• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Combustion Properties of Metal Particles as Components of Modified Double-Base Propellants

    2018-06-15 04:41:30XiaofeiQiHongyanLiNingYan2YingWang2andXueliChen2XianModernChemistryResearchInstituteXian70065ChinaScienceandTechnologyonCombustionandExplosionLaboratoryXian70065China
    關(guān)鍵詞:磁懸浮列車低能耗電磁力

    Xiaofei Qi, Hongyan Li Ning Yan2, Ying Wang2 and Xueli Chen2(.Xi’an Modern Chemistry Research Institute, Xi’an 70065, China; 2.Science and Technology on Combustion and Explosion Laboratory, Xi’an 70065, China)

    Many practical applications support continuing interest in metal combustion processes[1-2]. Metals like magnesium (Mg) has been studied by many researchers for a long time, and it was proposed in the early research, based on the low boiling point of Mg, that the reaction occurs in the vapor phase[3-4]. Aluminum (Al) particles are added to propellants to boost their combustion, as a prime candidate for high enthalpy fuel and propellant formulations due to its high energy release[5-6]. Although boron (B) is traditionally not considered as a true metal, it seems like a metallic element with high melting point and energy content, and has attracted a considerable research interest in the past 30 years[7-8]. Moreover, nickel (Ni) is widely used in propellants as a catalytic agent, and it might be used to tailor the combustion performance of propellants[9-10].

    Although metals are generally not considered to be flammable materials because of their high ignition temperatures, they burn extremely vigorously once ignition is achieved. In propulsion systems, the combustion of metals typically occurs via small diameter particles, which can be either of micro- or nano-size. One of the most complex aspects of understanding combustion of these propellants is describing the physics of burning metal particles. Burning metal particles is different from hydrocarbons because of the presence of condensed species. The highest temperatures in the flame are associated with localized particle combustion, and a significant amount of the heat release to objects in the flame is due to a particle deposition. The oxidation of the metal particles tends to occur over much longer time scales than the conversion of the primary propellant (oxidizer/binder/catalysts/ plasticizer), during which time the particles are convected away from the burning surface. When burning at elevated pressures, as rocket motors are designed to operate, the propellant burns rapidly and metal particles are probably convected away from the surface as they are exposed. When burning under ambient conditions, as in an accident scenario, the metal particles tend to stay on the surface of the propellant for a period of time without burning. These particles cluster together to form larger agglomerates and are then lofted into the plume, where burning takes place.

    1 Experimental

    1.1 Materials and specimen

    Cyclotrimethylenetrinitramine (RDX, ≥99.6%), nitrocotton (NC, ≥99.5%), nitroglycerine (NG, ≥99.2%), lead phthalate (φ-Pb, >99.5%), cupric 2,4-dihydroxybenzoate (β-Cu, >99.8%), 1,3-dimethyl-1,3-diphenyl urea (C2, ≥99.0%), carbon black (C.B., >99.8%), aluminum (Al, ≥99.8%), nickel (Ni, ≥99.5%), magnesium (Mg, ≥99.5%), boron (B, ≥99.5%) and Mg3Al4alloy (Mg/Al, ≥99.6%) were used as components of modified double-based propellants. The propellants involved in this study differ only in the type of reactive metals, where as other components and their ratios were identical. The composition and physical properties of the samples involved in this research are listed in Tab.1.

    Tab.1 Composition of propellants

    All the samples involved in this investigation were prepared by mould process at the temperature of 35 ℃, solidified for 96 h at 70 ℃, and machined to fixed dimensions (shape: cylinder; length: 200-250 mm; diameter: 5-8 mm).

    1.2 Instruments and experimentation

    1.2.1Surface morphology and particle size distribution

    The surface morphology of metal particles were measured by scanning electron microscopy (SEM) (Model JSM-5800,Japan).

    1.2.2Particle size distribution

    The particle size distribution of the metals was investigated and quantified by Malvern laser granulometer (Britain).

    1.2.3Flame structure analysis

    磁懸浮列車是現(xiàn)代社會(huì)高科技發(fā)展的產(chǎn)物。與普通的輕軌列車相比,它具有低噪音、低能耗、無污染和高速高效的特點(diǎn)。所以長遠(yuǎn)來看,這種新型交通工具具有廣闊的發(fā)展前景。那么磁懸浮列車是如何實(shí)現(xiàn)“若即若離”的基本工作狀態(tài)呢?它主要是利用“同性相斥、異性相吸”的電磁原理,以電磁力來對抗地球的引力,再通過直線電機(jī)的引導(dǎo),使列車能夠在懸浮間隙約1厘米的軌道上正常運(yùn)行。我國從德國購買的第一輛磁懸浮列車于2003年1月開始在上海運(yùn)行。更令人驕傲的是,我國首條磁懸浮線路—長沙磁浮線已經(jīng)成功試車。相信在不久的將來,我國一定會(huì)在這方面取得更大的成就。

    The Thermal Video Systems(China) was used to take photos of the flame at different pressure. A coated sample (dimension 150 mm×5 mm×5 mm) was placed vertically on an ignition rack, and the rack was fixed in a combustion chamber with a vitreous window. The chamber was filled with dynamic nitrogen atmosphere from bottom to top achieving a definite pressure, which ensured the flame transparency in the chamber. A nickel-chrome wire was used to ignite the propellant samples. In this way, the flame pictures were obtained.

