• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Estimation of Thermal Imaging System Operating Range Based on Background Radiation

    2018-06-15 04:41:10TingzhuBaiLongShaoHengHeandPeishanSongSchoolofOptoelectronicsBeijingInstituteofTechnologyBeijing100081China

    Tingzhu Bai, Long Shao, Heng He and Peishan Song(School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China)

    Thermal imaging measures the infrared radiation difference between a target and a background,for target detection. It has been used in battle-fields widely because of its advantages[1]. In real combat situations, the operating range of the infrared thermal imaging system to different targets[2]is an important detail that a battlefield commander must be well-informed when making decisions.But target combat distances are vulnerable to weather conditions. The determination of background radiance[3]plays an important role in the prediction of the operating range.

    1 Traditional Operating Range Equation

    Traditional operating range models[4]use following equations as

    (1)

    wherefis the target spatial frequency,his the target height,Neis the number of equivalent stripes (half-cycles) which are required to discover, locate, identify, and recognize targets according to Johnson’s criteria, ΔTis the temperature difference between a target and a background of the thermal imaging system entrance pupil, MRTD(f) stands for minimum resolvable temperature difference (MRTD) of a thermal imaging system, andRis the operating range which can be obtained from these equations. ΔTcan be calculated using the following equation as

    ΔT=ΔT0τ(R)

    (2)

    where ΔT0is the temperature difference between a target and a background at zero-line-of-sight,τ(R) is the average atmospheric transmittance of an imaging path.

    However, increasing temperature difference would increase the error of the calculation by using Eq.(2) in the process of target detection[5]. Therefore, in 2015, He Heng in Beijing Institute of Technology revised the traditional operating range prediction formula. A distance prediction model in an infrared imaging system based on the difference of radiative emission is proposed without theoretical error[6]. This formula can describe the physical process of infrared radiation energy transfer with

    (3)

    where ΔMis the difference of radiative emission between a target and a background of the entrance pupil, and ΔMMRTD(f)is the minimum resolvable radiance difference of the thermal imaging system, which is given by

    (4)

    whereD*(λ) is the peak ratio detection rate, andTSis the room temperature, generally taking 300 K.

    However, the traditional operating range Eq.(1) and Eq.(3) cannot explain the influence of atmospheric radiance well[7]. In order to analyze the effects of atmospheric radiation attenuation and atmospheric radiance to the operating range, this paper proposes an operating range model based on image background radiances (REBR).

    2 Atmospheric Radiance Effects

    Although the traditional operating range formulas use temperature difference to measure the operating range, the equations are consistent with radiative emission. According to Eq. (3), the operating rangeRcan be calculated from the difference of the radiative emission as

    (5)

    ΔM=ΔM0τ(R) is used to calculate the radiation difference between the target and background of the system entrance pupil. The assumption for this equation is that the target should be at the same distance as the background since the atmospheric radiance of the target and background is equal. But in a real-world scenario, the distances of a target and a background are generally not the same, so the corresponding atmospheric radiance values are not equal.

    The difference of radiative emission between a target and a background of the entrance pupil can be obtained by

    ΔM=Mt-Mb

    (6)

    MtandMbis calculated by

    (7)

    whereMRtandMRbare atmospheric radiance on target and background paths, respectively. Since theMRtandMRbare not equal in real condition, the actual contrast between the target and the background will be smaller than the theoretical value of the traditional method. Thus, the actual operating range value should be smaller than the traditional operating range value.

    3 Modification of Operating Range Equation

    The difference of radiative emission between the target and the background of the entrance pupil should be greater than or equal to ΔMMRTD(f), and the angle of the target to the system should be greater than or equal to the minimum viewing angle required by the detection level. However, this process does not take atmospheric radiance of the target and background into account. From Eq.(7), it can be gotten that the difference in the radiative emission truly reflects the influence of atmospheric transmission, given by

    ΔM=[τ(Rt)Mt0+MRt]-[τ(Rb)Mb0+MRb]

    (8)

    whereτ(Rt),τ(Rb) are the atmospheric transmittance value on the target and background path, respectively,Mt0,Mb0are the radiation value of the target and background at zero line-of-sight, respectively.

    In real environment, the distance between background of the target and the infrared detector is difficult to be measured. Therefore, in Eq.(8),τ(Rb) andMRbis difficult to be calculated by the program MODTRAN, and the zero line-of-sight background radiative emission valueMb0cannot be accurately calculated. Thus, the background radiance value in the entrance pupilMbcannot be calculated by common computer software program.

    The raw data (14 bit data) that was collected by the infrared thermal imager reflected the real response of the detector to the infrared radiation.Hence, the system entrance pupil radiation spatial distribution can be obtained by the 14 bit data of infrared thermal imager. In the operating range estimation, it is often used to predict the operating range of different types and sizes of objects in a given scene. We can obtain the spatial distribution of the background radiance of the system entrance pupil from 14 bit raw data. The operating range equation based on the background radiance is obtained as

    (9)

    The meaning of Eq.(9) is as follows: radiation of the target at zero line-of-sightMt0is attenuated by the atmosphere over the distanceRt, the radiation difference between the target and the background of the entrance pupil is exactly equal to the minimum resolvable radiation difference ΔMMRTD(f), and corresponds to the spatial frequency of the target,Ris the operating range value that can be obtained from Eq.(9).

