of polarization coefficients shows the importance of two hybrids in the formation of bond. In structure 5, the calculated bonding orbital for O15–C16is BD(1) = 0.83062.28+ 0.55693.080.01with high occupancy 1.98862 a.u. and low energy –0.93176 a.u.. The polarization coefficients of O15= 0.8306 and C16= 0.5569 show importance of O15in forming the O15–C16bond rather than the C6atom. Also the high polarization coefficient of O15atom instead of C16suggests the O15atom is more electron-rich (–0.494 e) than the C16atom (0.488 e). The calculated bonding orbital for the C9–C10bond is the BD(1) = 0.69903.09+ 0.71521.42with high occupancy 1.96814 a.u. and energy –0.67046 a.u.. The polarization coefficients of C9= 0.6990 and C10= 0.7152 show importance of C10in forming the C9–C10bond instead of the C9atom. According to the calculated bonding orbital for the C7–N8, C10–N18, C16–N17and N8–C9bonds, the polarization coefficient of Na toms is greater than the C atoms, which shows the importance of N atoms in forming C7–N8, C10–N18, C16–N17and N8–C9bonds rather than C atoms. The bonding orbitals of C10–N18and C16–N17bonds have high occupancy (1.99169 and 1.99135 a.u., respectively) and the low energy (–0.91008 and –0.90137 a.u., respectively), while the occupancy of bonding orbital of C7–N8and N8–C9bonds is 1.98344 and 1.97717 a.u. with energies of –0.71288 and –0.73149 a.u., respectively. In the other hand, the C–N bonds in oxadiazole ring have high occupancy and low energy than C–N bonds in the amine group.

    Table 5. Calculated Natural Bond Orbitals (NBO) and the Polarization Coefficient for Each Hybrid in Selected Bonds of Compound 5 Using the B3LYP/6-311+G* Level (Atoms Numbering is According to Fig. 1)

    aA–B is the bond between atoms A and B (A: natural bond orbital and the polarization coefficient of atom; A–B: natural bond orbital and the polarization coefficient of atom B)

    Electron donor orbital, acceptor orbital and the interacting stabilization energy resulting from the second-order micro disturbance theory[45]are repor- ted in Table 6. The electron delocalization from filled NBOs (donors) to the empty NBOs (acceptors) describes a conjugative electron transfer process between them[46]. For each donor () and acceptor (), the stabilization energy(2)associated with the delocalization→is estimated. The resonance energy ((2)) detected the quantity of participation of electrons in the resonance between atoms[46]. According to Table 9, the BD(2)C10–N18orbital par- ticipates as donor and the anti-bonding BD*(1)N8– C9, BD*(2)C9–C11and BD*(2)C16–N17orbitals as acceptor, and their resonance energies (E(2)) are 3.05, 1.95 and 10.47 kcal/mol, respectively. These values indicate large charge transfer from the BD(2)C10– N18to the anti-bonding orbital of BD*(2)C16–N17(BD(2)C10–N18→BD*(2)C16–N17). Also the reso- nance energies ((2)) for BD(2)C16–N17→ BD*(2)C10–N18and BD(2)C16–N17→BD*(2)C19– C20are 10.30 and 8.73 kcal/mol, respectively, showing large charge transfer from the BD(2)C16– N17to the anti-bonding orbital of BD*(2)C10–N18. From the NBO analysis results, the LP(1)N8orbital participates as donor and the anti-bonding BD*(1)C2–C7, BD*(1)C9–C10, BD*(1)C9–C11and BD*(1)C9–C15orbitals as acceptor and their resonance energies ((2)) are 0.73, 8.97, 0.64 and 1.15 kcal/mol, respectively. These values indicate large charge transfer from the LP(1)N8to anti- bonding orbital of BD*(1)C9–C10(LP(1)N8→ BD*(1)C9–C10). The LP(1)Cl25and LP(2)Cl25orbital participates as donor and the anti-bonding BD*(1)C23-C24orbital as acceptor and their resona- nce energies ((2)) are 1.57 and 4.15 kcal/mol, respectively. Therefore, charge transfer from the LP(2)Cl25to the anti-bonding orbital of BD*(1)C23– C24(LP(1)Cl15→BD*(1)C23–C24) is more than the LP(1)Cl15→BD*(1)C23–C24. While charge transfer in LP(3)Cl15→BD*(2)C23–C24has more resonance energy ((2)= 12.50 kcal/mol) than LP(1)Cl15→ BD*(1)C23–C24and LP(2)Cl15→BD*(1)C23–C24.

    Table 6. Significant Donor–acceptor Interactions and the Second Order Perturbation Energies of Compound 5 Calculated Using the B3LYP/6-311+G* Level (Atoms Numbering is According to Fig. 2)

    a(2)means energy of hyperconjucative interactions.bEnergy difference between donor and acceptorandNBO orbitals.c(,) is the Fock matrix element betweenandNBO orbitals.