    1.2.4Non-contact wavelet-based measurement of flame temperature distribution

    Thermographs make use of the infrared (IR) spectral band of the electromagnetic spectrum. IR involves four bands: near infrared (0.75-3 μm), middle infrared (3-6 μm), far infrared (6-15 μm) and extreme infrared (15-100 μm). Infrared video cameras are passive, i.e. emit no energy, but merely collect thermal radiation emitted from the flame zone. The IR camera used in this paper operates in the far infrared range. When infrared images of the flame were obtained, their source data were input into a software that can calculate and judge the temperature profiles of the flame by different RGB color value.

    2 Results and Discussion

    2.1 Metal particle shape and size

    Fig.1 shows SEM micrographs of five different metal particles related to different preparation routes. It is shown that Al, Ni, B are of spherical shapes, while Mg, Mg/Al are of irregular shape and larger particle size.

    Fig.1 SEM micrographs of the surfaces of different metal particles

    The particle size distribution is one of the important parameters for characterization of quality of metal powders. Tab.2 summarizes the particle size distribution of the metal particles obtained by laser granulometer and reports calculated average diameters. Obviously, the dimension of Al and B coincides with the average particle diameter, which means that all particles are almost monocrystalline. However, in case of Al/Mg alloy and Mg, the particle size is larger (d50>80 μm) and of wider distribution range, while the particle size of B is the smallest, being even at the submicron level (around 0.7 μm).

    Tab.2 Particle size distribution of the metals

    2.2 Flame structure

    Fig.2 Flame structure comparison for propellants at pressure of 1 MPa and 4 MPa

    Fig.2 shows a typical flame structure for the propellants at a pressure of 1 MPa and 4 MPa.p1indicates a low temperature zone, where there is an inert atmosphere instead of a fuel gas;p2shows a spray combustion zone of metal particles, where the flame temperature is extremely high;p3shows the burnout of the metal particles;p4presents incombustible components sprayed from the condensed phase;p5shows severe agglomeration of the metal particles with other components, andp6is the pressure sensor of the testing device. A thin dark zone exists above the burning surface, and a luminous reddish flame appears above the dark zone. For the CMDB, the luminous flame is blown away from the burning surface with a pressure of less than 1 MPa, and the luminous flame gradually approaches the burning surface as the pressure increases. With the incorporation of metal species, the burning process of the propellants becomes quite unstable, showing a wave-shaped flame zone, while the propellant containing nickel exhibits a stable one-dimensional luminous flame. It should be noted that the flame structure of the propellants containing Al and Ni shows nearly a disappearance of dark zones at the pressure of 4 MPa. Specifically, it was found that the flame region of Al-CMDB propellant approaches the liquid surface, leading to an increase in the concentration gradient of Al in the gas phase, which is beneficial for matching the increase of vaporization rate of Al at a higher pressure. On the other hand, the increase in the temperature of the burning surface can accelerate the vaporization rate of Al, which is responsible for accelerating the burning rate of the propellants. Thus far, the combustion behavior of Al at a micrometer scale has been well studied, and the results show large differences with regard to those of B and Mg metal particles, which demonstrate a detached flame structure at a lower pressure.

    Moreover, it is deduced from Fig.2 that different metal particles show considerable differences in both the combustion efficiency and flame structure. As for Al-CMDB and Mg/Al-CMDB propellants, the luminous flame is unstable and heterogeneous, and the distinctive metallic flame (Fig.2-p2) is embedded in the flame matrix zone where the burning rates are relatively higher. However, both B-CMDB and Mg-CMDB show a low combustion efficiency, which is attributed to the unburned metal agglomeration (Fig.2-p3) suspended in the flame zone. In addition, a smoke can be clearly observed in the flame photos of these two kinds of propellants. More details about the flame structure will be theoretically analyzed in the following passages.

    2.3 Flame temperature distributions

    Flame temperature distributions of solid propellants with and without reactive metals are shown in Fig.3 and Fig.4, respectively. “D” refers to the dark zone of the flame composed of a gaseous mixture of thermolysis products, and “F” denotes the uniform flame zone featuring stabilized combustion as well as a homogeneous temperature distribution. “B” in Fig.4 denotes inert gas bubbles in the flame zone where the temperature is extraordinary low, and “Fm” refers to the localized metallic flame. It was found that all the propellants show the combustion waves with multi-flame characteristics, and the unburnt binder layer can be observed in the surface reaction zones. As for the propellants containing Al, Mg and Mg/Al, the hot spots (Fig.2) starting from the ejected metal particles lead to much higher temperature of the flame zone compared with that of CMDB. It is worth noting that the ejected particles in the flame of Al-CMDB and Mg/Al-CMDB propellants show more straight tracks, which is attributed to a higher rate of the generation of gaseous products, leading to generation of a large amount of energy for the ejection of the metal particles. In fact, a large amount of data is available with regard to the combustion process of aluminum based propellants[11-13]. The melting point and boiling point of Al are 933 K and 2 600 K, respectively, while for the oxide, the melting and boiling points are 2 323 K and 3 273 K. In this case, with the increase of temperature, the Al melts first followed by the melting and coalescence of the oxides, which allows the diffusion of Al vapor into the gas phase of the flame, with consequence of the ignition of the metal particles. Consequently, Al particles burn in a gas phase reaction, and the flame front is at a detached distance of 1.5-4.0 times the droplet radius from the droplet surface. The hot oxide products dissociate outward, and Al2O3condenses and forms a smoke cloud that emits thermal radiation at a temperature of 3 036 K, which is shown in Fig.4.