    4 Solution of the Background Radiation in Entrance Pupil

    It can be seen from the above analysis that the key to solve Eq.(9) is to find the entrance pupil background radiance valueMb.

    In this section, we propose a computational method based on infrared radiometric calibration[8]to calculateMb. The target in the sea-sky background usually appears in the sky, the sea-sky antenna,or the sea surface.

    Firstly, the sea-sky antenna is found in the image which will be used as the criterion to determine the size of the background area. Secondly, the average gray value of the background area is obtained. Finally, the background radiance value with the radiation calibration data and average gray value can be deduced.

    4.1 Adaptive Canny operator and Hough transform method to detect sea-sky antenna

    The sea-sky antenna is similar to the separation of the sky and the sea line when observing the sea from a long distance, thus the detection of the sea-sky antenna is equivalent to detecting the edge line under strong background noise in the sky and the sea surface. In this study, the Hough transform method is used to detect the sea-sky antenna. However, if the Hough transform method is directly performed on the original image, the computational value is too large and the sea-sky antenna cannot be detected accurately due to the influence of the noise. Therefore, the Canny edge detection algorithm is used in the first place when encountering this problem[9].

    4.1.1Advanced adaptive Canny algorithm[10]

    Traditional Canny algorithm[11]has the following limitations: Gaussian filter smoothing noise will make the edge fuzzy, non-maxima suppression is only using a single point of comparison to determine the local maximum point, which is more sensitive to noise and not accurate. The threshold in the binarization process needs to be determined artificially while the adaptability is not enough. Therefore, the traditional Canny algorithm is improved in the following ways.

    ① Image smoothing

    In order to reduce the impact of the background noise, a filter should be used to smooth the noise. Median filter[12]can protect the edge while filtering out the noise, the algorithm is simple and easy to implement. So the Gaussian filter is replaced by the Median filter.

    ② Sobel operator edge detection

    The Sobel operator[13]is the edge detection operator of the first derivative. The third-order template is shown in Fig. 1. During the algorithm realization, the 3×3 template is used as the convolution sum of each pixel in the kernel and image, and then the appropriate threshold is selected to extract the edge.

    Fig.1 Pixel of Sobel operator template

    The value of the template is

    (10)

    When the image is convoluted by using the Sobel operator template, the difference in the horizontal direction is

    fh=2G(x,y+1)-2G(x,y-1)+
    G(x-1,y+1)-G(x-1,y-1)+
    G(x+1,y+1)-G(x+1,y-1)

    (11)

    The vertical difference is

    fv=2G(x+1,y)-2G(x-1,y)+
    G(x+1,y+1)-G(x-1,y+1)+
    G(x+1,y-1)-G(x-1,y-1)

    (12)

    The resulting gradient amplitude and gradient direction are

    (13)

    (14)

    The first-order partial derivatives of the horizontal, vertical, 45° and 135° directions around the center pointG(x,y) are

    (15)

    After the appropriate combination of Eqs.(11)-(15) we can obtain

    (16)

    The Sobel operator takes into account the first-order partial derivative of the horizontal, vertical, 45°and 135°directions. This makes the Sobel operator capable for both the localization accuracy and the noise suppression requirement in the edge detection.

    ③ Non-maxima suppression

    The interpolation method is used to obtain the amplitude in the gradient direction. The interpolation result is compared with the current point, and it is judged whether the current point is the local maximum point.

    Interpolation point selection principle is[10]: select two points in the gradient direction to interpolate and compare, the gradient direction is determined by the absolute value of the vertical deflectionfvand the horizontal deflectionfhof each point. Suppose 0 is the current pixel,G1,G2,G3,G4are the points used for interpolation, when the vertical deflection is greater than the horizontal deflection, the gradient direction will be closer to the vertical direction, thus the point of the horizontal direction in the upper and lower rows of this pixel is used to execute interpolation,with the scale factor ofw=|fh/fv|. When the horizontal deflection is greater than the vertical deflection, the gradient direction will be closer to the horizontal direction, thus the point of vertical direction in the left and right rows of this pixel is used to execute interpolation, with the scale factor ofw=|fv/fh|.

    From the method introduced above, we will obtain the interpolation point as

    (17)

    whereM(Gi) is the pixel value of the pointGi. IfM(G)≥v1andM(G)≥v2,M(G) is the maximum point, otherwise it is a non-maximum point.

    ④ Dual threshold binarization

    The threshold selection in the conventional dual-threshold binarization method[14]is generally based on a large number of experiments to select a suitable threshold, but this method is not suitable here. Therefore, OSTU algorithm[15]is used for the threshold selection in this paper.