    5 CONCLUSION

    In summary, we believe that the reported method offers a mild, simple, and efficient route for the preparation of fully substituted 1,3,4-oxadiazol of type 5. Ease work-up, high yield and fairly mild reaction conditions make it a useful addition to modern synthetic methodologies. Other aspects of this synthetic process are under investigation. In the present study, also the electronic properties and geometric parameters of compound 5 have been analyzed using the DFT calculations (B3LYP/6- 311+G*). The theoretical results and the experi- mental data have been found to support each other. The FMO analysis suggests that charge transfer is taking place within molecule 5 and the HOMO orbital is localized mainly on chlorinated ring and the Cl atom,whereas the LUMO orbital resides on the oxadiazole ring and chlorinated ring. According to the MEP map, negative region of compound is mainly focused on both N atoms of 1,3,4-oxadiazole ring and phenyl ring, whereas the lowest electron density is observed for amine hydrogen atom, so it is a suitable site for nucleophilic activity.

    (1) Zhu, J.; Bienayme, H. Eds. Wiley. Weinheim 2005.

    (2) Domling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry.. 2006, 106, 17–89.

    (3) Yavari, I.; Mirzaei, A.; Hossaini, Z.; Souri, S. Diastereoselective synthesis of fused [1,3]oxazines from ethyl pyruvate, activated acetylenes and N-heterocycles.. 2010, 14, 343–347.

    (4) Ramazani, A.; Zeinali Nasrabadi, F.; Karimi, Z.; Rouhani, M. Preparation of fully substituted 1,3,4-oxadiazole derivatives from N-isocyaniminotriphenylphosphorane, (E)-cinnamic acids, chloroacetone and primary amines.. 2011, 32, 2700–2704.

    (5) Ugi, I.; Werner, B.; D?mling, A. The chemistry of isocyanides, their multicomponent reactions and their libraries.2003, 8, 53–66.

    (6) Yavari, I.; Hossaini, Z.; Sabbaghan, M. Synthesis of functionalized 5-imino-2,5-dihydro-furans through the reaction of isocyanides with activated acetylenes in the presence of ethyl bromopyruvate.. 2006, 10, 479–482.

    (7) Zeinali Nasrabadi, F.; Ramazani, A.; Ahmadi, Y. Synthesis of sterically congested 1,3,4-oxadiazole derivatives from aromatic carboxylic acids, N,N-dicyclohexylcarbodiimide and (N-isocyanimino)triphenylphosphorane.. 2011, 15, 791–798.

    (8) Holla, B. S.; Gonsalves, R.; Shenoy, S. Synthesis and antibacterial studies of a new series of 1,2-bis(1,3,4-oxadiazol-2-yl)ethanes and 1,2-bis(4-amino-1,2,4-triazol-3-yl)ethanes.2000, 35, 267–271.

    (9) Baxendale, I. R.; Ley, S. V.; Martinelli, M. The rapid preparation of 2-aminosulfonamide-1,3,4-oxadiazoles using polymer-supported reagents and microwave heating.2005, 61, 5323–5349.

    (10) El-Sayed, W. A.; El-Essawy, F. A.; Ali, O. M.; Nasr, B. S.; Abdalla, M. M.; Abdel-Rahman, A. A. H. Synthesis and antiviral evaluation of new 2,5-disubstituted 1,3,4-oxadiazole derivatives and their acyclic nucleoside analogues.. 2010, 141, 1021–1028.

    (11) Wang, Y.; Sauer, D. R.; Djuric, S. W. A simple and efficient one step synthesis of 1,3,4-oxadiazoles utilizing polymer-supported reagents and microwave heating.. 2006, 47, 105–108.

    (12) Palacios, F.; Aparicio, D.; Rubiales, G.; Alonso, C.; de los Santos, J. M. Synthetic applications of intramolecular aza-wittig reaction for the preparation of heterocyclic compounds.. 2009, 13, 810–828.

    (13) Stolzenberg, H.; Weinberger, B.; Fehlhammer, W. P.; Pühlhofer, F. G.; Weiss, R. Free and metal-coordinated (N-isocyanimino)triphenylphosphorane: X-ray structures and selected reactions.. 2005, 21, 4263–4271.

    (14) (a) Ramazani, A.; Bodaghi, A. One-pot, four-component synthesis of dialkyl [indane-1,3-dione-2-ylidene]alkoxysuccinates.. 2000, 41, 567–568. (b) Aghahosseini, H.; Ramazani, A.; ?lepokura, K.; Lis, T. Synthesis and X-ray single crystal structure analysis of a new 2-chlorobenzyl ammonium salt of phosphonic acid.2017, 192, 638–642. (c) Ramazani, A.; Shajari, N.; Gouranlou, F. A facile synthetic approach to dimethyl-2-arylamino-3-(triphenylphosphoranylidene) succinates from electron-poor primary arylamins.2001, 174, 223–227.

    (15) Ramazani, A.; Rahimifard, M.; Souldozi, A. Silica-gel catalyzed stereoselective conversion of stabilized phosphorus ylides to dialkyl (Z)-2-(2-methoxycarbonyl-phenoxy)-2-butenedioates in solvent-free conditions.. 2007, 182, 1–5.