    Fig.3 Temperature distribution for the flames of propellants containing nickel and boron

    Fig.4 Temperature distribution comparison between the flames of propellants containing different metals and a blank propellant at 4 MPa

    The flame temperature of the propellant containing magnesium reaches as high as 3 832 K. This is because the low melting point of magnesium leads to a sufficient release of the latent heat of metals. It should be noted that the propellants containing B and Ni exhibit a homogeneous distribution of the flame temperature, which is much lower than that of the propellants containing Al and Mg (Fig.3). Also, the flame propagation is steady and homogeneous due to the slow process of the energy release. In particular, the Ni-CMDB propellant represents a steady flame with a uniform temperature distribution in the burning process, which makes nickel a promising combustion stabilizer regardless of the slight decrease in the energy.

    As for B-CMDB and Ni-CMDB propellants, both B and Ni exhibit a slower oxidation process compared with Al, Mg and Mg/Al alloy, which is due to the difficulty in exploiting the energy potential of B and Ni. In fact, the oxide coating generated around the B particle would be liquefied at a very low temperature (723 K at 0.1 MPa), which can prevent the B particle from being attacked by the oxidizer, resulting in the ignition delay of the B particle[14]. In addition to the effect of the protective oxide coating, combustion of B and Ni is difficult to achieve due to their high vaporization temperature (4 139 K for B and 3 860 K for Ni at 0.1 MPa), which substantially hinders the vapor phase burning and restricts oxidation, which in turn slows down the heterogeneous surface reactions. During combustion, the condensation of products such as B2O3and NiO is thermodynamically prohibited, especially in the nozzle expansion where the temperature is below the boiling point of the oxide, which facilitates the dissociation of the products. In the presence of oxidizing species such as HCN, CH2O and H2O, originating from the thermolysis of the RDX and NC/NG binder[15], the products change in favor of gas phase species (HBO2, BN), resulting in a lower net energy release, though this may be offset to some extent by the formation of a much lower energy cyclic trimer of HBO2[14].

    3 Hypothetical Physical Model for Metal Particle Combustion

    In the hypothetical combustion model, the metal particles are assumed to be spherical, and coated with a negligibly thin oxide layer. The ignition and combustion modes for single micro-sized particles and agglomeration of nano-sized particles are shown in Fig.5.

    Mode A-a spherical metal particle; Mode B-an agglomeration of metals with less granularity in the modified double-base propellantFig.5 Schematic illustration of two combustion modes

    The combustion modes for a spherical metal particle and a metal agglomeration are shown in Fig.5. It was found that each mode consists of four steps, step 1: liquid RDX and binders enwrap the metal particle; step 2: metal particles absorb heat and start to melt; step 3: the temperature increases fast and the whole metal particle melts and the outer layer starts to vaporize and decompose; step 4: a part of the liquid RDX and binders mix with the liquid metal, and then a high temperature oxidation reaction starts between the metal particle and the oxidants produced by the thermolysis of the RDX and binders. Mode A presents a single spherical metal particle coated with the RDX powder and NC/NG components. An increase in temperature leads to the melting of the RDX and produces an NC/NG foam layer, which is beneficial for the uniform distribution of coatings, as well as the enhancement of the interfacial interaction between the coating layer and the metal particles (step 1). Then, the temperature of the metal particles increases greatly and an acute gas flow sprays into the flame zone as a result of the thermolysis of the liquid RDX and NC/NG (step 2); as the temperature reaches at the melting point of the metal, the metal begins to react with the gaseous oxidant (step 3). The temperature increases up to the boiling points of the metals like Mg, Al and Mg/Al, then the liquid metal particles begin to vaporize, the vaporized metal fuel then diffuses outward and reacts with the internal diffusing oxidizer gas such as CH2O, NO2, N2O and HCN in the diffusion flame (step 4). Mode B represents a similar process, where an agglomerate can be considered as a larger spheric metal particle.

    The oxidation of the metal particles shows a strong dependence on the outer oxide layer, which serves as a cap on the particle surface. The exposed liquid metal particle evaporates and is oxidized in a gaseous cloud around the particle, and the resultant oxides such as Al2O3, B2O3, NiO, MgO undergo a random diffusion to join the cap. The combustion mechanism is closely related to the oxidizer type and pressure, as the phase transition temperature varies a lot with respect to the chemical composition in the atmosphere and pressure. Moreover, the transport phenomenon through the condensed and gas phases further complicates the combustion mechanism. Due to the formation of high temperature condensed-phase products, radiation effects also play a crucial role in the energy conservation of burning particles. Moreover, compatibility of the metal and its products can also affect the combustion behavior and can lead to a disruption or break up of solid metal.

    Hence, the combustion mechanism of a particle is strongly dependent on ambient temperature. When the temperature is higher than the vaporization temperature of the metal, the particle burns through a vapor phase mechanism, although a detached flame cannot be observed because of the fast transport rates in the surrounding environment. When temperature is higher than the melting temperature of the oxide, but lower than the vaporization temperature of the metal, then the oxide can form a cap on the surface due to the surface tension difference between the molten oxide and the metal, which leads to a heterogeneous oxidation at the molten metal surface. At still lower environmental temperatures, the transport of metal and oxygen through the solid oxide shell with a subsequent reaction will dominate.

    4 Conclusions

    The characteristics of metal particles, combustion properties and burning models under different experimental conditions have been studied and discussed in detail. The conclusions could be made as follows.

    ①Observations of the propellant burning process with Ni and Mg show a nearly uniform bright region immediately above the propellant surface, in contrast to large agglomerates of B and Al that leave the surface as discrete isolated particles burning individually at some distance from the surface.

    ②Mg, Al and Mg/Al are excellent energetic components because of their large heat of combustion on either a mass or volume basis. In combustion of Mg, Al, and Mg/Al in propellants, there are both gas phase reactions and surface oxidation resulting in volatile and non volatile products which include oxide and suboxide species. However, for metalloid B and transition metal Ni, there are only gas phase reactions due to a higher melting point.

    ③Combustion of metal particles may cause a condensation of the oxide vapor at the particle surface, releasing the condensation heat that can be directly used by the metal particles for gasification. Spherical metals with higher activity (such as Al and Mg) could burn in an oxidizing environment with an infinitely fast surface reaction.

    [1] Yetter R A, Risha G A, Son S F. Metal particle combustion and nanotechnology[J]. Proceedings of the Combustion Institute, 2009, 32(2):1819-1838.

    [2] Dreizin E L. Phase changes in metal combustion[J]. Progress in Energy & Combustion Science, 2000, 26(1):57-78.

    [3] Shoshin Y L, Mudryy R S, Dreizin E L. Preparation and characterization of energetic Al-Mg mechanical alloy powders[J]. Combustion & Flame, 2002, 128(3):259-269.

    [4] Dreizin E L, Hoffmann V K. Constant pressure combustion of aerosol of coarse magnesium particles in microgravity[J]. Combustion & Flame, 1999, 118(1-2):262-280.

    [5] Chen Y, Guildenbecher D R, Hoffmeister K N G, et al. Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry[J]. Combustion & Flame, 2017(182):225-237.

    [6] Poryazov V A, Krainov A Y. Combustion of the solid propellant with addition of aluminum powder under an acceleration load[J]. Tomsk State University, 2017(45):95-103.

    [7] Liu T K, Luh S P, Perng H C. Effect of boron particle surface coating on combustion of solid propellants for ducted rockets[J]. Propellants Explosives Pyrotechnics, 1991, 16(4):156-166.

    [8] Korotkikh A G, Glotov O G, Arkhipov V A, et al. Effect of iron and boron ultrafine powders on combustion of aluminized solid propellants[J]. Combustion & Flame, 2017(178):195-204.

    [9] Liang M A, Chen J B, Zheng W, et al. Effects of nickel powder on the combustion performance of RDX-CMDB propellant[J]. Initiators & Pyrotechnics, 2015(4):47-49.

    [10] Jiang Z, Shu-Fen L I, Kai L I, et al. Research on the ignition and combustion properties of composite propellant containing nano metal powders[J]. Journal of Solid Rocket Technology, 2004, 27(2):117-120.

    [11] Fedorov A V, Kharlamova Y V. Ignition of an aluminum particle[J]. Combustion, Explosion, and Shock Waves, 2003, 39(5):544-547.

    [12] Dreizin E L. On the mechanism of asymmetric aluminum particle combustion[J]. Combustion & Flame, 1999, 117(4):841-850.

    [13] Dreizin E L. Experimental study of aluminum particle flame evolution in normal and micro-gravity[J]. Combustion & Flame, 1999, 116(3):323-333.

    [14] Dreizin E L, Keil D G, Felder W, et al. Phase changes in boron ignition and combustion[J]. Combustion & Flame, 1999, 119(3):272-290.

    [15] Yan Q L, Li X J, Wang Y, et al. Combustion mechanism of double-base propellant containing nitrogen heterocyclic nitroamines (I): The effect of heat and mass transfer to the burning characteristics[J]. Combustion & Flame, 2009, 156(3):633-641.