    (16) (a) Taran, J.; Ramazani, A.; Aghahosseini, H.; Gouranlou, F.; Tarasi, R.; Khoobi, M.; Joo, S. W. One-pot three-component syntheses of-aminophosphonates from a primary amine, quinoline-4-carbaldehyde and a phosphite in the presence of MCM-41@PEI as an efficient nanocatalyst.. 2017, 192, 776-781. (b) Ramazani, A.; Amini, I.; Massoudi, A. Dipotassium hydrogen phosphate powder-catalyzed stereoselective synthesis of N-vinyl pyrazoles in solvent-free conditions.2006, 181, 2225–2229.

    (17) Sheikhi, M.; Sheikh, D.; Ramazani, A. Three-component synthesis of electron-poor alkenes using isatin derivatives, acetylenic esters, triphenylphosphine and theoretical study.. 2014, 67, 151–159.

    (18) Shoaei, S. M.; Kazemizadeh, A. R.; Ramazani, A. Synthesis and infrared spectra computation of sterically congested 2,2 disubstituted indane-1,3-dione derivatives.. 2011, 30, 568–574.

    (19) Shahab, S.; Filippovich, L.; Almodarresiyeh, H. A.; Sheikhi, M.; Kumar, R. Thermostable broad band polarizing PVA-film: theoretical and experimental investigations.2018, 2, 186–197.

    (20) Wang, H.; Liu, H.; Bai, F. Q.; Qu, S.; Jia, X.; Ran, X.; Chen, F.; Bai, B.; Zhao, C.; Liu, Z.; Zhang, H. X.; Li, M. Theoretical and experimental study on intramolecular charge-transfer in symmetric bi-1,3,4-oxadiazole derivatives.. 2015, 312, 20–27.

    (21) Ge, Q.; Jia, J.; Wang, T.; Sun, H. W.; Duan, G. Y.; Wang, J. W. The synthesis, characterization and optical properties of novel 5-(3-aryl-1H-pyrazol-5-yl)-2-(3-butyl-1-chloroimidazo [1, 5-a] pyridin-7-yl)-1,3,4-oxadiazole.. 2014, 123, 336–341.

    (22) Srinivasa, K.; Sivakumara, G.; Kumara, C. R.; Reddya, M. A.; Bhanuprakasha, K.; Raob,V. J.; Chenc, C. W.; Hsuc, Y. C.; Linc, J. T. Novel 1,3,4-oxadiazole derivatives as efficient sensitizers for dye-sensitized solar cells: a combined experimental and computational study.2011, 161, 1671–1681.

    (23) Chahkandi, B.; Tayyari, S. F.; Bakhshaeia, M.; Chahkandi, M. Investigation of simple and water assisted tautomerism in a derivative of 1,3,4-oxadiazole: a DFT study.. 2013, 44, 120–128

    (24) CrysAlisCCD and CrysAlisREDin KM4-CCD Software; Oxford Diffraction Ltd.: Abingdon, England 2009.

    (25) Sheldrick, G. M. A short history of SHELX.2008, 64, 112–122.

    (26) Brandenburg, K. DIAMOND. Crystal Impact GbR: Bonn, Germany 2005.

    (27) Kohn, W.; Becke, A. D.; Parr, R. G.Density functional theory of electronic structure.. 1996, 100, 12974–12980.

    (28) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, ?.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT 2009.

    (29) Frisch, A.; Nielson, A. B.; Holder, A. J.., Pittsburgh, PA 2000.

    (30) Monajjemi, M.; Sheikhi, M.; Mahmodi Hashemi, M.; Molaamin, F.; Zhiani, R. NMR and NBO calculation of benzimidazoles and pyrimidines: nano physical parameters investigation... 2012, 7, 2010–2031.

    (31) Yahyaei, H.; Kazamizadeh, A. R.; Ramazani, A. Synthesis and chemical shifts calculation of-acyloxycarboxamides derived from indane-1,2,3-trione by DFT and HF methods.2012, 31, 1346–1356.

    (32) Shahab, S.; Sheikhi, M.; Filippovich, L.; Dikusar Anatol’evich, E.; Yahyaei, H. Quantum chemical modeling of new derivatives of (E,E)-azomethines: synthesis, spectroscopic (FT-IR, UV/Vis, polarization) and thermophysical investigations.. 2017, 1137, 335–348.

    (33) (a) Ramazani, A.; Tofangchi Mahyari, A.; Rouhani, M.; Rezaei, A. A novel three-component reaction of a secondary amine and a 2-hydroxybenzaldehyde derivative with an isocyanide in the presence of silica gel: an efficient one-pot synthesis of benzo[b]furan derivatives.. 2009, 50, 5625–5627. (b) Ramazani, A.; Ahmadi, Y.; Tarasi, R. Efficient one-pot synthesis of disubstituted 1,3,4-oxadiazole derivatives from the reaction of (N-isocyanimino)triphenylphosphorane, acetaldehyde, a secondary amine, and an electron-poor (E)-cinnamic acid.2011, 22, 79–84.