    猜你喜歡
    磁懸浮列車低能耗電磁力
    低能耗建筑和綠色,節(jié)能建材會(huì)再上層樓
    貼地飛行器——磁懸浮列車
    對真空及電磁波傳播機(jī)理的重新認(rèn)識
    電子測試(2021年23期)2022-01-22 09:23:56
    風(fēng)馳電掣
    ——磁懸浮列車穩(wěn)步發(fā)展
    工程(2021年7期)2021-12-30 06:55:22
    某型異步感應(yīng)電機(jī)電磁力計(jì)算及分析
    低能耗城市污水處理工藝分析
    被動(dòng)式低能耗建造技術(shù)探析
    江西建材(2018年2期)2018-04-14 08:00:21
    時(shí)速600千米磁懸浮列車真的來啦!
    八鋼燒結(jié)低能耗低排放低成本運(yùn)營實(shí)踐
    新疆鋼鐵(2016年3期)2016-02-28 19:18:52
    被動(dòng)電磁裝甲對金屬射流箍縮電磁力的計(jì)算及驗(yàn)證
    另类亚洲欧美激情| 午夜老司机福利片| 最近最新中文字幕大全电影3 | 亚洲全国av大片| 热99久久久久精品小说推荐| 99国产精品一区二区蜜桃av | 一区二区日韩欧美中文字幕| 大陆偷拍与自拍| 国产av又大| 91大片在线观看| 亚洲色图av天堂| 久久精品国产a三级三级三级| 亚洲成人国产一区在线观看| 久久久久久久精品吃奶| 亚洲精品国产一区二区精华液| 亚洲中文日韩欧美视频| 婷婷精品国产亚洲av在线 | 午夜福利影视在线免费观看| 成人av一区二区三区在线看| 免费在线观看完整版高清| 久久久久久久久久久久大奶| 欧美成人免费av一区二区三区 | 老汉色av国产亚洲站长工具| 色精品久久人妻99蜜桃| 成人18禁在线播放| 中文亚洲av片在线观看爽 | 一级毛片女人18水好多| 亚洲专区中文字幕在线| 亚洲av日韩精品久久久久久密| 久久精品91无色码中文字幕| av网站在线播放免费| 日韩免费高清中文字幕av| 精品电影一区二区在线| 国产亚洲精品一区二区www | 亚洲专区中文字幕在线| 国产精品电影一区二区三区 | 日本精品一区二区三区蜜桃| 亚洲av成人av| 视频区欧美日本亚洲| 啦啦啦 在线观看视频| 亚洲午夜精品一区,二区,三区| 9191精品国产免费久久| 国产精品一区二区免费欧美| 精品无人区乱码1区二区| 亚洲精品乱久久久久久| 国产97色在线日韩免费| 黄色怎么调成土黄色| 亚洲va日本ⅴa欧美va伊人久久| 日本黄色视频三级网站网址 | 日韩大码丰满熟妇| 很黄的视频免费| 中文字幕最新亚洲高清| 国产精品久久电影中文字幕 | 看黄色毛片网站| 精品久久久久久久久久免费视频 | 欧美乱妇无乱码| 香蕉国产在线看| 久久香蕉激情| 日本wwww免费看| 自拍欧美九色日韩亚洲蝌蚪91| 成熟少妇高潮喷水视频| 法律面前人人平等表现在哪些方面| 视频区图区小说| 欧美亚洲 丝袜 人妻 在线| 久久99一区二区三区| 日本精品一区二区三区蜜桃| 欧美激情 高清一区二区三区| 国产高清激情床上av| 在线观看免费视频网站a站| 久久精品国产亚洲av香蕉五月 | 校园春色视频在线观看| 久久久久久久午夜电影 | 9色porny在线观看| 亚洲一区二区三区欧美精品| 亚洲五月婷婷丁香| av片东京热男人的天堂| 精品一区二区三区av网在线观看| 无限看片的www在线观看| 精品电影一区二区在线| avwww免费| 亚洲精品国产精品久久久不卡| 性色av乱码一区二区三区2| 久久精品成人免费网站| 在线观看免费午夜福利视频| 国产高清国产精品国产三级| 免费一级毛片在线播放高清视频 | 视频在线观看一区二区三区| 99香蕉大伊视频| 国产成人av教育| 日韩制服丝袜自拍偷拍| 飞空精品影院首页| 欧美日韩av久久| 国产亚洲精品第一综合不卡| 国产免费现黄频在线看| 中文字幕人妻熟女乱码| 欧美成人免费av一区二区三区 | 国产片内射在线| 少妇猛男粗大的猛烈进出视频| 国产成+人综合+亚洲专区| 精品久久久精品久久久| 亚洲人成伊人成综合网2020| 亚洲全国av大片| 少妇 在线观看| 精品视频人人做人人爽| 一夜夜www| 精品久久久久久电影网| 亚洲欧美日韩高清在线视频| 在线十欧美十亚洲十日本专区| 色综合婷婷激情| www.精华液| 亚洲av片天天在线观看| 超碰成人久久| 一边摸一边抽搐一进一出视频| 久久人妻熟女aⅴ| 人人妻人人澡人人爽人人夜夜| 国产精品久久久久久人妻精品电影| 国产成人欧美在线观看 | 亚洲视频免费观看视频| 欧美精品人与动牲交sv欧美| 精品午夜福利视频在线观看一区| 日日爽夜夜爽网站| 69av精品久久久久久| 免费在线观看亚洲国产| av天堂久久9| 韩国av一区二区三区四区| 欧美乱色亚洲激情| 美国免费a级毛片| 最新的欧美精品一区二区| 99热国产这里只有精品6| 亚洲欧洲精品一区二区精品久久久| 淫妇啪啪啪对白视频| 午夜两性在线视频| 在线永久观看黄色视频| 亚洲精品自拍成人| 亚洲精品国产色婷婷电影| 又黄又爽又免费观看的视频| 国产成人系列免费观看| 叶爱在线成人免费视频播放| bbb黄色大片| 日日夜夜操网爽| 亚洲欧美日韩另类电影网站| 建设人人有责人人尽责人人享有的| 精品人妻1区二区| 日韩成人在线观看一区二区三区| 宅男免费午夜| 国产男女超爽视频在线观看| 日韩三级视频一区二区三区| av天堂在线播放| 另类亚洲欧美激情| 成人亚洲精品一区在线观看| 后天国语完整版免费观看| 黑人欧美特级aaaaaa片| 精品国产超薄肉色丝袜足j| 高清视频免费观看一区二区| 亚洲人成电影观看| 久久人妻av系列| 欧美日韩av久久| 在线观看一区二区三区激情| a级片在线免费高清观看视频| 国产欧美亚洲国产| 久久亚洲真实| 在线观看免费日韩欧美大片| 精品欧美一区二区三区在线| 看免费av毛片| 欧美人与性动交α欧美软件| 国产高清视频在线播放一区| 黄网站色视频无遮挡免费观看| 国产男靠女视频免费网站| 国产成人精品在线电影| 精品熟女少妇八av免费久了| 亚洲在线自拍视频| 激情在线观看视频在线高清 | 黄频高清免费视频| 狂野欧美激情性xxxx| 美女福利国产在线| 国产精品99久久99久久久不卡| 777久久人妻少妇嫩草av网站| 欧美成人免费av一区二区三区 | 国产亚洲欧美98| 欧美精品av麻豆av| 搡老熟女国产l中国老女人| 亚洲色图av天堂| 黄色女人牲交| 如日韩欧美国产精品一区二区三区| av国产精品久久久久影院| 人人妻,人人澡人人爽秒播| 国产伦人伦偷精品视频| 欧美另类亚洲清纯唯美| 午夜两性在线视频| 宅男免费午夜| 午夜精品久久久久久毛片777| 国产成人免费无遮挡视频| 欧美亚洲日本最大视频资源| 久久天堂一区二区三区四区| 91av网站免费观看| e午夜精品久久久久久久| 国产亚洲欧美精品永久| 男女床上黄色一级片免费看| 精品国产乱码久久久久久男人| 亚洲色图 男人天堂 中文字幕| 国产精品欧美亚洲77777| 丝袜美足系列| 亚洲成人免费电影在线观看| 成人国产一区最新在线观看| 国产高清激情床上av| 天天添夜夜摸| 国产成人一区二区三区免费视频网站| 大片电影免费在线观看免费| 久久影院123| 狠狠婷婷综合久久久久久88av| 欧美av亚洲av综合av国产av| 久久精品人人爽人人爽视色| 午夜精品久久久久久毛片777| 男女高潮啪啪啪动态图| 国产视频一区二区在线看| 一本一本久久a久久精品综合妖精| 这个男人来自地球电影免费观看| 老司机福利观看| 精品福利观看| 久久精品国产亚洲av香蕉五月 | www.精华液| 久久国产亚洲av麻豆专区| 老司机午夜十八禁免费视频| 久久天躁狠狠躁夜夜2o2o| 免费久久久久久久精品成人欧美视频| 亚洲专区国产一区二区| 午夜福利一区二区在线看| 日韩欧美免费精品| 少妇的丰满在线观看| 午夜激情av网站| 久久国产精品男人的天堂亚洲| 国产精品一区二区在线观看99| 精品午夜福利视频在线观看一区| 水蜜桃什么品种好| 久久中文看片网| 啦啦啦 在线观看视频| 在线观看一区二区三区激情| 9191精品国产免费久久| 亚洲精品中文字幕在线视频| 亚洲久久久国产精品| 在线观看免费日韩欧美大片| 美国免费a级毛片| 在线观看免费视频网站a站| 免费观看a级毛片全部| 日韩免费高清中文字幕av| 亚洲国产看品久久| 黄片大片在线免费观看| 国产1区2区3区精品| 国产精品影院久久| 大型av网站在线播放| www.熟女人妻精品国产| 国产99白浆流出| 国产精品二区激情视频| 午夜精品在线福利| 高潮久久久久久久久久久不卡| 精品少妇一区二区三区视频日本电影| 免费久久久久久久精品成人欧美视频| 国产成人一区二区三区免费视频网站| 国产成人av激情在线播放| 纯流量卡能插随身wifi吗| 天堂√8在线中文| 国产精华一区二区三区| 极品人妻少妇av视频| 亚洲在线自拍视频| 丰满饥渴人妻一区二区三| 热99久久久久精品小说推荐| 最近最新免费中文字幕在线| 欧美久久黑人一区二区| 不卡一级毛片| 久久天堂一区二区三区四区| 国产精品成人在线| 在线国产一区二区在线| 村上凉子中文字幕在线| 国产成人精品无人区| 无人区码免费观看不卡| 欧美黄色淫秽网站| 日韩人妻精品一区2区三区| 国内毛片毛片毛片毛片毛片| 大陆偷拍与自拍| 国产精品秋霞免费鲁丝片| 国产1区2区3区精品| 老熟女久久久| 国产精品自产拍在线观看55亚洲 | www日本在线高清视频| 日韩成人在线观看一区二区三区| 99精国产麻豆久久婷婷| 91av网站免费观看| 国产麻豆69| 免费一级毛片在线播放高清视频 | 波多野结衣一区麻豆| 