    (34) (a) Souldozi, A.; Ramazani, A.; Bouslimani, N.; Welter, R. The reaction of (N-isocyanimino) triphenylphosphorane with dialkyl acetylenedicarboxylates in the presence of 1,3-diphenyl-1,3-propanedione: a novel three-component reaction for the stereoselective synthesis of dialkyl (Z)-2-(5,7-diphenyl-1,3,4-oxadiazepin-2-yl)-2-butenedioates.2007, 48, 2617–2620. (b) Souldozi, A.; Ramazani, A. The reaction of (N-isocyanimino)triphenylphosphorane with benzoic acid derivatives: a novel synthesis of 2-aryl-1,3,4-oxadiazole derivatives.2007, 48, 1549–1551.

    (35) (a) Souldozi, A.; Ramazani, A. Iminophosphorane-mediated one-pot synthesis of 1,3,4-oxadiazole derivatives.2008, 235–242. (b) Souldozi, A.; ?lepokura, K.; Lis, T.; Ramazani, A. Synthesis and single crystal X-ray Structure of 2-(1,3,4-oxadiazol-2-yl)aniline.. 2007, 62b, 835–840.

    (36) (a) Ramazani, A.; Rezaei, A. Novel one-pot, four-component condensation reaction: an efficient approach for the synthesis of 2,5-disubstituted 1,3,4-oxadiazole derivatives by a Ugi-4CR/aza-wittig sequence.. 2010, 12, 2852–2855. (b) Ramazani, A.; Ahmadi, Y.; Rouhani, M.; Shajari, N.; Souldozi, A. The reaction of (N-isocyanimino) triphenylphosphorane with an electron-poor α-haloketone in the presence of aromatic carboxylic acids: a novel three-component reaction for the synthesis of disubstituted 1,3,4-oxadiazole derivatives.2010, 21, 368–372.

    (37) Allen, F. H.; Watson, D. G.; Brammer, L.; G Orpen, A.; Taylor, R. Typical Interatomic Distances: Organic Compounds, in “International Tables for Crystallohraphy, Vol. C, 3rd edition (Chapter 9.5), ed. E. Prince, Kluwer Academic Publishers, Dordrecht/Boston/London 2004.

    (38) Cremer, D.; Pople, J. A.General definition of ring puckering coordinates.. 1975, 97, 1354–1358.

    (39) Rao, S. T.; Westhof, E.; Sundaralingam, M. Pseudorotation parameters P and Tau(M).. 1981, A37, 421–425.

    (40) Spek, A. L. Structure validation in chemical crystallography.. 2009, D65, 148–155.

    (41) Tanak, H. Crystal structure, spectroscopy, and quantum chemical studies of (E)-2-[(2-chlorophenyl)iminomethyl]-4-trifluoromethoxyphenol..2011, 115, 13865–13876.

    (42) Sheikhi, M.; Sheikh, D. Quantum chemical investigations on phenyl-7,8- dihydro-[1,3] -dioxolo[4,5-g] quinolin-6(5h)-one,. 2014, 159, 761–767.

    (43) Vipin Das, K. G.; YohannanPanicker, C.; Narayana, B.; Nayak, P. S.; Sarojini, B. K.; Al-Saadi, A. A. FT-IR, molecular structure, first order hyperpolarizability, NBO analysis, HOMO and LUMO and MEP analysis of 1-(10H-phenothiazin-2-yl)ethanone by HF and density functional methods.. 2015, 135, 162–171.

    (44) Habibi, D.; Faraji, A. R.; Sheikh, D.; Sheikhi, M.; Abedi, S. Application of supported Mn(III), Fe(III) and Co(II) as heterogeneous, selective and highly reusable nano catalysts for synthesis of arylaminotetrazoles, and DFT studies of the products.2014, 4, 47625–47636.

    (45) Weinhold, F.; Landis, C. R. Natural bond orbitals and extensions of localizedbonding concepts.2001, 2, 91–104.

    (46) Guidara, S.; Ahmed, A. B.; Abid, Y.; Feki, H. Molecular structure, vibrational spectra and nonlinear optical properties of 2,5-dimethylanilinium chloride monohydrate: a density functional theory approach.2014, 127, 275–285.

    12 May 2017;

    26 February 2018 (CCDC 1422045)

    ① This project was supported by the University of Zanjan, the grant NRF-2015-002423 of the National Research Foundation of Korea

    E-mails: aliramazani@gmail.com, aliramazani@znu.ac.ir, y_hanifehpour@yu.ac.kr, swjoo1@gmail.com and swjoo@yu.ac.kr