国产精品亚洲av一区麻豆| 国产免费男女视频| 一区福利在线观看| 69av精品久久久久久| 精品国产乱子伦一区二区三区| 久久人人97超碰香蕉20202| 黑丝袜美女国产一区| 亚洲一区高清亚洲精品| 亚洲自偷自拍图片 自拍| 国产不卡一卡二| 18禁裸乳无遮挡免费网站照片 | 露出奶头的视频| 无遮挡黄片免费观看| 亚洲一码二码三码区别大吗| 丰满人妻熟妇乱又伦精品不卡| 丰满饥渴人妻一区二区三| 99精品欧美一区二区三区四区| tocl精华| 黄色毛片三级朝国网站| 亚洲伊人色综图| 大陆偷拍与自拍| 亚洲欧美激情综合另类| 精品国产乱码久久久久久男人| 久久这里只有精品19| 天天操日日干夜夜撸| 亚洲成a人片在线一区二区| 在线观看免费高清a一片| 国产无遮挡羞羞视频在线观看| 一本一本久久a久久精品综合妖精| 两性夫妻黄色片| 精品国产乱子伦一区二区三区| 亚洲五月色婷婷综合| 99在线人妻在线中文字幕 | 50天的宝宝边吃奶边哭怎么回事| 飞空精品影院首页| 狠狠婷婷综合久久久久久88av| 欧美另类亚洲清纯唯美| 亚洲精品成人av观看孕妇| 欧美黄色片欧美黄色片| 国产高清激情床上av| 亚洲国产毛片av蜜桃av| 麻豆av在线久日| 亚洲色图综合在线观看| 亚洲国产毛片av蜜桃av| 亚洲五月天丁香| 中文字幕av电影在线播放| 极品少妇高潮喷水抽搐| 国产有黄有色有爽视频| 亚洲第一欧美日韩一区二区三区| 久久精品亚洲精品国产色婷小说| 男女午夜视频在线观看| www.999成人在线观看| 国产av又大| 少妇猛男粗大的猛烈进出视频| 高清欧美精品videossex| 国产一卡二卡三卡精品| 免费在线观看黄色视频的| 天天躁日日躁夜夜躁夜夜| 国产日韩欧美亚洲二区| 黑人操中国人逼视频| 国产精品影院久久| 久久久久国内视频| netflix在线观看网站| 宅男免费午夜| 女人被狂操c到高潮| 女同久久另类99精品国产91| 日本精品一区二区三区蜜桃| 亚洲精品国产一区二区精华液| 精品视频人人做人人爽| 亚洲av欧美aⅴ国产| 亚洲情色 制服丝袜| av中文乱码字幕在线| 如日韩欧美国产精品一区二区三区| 又黄又爽又免费观看的视频| 亚洲久久久国产精品| √禁漫天堂资源中文www| 国产欧美日韩一区二区三区在线| 国产精品女同一区二区软件 | 变态另类成人亚洲欧美熟女| 色综合亚洲欧美另类图片| 色视频www国产| 三级男女做爰猛烈吃奶摸视频| www.色视频.com| 久久精品国产自在天天线| 国产一区二区三区在线臀色熟女| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利在线在线| 丝袜美腿在线中文| 欧美一级a爱片免费观看看| 搡老岳熟女国产| 很黄的视频免费| 人妻夜夜爽99麻豆av| 99国产精品一区二区蜜桃av| 国产亚洲精品av在线| 亚洲精品国产精品久久久不卡| 亚洲精品乱码久久久v下载方式 | 乱人视频在线观看| www.熟女人妻精品国产| 亚洲成人精品中文字幕电影| 午夜激情福利司机影院| 一区二区三区激情视频| 国产一区二区在线av高清观看| 国产精品久久电影中文字幕| 男女午夜视频在线观看| 免费看美女性在线毛片视频| 日本三级黄在线观看| 男人舔奶头视频| 老汉色av国产亚洲站长工具| 日本黄色片子视频| 人妻夜夜爽99麻豆av| av视频在线观看入口| 99热精品在线国产| 欧美在线黄色| 嫩草影院精品99| 精品免费久久久久久久清纯| 国产欧美日韩精品一区二区| 精品国产三级普通话版| 亚洲一区高清亚洲精品| 国内少妇人妻偷人精品xxx网站| 99久久无色码亚洲精品果冻| 一本综合久久免费| 国产一区二区亚洲精品在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产精品综合久久久久久久免费| 俺也久久电影网| 白带黄色成豆腐渣| 女生性感内裤真人,穿戴方法视频| 国产在线精品亚洲第一网站| 久久精品国产自在天天线| e午夜精品久久久久久久| 婷婷精品国产亚洲av| 深夜精品福利| 欧美中文综合在线视频| 在线视频色国产色| 在线观看免费午夜福利视频| 又粗又爽又猛毛片免费看| av天堂在线播放| 母亲3免费完整高清在线观看| 麻豆一二三区av精品| 色在线成人网| 99在线视频只有这里精品首页| 日本熟妇午夜| 88av欧美| 午夜激情福利司机影院| 欧美日韩瑟瑟在线播放| 久久精品影院6| 国产亚洲欧美98| 悠悠久久av| 午夜福利在线观看吧| 看片在线看免费视频| 国产真人三级小视频在线观看| 久9热在线精品视频| h日本视频在线播放| 亚洲国产欧美人成| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 噜噜噜噜噜久久久久久91| 夜夜躁狠狠躁天天躁| av欧美777| 非洲黑人性xxxx精品又粗又长| 波野结衣二区三区在线 | 乱人视频在线观看| 精品午夜福利视频在线观看一区| 精品国产超薄肉色丝袜足j| 搡老妇女老女人老熟妇| 日本一本二区三区精品| 日本与韩国留学比较| 一边摸一边抽搐一进一小说| 在线播放无遮挡| 久久99热这里只有精品18| 一本一本综合久久| 久久久久国产精品人妻aⅴ院| 波多野结衣高清作品| 又爽又黄无遮挡网站| 日韩人妻高清精品专区| 欧美成人性av电影在线观看| 黄色丝袜av网址大全| 中文字幕人成人乱码亚洲影| 久久久国产成人精品二区| 成人国产一区最新在线观看| 亚洲精品影视一区二区三区av| 老司机深夜福利视频在线观看| 国产三级中文精品| 麻豆国产av国片精品| 夜夜看夜夜爽夜夜摸| 中国美女看黄片| 欧美最新免费一区二区三区 | 国产亚洲精品综合一区在线观看| www.999成人在线观看| 欧美大码av| www.色视频.com| 99久久综合精品五月天人人| 一进一出抽搐gif免费好疼| 国产精华一区二区三区| 国产爱豆传媒在线观看| 特大巨黑吊av在线直播| 亚洲,欧美精品.| 精品久久久久久久人妻蜜臀av| 18禁美女被吸乳视频| 麻豆成人av在线观看| 国产精品美女特级片免费视频播放器| 无遮挡黄片免费观看| 级片在线观看| 亚洲av日韩精品久久久久久密| 老司机深夜福利视频在线观看| 99riav亚洲国产免费| 每晚都被弄得嗷嗷叫到高潮| 中出人妻视频一区二区| 中文字幕人妻丝袜一区二区| 色综合婷婷激情| 母亲3免费完整高清在线观看| 欧美成人免费av一区二区三区| 国产真人三级小视频在线观看| 日本一本二区三区精品| 一个人免费在线观看的高清视频| 久久久久国产精品人妻aⅴ院| 久久午夜亚洲精品久久| 日韩成人在线观看一区二区三区| xxx96com| 日韩欧美免费精品| 动漫黄色视频在线观看| 欧美3d第一页| 色吧在线观看| netflix在线观看网站| 久久精品91无色码中文字幕| 男人舔奶头视频| 国产久久久一区二区三区| 国产三级黄色录像| 日韩精品中文字幕看吧| 国产真实乱freesex| www日本黄色视频网| 国内精品久久久久精免费| 日本免费a在线| 欧美三级亚洲精品| 又爽又黄无遮挡网站| 岛国视频午夜一区免费看| 国产午夜精品论理片| a在线观看视频网站| av天堂在线播放| 中文字幕人妻熟人妻熟丝袜美 | 国产亚洲精品av在线| 18美女黄网站色大片免费观看| 国产三级中文精品| 国产av一区在线观看免费| 综合色av麻豆| 国产黄片美女视频| 亚洲成人久久爱视频| 中文字幕人成人乱码亚洲影| 国产欧美日韩精品一区二区| 免费人成视频x8x8入口观看| 一区二区三区高清视频在线| 精品99又大又爽又粗少妇毛片 | 日韩欧美三级三区| 欧美乱色亚洲激情| 久久午夜亚洲精品久久| 啦啦啦免费观看视频1| 欧美一级a爱片免费观看看| 18禁美女被吸乳视频| 人妻夜夜爽99麻豆av| 人妻久久中文字幕网| 亚洲精品国产精品久久久不卡| 亚洲av五月六月丁香网| 久99久视频精品免费| 国产主播在线观看一区二区| 国产激情偷乱视频一区二区| 色播亚洲综合网| 国产三级中文精品| 中文字幕人妻熟人妻熟丝袜美 | 九九在线视频观看精品| 成人鲁丝片一二三区免费| 日韩欧美三级三区| 亚洲va日本ⅴa欧美va伊人久久| 国产淫片久久久久久久久 | 99在线人妻在线中文字幕| 婷婷亚洲欧美| 非洲黑人性xxxx精品又粗又长| 午夜免费观看网址| 又黄又粗又硬又大视频| 午夜精品在线福利| av国产免费在线观看| 国产av麻豆久久久久久久| 亚洲精华国产精华精| 99国产极品粉嫩在线观看| 中文在线观看免费www的网站| 免费观看人在逋| 免费在线观看影片大全网站| 日韩欧美在线二视频| 亚洲无线在线观看| 欧美区成人在线视频| 国产成人欧美在线观看| 亚洲av成人av| 网址你懂的国产日韩在线| 亚洲欧美激情综合另类| 日本精品一区二区三区蜜桃| 手机成人av网站| 热99re8久久精品国产| 香蕉av资源在线| 国产伦一二天堂av在线观看| 久久午夜亚洲精品久久| 热99在线观看视频| 久久久久免费精品人妻一区二区| 禁无遮挡网站| 最新中文字幕久久久久| 久久精品国产综合久久久| 男人和女人高潮做爰伦理| 男女下面进入的视频免费午夜| 18+在线观看网站| 免费观看的影片在线观看| 国产一区二区在线观看日韩 | 国产高清视频在线观看网站| 内射极品少妇av片p| 成人性生交大片免费视频hd| 国产精品久久久久久精品电影| 特级一级黄色大片| 毛片女人毛片| 亚洲美女黄片视频| 亚洲欧美日韩高清在线视频| 欧美激情在线99| 亚洲精品一区av在线观看| 国产探花在线观看一区二区| 欧美xxxx黑人xx丫x性爽| 村上凉子中文字幕在线| 中文字幕久久专区| 久久6这里有精品| 欧美+亚洲+日韩+国产| 99久久成人亚洲精品观看|