    10.14102/j.cnki.0254-5861.2011-1720

    三级经典国产精品| 十八禁网站网址无遮挡 | 欧美老熟妇乱子伦牲交| 永久网站在线| 国产精品av视频在线免费观看| 国产精品一区二区在线不卡| 国产精品久久久久久精品电影小说 | 成人二区视频| 亚洲欧美成人精品一区二区| 亚洲av日韩在线播放| 街头女战士在线观看网站| 日韩中文字幕视频在线看片 | 欧美区成人在线视频| 国产极品天堂在线| 久久久久人妻精品一区果冻| 国产中年淑女户外野战色| 极品少妇高潮喷水抽搐| 欧美最新免费一区二区三区| 亚洲av成人精品一二三区| 欧美一区二区亚洲| 国产精品久久久久久精品电影小说 | 街头女战士在线观看网站| 欧美国产精品一级二级三级 | 丝袜喷水一区| 色网站视频免费| 最黄视频免费看| 国产精品精品国产色婷婷| 久久6这里有精品| videossex国产| 少妇熟女欧美另类| 熟妇人妻不卡中文字幕| 日韩国内少妇激情av| 亚洲精品视频女| 色婷婷av一区二区三区视频| 亚洲国产最新在线播放| 涩涩av久久男人的天堂| 全区人妻精品视频| 国产男人的电影天堂91| 亚洲欧美中文字幕日韩二区| 日韩一区二区视频免费看| 国产有黄有色有爽视频| 日韩三级伦理在线观看| 一本一本综合久久| 男女无遮挡免费网站观看| 美女脱内裤让男人舔精品视频| 男女下面进入的视频免费午夜| 天堂8中文在线网| 一级黄片播放器| 夜夜爽夜夜爽视频| av网站免费在线观看视频| 中国三级夫妇交换| 亚洲av免费高清在线观看| 老熟女久久久| 九九在线视频观看精品| 美女国产视频在线观看| 日本欧美国产在线视频| av线在线观看网站| 九九在线视频观看精品| 大片电影免费在线观看免费| 乱系列少妇在线播放| 99热这里只有是精品50| 91久久精品电影网| 成人影院久久| 超碰97精品在线观看| 蜜桃在线观看..| 日本-黄色视频高清免费观看| 久久久久久伊人网av| 嫩草影院入口| 一个人免费看片子| 精品国产一区二区三区久久久樱花 | 18禁在线播放成人免费| 久久精品夜色国产| 国产精品国产av在线观看| 91久久精品电影网| 成人漫画全彩无遮挡| 免费黄色在线免费观看| 人妻一区二区av| 日日啪夜夜撸| 日韩成人av中文字幕在线观看| 少妇熟女欧美另类| 不卡视频在线观看欧美| 国产精品秋霞免费鲁丝片| 91精品伊人久久大香线蕉| 极品教师在线视频| av女优亚洲男人天堂| 国产91av在线免费观看| 你懂的网址亚洲精品在线观看| 各种免费的搞黄视频| 热99国产精品久久久久久7| 久久人人爽av亚洲精品天堂 | 欧美zozozo另类| 夜夜看夜夜爽夜夜摸| 三级国产精品欧美在线观看| 少妇人妻一区二区三区视频| www.色视频.com| 少妇裸体淫交视频免费看高清| 精品人妻熟女av久视频| 成年av动漫网址| 亚洲av在线观看美女高潮| av黄色大香蕉| 久久久久久久久久成人| 性高湖久久久久久久久免费观看| 最近最新中文字幕大全电影3| 中文字幕制服av| 内地一区二区视频在线| 成人午夜精彩视频在线观看| 看十八女毛片水多多多| 午夜福利在线在线| 亚洲av福利一区| 大片电影免费在线观看免费| 成人亚洲精品一区在线观看 | 亚洲精品一区蜜桃| 在线观看免费高清a一片| 一级毛片我不卡| 国产乱来视频区| 国产69精品久久久久777片| videos熟女内射| 精品亚洲成国产av| 赤兔流量卡办理| 99re6热这里在线精品视频| 欧美激情国产日韩精品一区| 久久精品熟女亚洲av麻豆精品| 国产一区有黄有色的免费视频| av在线app专区| 国产 一区 欧美 日韩| 成人午夜精彩视频在线观看| h日本视频在线播放| av播播在线观看一区| 99久久中文字幕三级久久日本| 噜噜噜噜噜久久久久久91| 美女内射精品一级片tv| 久久99热6这里只有精品| 秋霞伦理黄片| 亚洲精品aⅴ在线观看| 99久久中文字幕三级久久日本| 高清不卡的av网站| 热99国产精品久久久久久7| 免费看日本二区| 99国产精品免费福利视频| 亚洲精品视频女| 精品久久久久久电影网| 亚洲精品国产色婷婷电影| 中文字幕精品免费在线观看视频 | 成人影院久久| 97精品久久久久久久久久精品| tube8黄色片| 伦精品一区二区三区| 亚洲精品乱码久久久v下载方式| 少妇 在线观看| 老熟女久久久| 黄色配什么色好看| 你懂的网址亚洲精品在线观看| xxx大片免费视频| av不卡在线播放| 国产成人精品一,二区| 肉色欧美久久久久久久蜜桃| 99久久精品热视频| 毛片一级片免费看久久久久| 欧美成人午夜免费资源| 国产又色又爽无遮挡免| 这个男人来自地球电影免费观看 | 国产精品人妻久久久影院| 成人特级av手机在线观看| 啦啦啦视频在线资源免费观看| 亚洲精品乱久久久久久| 亚洲激情五月婷婷啪啪| 国产午夜精品久久久久久一区二区三区| 中文精品一卡2卡3卡4更新| 久久99热这里只频精品6学生| 91精品国产九色| 国产毛片在线视频| 国产av精品麻豆| 日韩伦理黄色片| 黄色怎么调成土黄色| 亚洲av免费高清在线观看| videos熟女内射| 久久久久久久久久久免费av| 国产极品天堂在线| 成人黄色视频免费在线看| 国产精品免费大片| 亚洲电影在线观看av| 好男人视频免费观看在线| 色网站视频免费| 免费大片黄手机在线观看| av.在线天堂| 欧美三级亚洲精品| 91久久精品电影网| 深夜a级毛片| 我的女老师完整版在线观看| 国产精品人妻久久久影院| 最近最新中文字幕免费大全7| 亚洲内射少妇av| 精品国产乱码久久久久久小说| 免费看光身美女| 午夜老司机福利剧场| 久久久午夜欧美精品| 亚洲丝袜综合中文字幕| 美女高潮的动态| 国产精品久久久久久av不卡| 老女人水多毛片| 国产精品久久久久久精品电影小说 | 国产精品伦人一区二区| 色视频在线一区二区三区| 成人影院久久| av免费在线看不卡| 九九久久精品国产亚洲av麻豆| 亚洲综合色惰| 欧美精品国产亚洲| 在线亚洲精品国产二区图片欧美 | 亚洲美女视频黄频| 亚洲av福利一区| 久久97久久精品| 在现免费观看毛片| 超碰97精品在线观看| 欧美高清性xxxxhd video| videos熟女内射| 亚洲精华国产精华液的使用体验| 亚洲美女搞黄在线观看| 亚洲国产成人一精品久久久| 中文字幕亚洲精品专区| 2021少妇久久久久久久久久久| 麻豆成人午夜福利视频| 久久精品久久精品一区二区三区| 亚洲国产欧美在线一区| 精品国产乱码久久久久久小说| 美女主播在线视频| 中国三级夫妇交换| 久久人人爽人人爽人人片va| 国产一区二区在线观看日韩| 日韩中字成人| 亚洲av中文av极速乱| 国产精品久久久久成人av| 亚洲国产日韩一区二区| 亚洲精品乱码久久久v下载方式| 少妇的逼好多水| 中文精品一卡2卡3卡4更新| 精品一区二区免费观看| 欧美精品一区二区免费开放| 国内少妇人妻偷人精品xxx网站| 色婷婷av一区二区三区视频| 欧美+日韩+精品| h视频一区二区三区| 国产成人91sexporn| 在线观看免费视频网站a站| 男人爽女人下面视频在线观看| 最近2019中文字幕mv第一页| 国产精品久久久久久av不卡| av免费在线看不卡| 亚洲av国产av综合av卡| 亚洲av欧美aⅴ国产| 成人毛片60女人毛片免费| 久久女婷五月综合色啪小说| 亚洲av电影在线观看一区二区三区| 在线天堂最新版资源| 女性生殖器流出的白浆| 国产成人一区二区在线| 成人综合一区亚洲| 人妻 亚洲 视频| 在线观看免费视频网站a站| 欧美日本视频| 联通29元200g的流量卡| 赤兔流量卡办理| 精品国产一区二区三区久久久樱花 | 亚洲av日韩在线播放| 国产一区有黄有色的免费视频| 国产淫片久久久久久久久| 一级a做视频免费观看| 久久人人爽人人爽人人片va| 又粗又硬又长又爽又黄的视频| 午夜福利高清视频| 少妇高潮的动态图| 色5月婷婷丁香| 午夜老司机福利剧场| 少妇高潮的动态图| 免费黄网站久久成人精品| 亚洲人成网站在线播| 久久国产乱子免费精品| 久久精品国产亚洲网站| 在线观看美女被高潮喷水网站| 精品一区在线观看国产| 亚洲中文av在线| 亚洲第一av免费看| 亚洲国产毛片av蜜桃av| 中文字幕久久专区| 简卡轻食公司| 大又大粗又爽又黄少妇毛片口| av卡一久久| 久久人人爽av亚洲精品天堂 | 啦啦啦啦在线视频资源| 亚洲经典国产精华液单| 少妇裸体淫交视频免费看高清| 免费观看在线日韩| 乱系列少妇在线播放| 亚洲精品国产av成人精品| 亚洲内射少妇av| 国产成人91sexporn| 日韩中文字幕视频在线看片 | 精品国产乱码久久久久久小说| 少妇被粗大猛烈的视频| 亚洲怡红院男人天堂| 国产精品三级大全| 欧美区成人在线视频| 色视频在线一区二区三区| 又粗又硬又长又爽又黄的视频| 国产精品精品国产色婷婷| 18禁在线无遮挡免费观看视频| av女优亚洲男人天堂| 国产美女午夜福利| 大片电影免费在线观看免费| 亚洲自偷自拍三级| 大码成人一级视频| 新久久久久国产一级毛片| 中文字幕制服av| 欧美zozozo另类| 你懂的网址亚洲精品在线观看| 日韩国内少妇激情av| 免费黄网站久久成人精品| 嫩草影院入口| 久久久久精品久久久久真实原创| 精品99又大又爽又粗少妇毛片| 国语对白做爰xxxⅹ性视频网站| 亚洲国产av新网站| xxx大片免费视频| 国内精品宾馆在线| 国产精品蜜桃在线观看| 日日摸夜夜添夜夜添av毛片| 免费观看av网站的网址| 亚洲在久久综合| 蜜桃在线观看..| 亚洲av成人精品一区久久| 日韩视频在线欧美| 成人一区二区视频在线观看| 男人添女人高潮全过程视频| 精品久久久噜噜| 国产av码专区亚洲av| av播播在线观看一区| 日韩三级伦理在线观看| 精品一区在线观看国产| 免费播放大片免费观看视频在线观看| 国产精品无大码| 一边亲一边摸免费视频| 国产精品久久久久久av不卡| 亚洲欧美日韩另类电影网站 | 校园人妻丝袜中文字幕| 亚洲欧美成人精品一区二区| 久久av网站| 精品酒店卫生间| 少妇人妻 视频| 国产一区亚洲一区在线观看| 我要看黄色一级片免费的| 国产精品久久久久久精品电影小说 | av.在线天堂| 亚洲av国产av综合av卡| 国产精品一及| 国精品久久久久久国模美| 免费久久久久久久精品成人欧美视频 | 中文字幕亚洲精品专区| 男女国产视频网站| 日韩,欧美,国产一区二区三区| 综合色丁香网| 亚洲久久久国产精品| 嘟嘟电影网在线观看| 欧美精品亚洲一区二区| 精品人妻熟女av久视频| 91精品国产九色| 尤物成人国产欧美一区二区三区| 久久久久网色| 黄色欧美视频在线观看| 熟女电影av网| 免费观看a级毛片全部| 七月丁香在线播放| 日产精品乱码卡一卡2卡三| 香蕉精品网在线| 国产亚洲av片在线观看秒播厂| 中文在线观看免费www的网站| videos熟女内射| 九九爱精品视频在线观看| 国产色爽女视频免费观看| 欧美bdsm另类| 国产成人精品久久久久久| 波野结衣二区三区在线| 亚洲最大成人中文| 国产高潮美女av| 亚洲av国产av综合av卡| 欧美老熟妇乱子伦牲交| 久久国产精品大桥未久av | 热99国产精品久久久久久7| 少妇的逼水好多| 亚洲人成网站在线播| 国产亚洲一区二区精品| 国产爽快片一区二区三区| 欧美激情国产日韩精品一区| 黄片无遮挡物在线观看| 国产亚洲91精品色在线| 一级二级三级毛片免费看| av国产精品久久久久影院| 久久 成人 亚洲| 黄色视频在线播放观看不卡| 亚洲人成网站高清观看| 免费看不卡的av| 中文字幕av成人在线电影| 欧美国产精品一级二级三级 | 日韩免费高清中文字幕av| 免费大片18禁| 久久久久国产精品人妻一区二区| 联通29元200g的流量卡| 亚洲成人av在线免费| 永久网站在线| 国产伦精品一区二区三区视频9| 国产成人a∨麻豆精品| 国产乱人偷精品视频| 色5月婷婷丁香| 高清黄色对白视频在线免费看 | 精品久久久久久久久亚洲| 日本色播在线视频| 一级二级三级毛片免费看| 嘟嘟电影网在线观看| 亚洲色图av天堂| 成年美女黄网站色视频大全免费 | 日本与韩国留学比较| 亚洲欧美日韩东京热| 国产精品成人在线| 国产视频首页在线观看| av卡一久久| 欧美 日韩 精品 国产| 高清视频免费观看一区二区| 大陆偷拍与自拍| 身体一侧抽搐| 日本色播在线视频| 狂野欧美激情性xxxx在线观看| a 毛片基地| 国产午夜精品一二区理论片| 日韩av不卡免费在线播放| 九九久久精品国产亚洲av麻豆| 九色成人免费人妻av| 国产精品嫩草影院av在线观看| 极品少妇高潮喷水抽搐| av福利片在线观看| 七月丁香在线播放| 插逼视频在线观看| 免费人成在线观看视频色| 秋霞伦理黄片| 日韩视频在线欧美| 欧美日本视频| 99精国产麻豆久久婷婷| 亚洲一区二区三区欧美精品| 精品国产三级普通话版| 久久久久久久精品精品| 久热久热在线精品观看| kizo精华| 亚洲经典国产精华液单| 菩萨蛮人人尽说江南好唐韦庄| 99九九线精品视频在线观看视频| 中文乱码字字幕精品一区二区三区| 久久精品国产亚洲网站| 18禁在线无遮挡免费观看视频| 国产高清有码在线观看视频| 国产亚洲一区二区精品| 人人妻人人看人人澡| 伦理电影大哥的女人| 国产精品蜜桃在线观看| 国产在线男女| av在线蜜桃| 日韩av免费高清视频| 国产综合精华液| 建设人人有责人人尽责人人享有的 | 国产色爽女视频免费观看| 精品亚洲成国产av| 尾随美女入室| 人人妻人人澡人人爽人人夜夜| 日韩中文字幕视频在线看片 | 另类亚洲欧美激情| 国产精品不卡视频一区二区| 亚洲久久久国产精品| 欧美3d第一页| 老女人水多毛片| 欧美三级亚洲精品| 国产综合精华液| 日日啪夜夜爽| 亚洲成人av在线免费| 精品人妻视频免费看| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品一区蜜桃| 国产男女超爽视频在线观看| 九九久久精品国产亚洲av麻豆| av国产精品久久久久影院| 五月伊人婷婷丁香| 免费观看无遮挡的男女| 欧美97在线视频| 国产黄频视频在线观看| 一二三四中文在线观看免费高清| 亚洲精品456在线播放app| 亚洲国产日韩一区二区| 日本wwww免费看| 天天躁日日操中文字幕| 午夜激情福利司机影院| 国产伦理片在线播放av一区| 亚洲精品日韩av片在线观看| 亚洲欧美日韩卡通动漫| 亚洲国产成人一精品久久久| 女性生殖器流出的白浆| 亚洲美女视频黄频| 亚洲经典国产精华液单| 亚洲激情五月婷婷啪啪| 国产免费视频播放在线视频| 性色avwww在线观看| 亚洲精品乱码久久久v下载方式| 日韩欧美一区视频在线观看 | 五月伊人婷婷丁香| 一区二区三区免费毛片| 狠狠精品人妻久久久久久综合| 国产熟女欧美一区二区| 中文欧美无线码| 久久影院123| 美女福利国产在线 | 精品亚洲乱码少妇综合久久| 蜜桃在线观看..| 最黄视频免费看| 菩萨蛮人人尽说江南好唐韦庄| 一个人看视频在线观看www免费| 亚洲精品视频女| 美女xxoo啪啪120秒动态图| 亚洲欧美日韩另类电影网站 | 久久99精品国语久久久| 成人18禁高潮啪啪吃奶动态图 | 熟妇人妻不卡中文字幕| 黄色日韩在线| xxx大片免费视频| 欧美成人精品欧美一级黄| av专区在线播放| 91久久精品电影网| 男女下面进入的视频免费午夜| 亚洲怡红院男人天堂| 日韩av在线免费看完整版不卡| 免费大片18禁| 久久精品国产鲁丝片午夜精品| 麻豆成人av视频| 久久精品久久久久久噜噜老黄| 美女cb高潮喷水在线观看| 午夜免费观看性视频| 只有这里有精品99| 最近手机中文字幕大全| 另类亚洲欧美激情| 黄片wwwwww| 毛片一级片免费看久久久久| 最近最新中文字幕免费大全7| 国模一区二区三区四区视频| 精品亚洲成a人片在线观看 | 久久久欧美国产精品| 精品久久久久久久久亚洲| 简卡轻食公司| 一个人看的www免费观看视频| 一边亲一边摸免费视频| 热re99久久精品国产66热6| 国产精品一区二区在线观看99| 亚洲av中文av极速乱| 欧美日韩一区二区视频在线观看视频在线| 婷婷色麻豆天堂久久| 一级二级三级毛片免费看| 精品久久久噜噜| 亚洲欧美日韩无卡精品| 一本一本综合久久| 国产男女内射视频| 中文字幕亚洲精品专区| 精品一区二区免费观看| 少妇精品久久久久久久| 爱豆传媒免费全集在线观看| 青春草视频在线免费观看| 亚洲国产欧美在线一区| 中文字幕久久专区| 伦理电影免费视频| 久久av网站| 久久97久久精品| 精品99又大又爽又粗少妇毛片| 亚洲丝袜综合中文字幕| 国产亚洲午夜精品一区二区久久| 在线播放无遮挡| 国产免费视频播放在线视频| 制服丝袜香蕉在线| 青春草国产在线视频| 国产一区二区在线观看日韩| 国产亚洲av片在线观看秒播厂| 麻豆国产97在线/欧美| 欧美精品国产亚洲| 午夜免费观看性视频| 在线观看国产h片| 十八禁网站网址无遮挡 | 久久久国产一区二区| 久久久欧美国产精品| 一级毛片久久久久久久久女| 国产一区二区三区综合在线观看 | 麻豆成人午夜福利视频| 久久热精品热| 欧美日韩精品成人综合77777| 18禁动态无遮挡网站| 国产精品无大码| 大片电影免费在线观看免费| 日韩视频在线欧美| 舔av片在线| 大香蕉久久网| 国模一区二区三区四区视频| 亚洲av日韩在线播放| 久久久久国产精品人妻一区二区| av在线观看视频网站免费| 亚洲国产成人一精品久久久| 亚洲精品乱久久久久久| 久久久欧美国产精品| 日日摸夜夜添夜夜爱| av福利片在线观看| 99久久精品国产国产毛片| 蜜臀久久99精品久久宅男| 国产精品蜜桃在线观看| 久久久久久久久大av| 国产免费又黄又爽又色| 最近最新中文字幕免费大全7|