    Maximum interclass variance method (OSTU) is based on the image pixel gray value to divide the image into the target classC0and background classC1, the threshold for segmentation ist, the gray scale valueC0is between 0 andt, and the gray scale valueC1is between (t+1) toL(Lis the number of primary gradation of the image). We hypothesize thatσ(t)2is the interclass variance, and then the gray valuet*that makesσ(t)2as the maximum value is called the optimal threshold value as

    σ(t)2=w1(t)w2(t)(u1(t)-u2(t))2

    (18)

    (19)

    wherew1(t) is the number of pixels whose gray value is smaller than the threshold valuet,w2(t) is the number of pixels whose gray value is greater than the threshold valuet,u1(t) is the average gray value of the pixel whose gray value is smaller thantin the image,u2(t) is the average gray value of the pixel whose gray value is greater thantin the image.

    The threshold valuetcalculated from Eq.(18) and Eq.(19) can be considered as the low thresholdLthin the double threshold, the high threshold isHth=2Lth. Adaptive threshold selection is done by using OSTU method.

    4.1.2Hough transform method

    Hough transform method[16]is based on the dot-line duality principle. The Hough transform method transforms the line detection problem into the point detection problem in the parameter plane, as shown in Fig.2.

    Fig.2 shows that there are numerous lines through a point (xi,yi), their diagonal equation isyi=axi+b, if the equation is written inb=-xia+yi, the fixed point (xi,yi) of the linear equation is obtained. On the other hand, in the parameter plane, the other point (xj,yj) also has its unique line, this line intersects the line of point (xi,yi) at point (a′,b′), wherea′ andb′ are the slope and the intercept of a straight line that containing point (xi,yi) and point (xj,yj). Thus the line detection problem is transformed into the point detection problem.

    Fig.2 Theory of Hough conversion

    The Hough transform method divides the parameter space into accumulator units, accumulating each point of the image, and the maximum point of the accumulator is the slope and intercept of the line that will be tested.

    4.2 Determine the size of the background area

    After detecting the sea-sky antenna, it is necessary to further determine the size of the background area and its gray value[9]. The infrared image acquired by infrared thermal imager and its grayscale distribution data are shown in Fig.3.

    Fig.3a is the sea-sky infrared image, Fig.3b is the corresponding grayscale value data, the horizontal axis represents the pixel value from the top to the bottom of the image, and the vertical axis represents the gray scale value. In Fig. 3b, there is a transition in the gray value at the pixel index with value 300, which is the location of the sea-sky antenna. Due to the influence of the atmospheric radiance, the gray value of the sky region gradually increases from the top of the image to the position of the sea-sky antenna.

    Fig.3 Sea-sky image and its gray change rule

    After carrying out the radiometric calibration of infrared thermal imager, we found that on avoiding influence from the sun, the range of the temperature changes are not large, thus it would be more appropriate to take a certain size of the sea and the sky as the background area around sea-sky antenna.

    When the sea-sky antenna is placed in the middle of the field of view, the heightHof the sky from the sea-sky antenna to the image top is

    (20)

    whereDis the earth radius,dis the observation height,ωis vertical half field angle. In an experiment, the vertical half field angle of the device isω=2.6°, the observation height is 10 m, and the earth radius is 6 371 km, calculating from Eq.(20):H≈512 m. Thus, a 512 m high object near the sea-sky antenna occupies about half of the image height. The resolution of the infrared thermal imager is 640×512, a 2 m high object occupies about a pixel size in the vertical direction. The height of a general target on the sea is less than 60 m, considering the influence of the distance between the target and the infrared thermal imager to the visual size, we take 80 m (40 pixels) as the boundary of the background area, and the boundaries are shown in Fig.4.

    In Fig. 4, the middle line represents the sea-sky antenna, and up and down the two lines represent the boundary line of the background area. The distance between the up line and the middle line is about 40 pixels.

    4.3 Radiometric calibration

    The radiometric calibration of the infrared thermal imager is establishing the quantitative relationship between the gray value and the target radiation temperature value. The output signal of the infrared thermal imager has a positive correlation with the radiation intensity of the target. The method of radiation calibration is to set the standard blackbody to different temperature values in the darkroom, and obtain the blackbody gray value in each temperature.

    Fig.4 Background region size diagram

    After obtaining the gray value of the infrared image background area and the radiation calibration data, the temperature value of the background area will be obtained, following which the background radiation valueMbof the entrance pupil can be obtained with Planck radiation formula.

    4.4 Solve the operating range equation

    Iterative algorithms are used to solve the operating range equation. In this paper, the semi-fraction method is applied to solve the equation of the traditional method and the advanced method. Taking Eq.(9) as an example, its solution process is shown in Fig.5.

    In Fig. 5,τ(Rt),MRtcan be calculated by program MODTRAN,R1andR2are the range of the estimated operating range from Eq.(9), the initial distanceR0is set to a value betweenR1andR2. Firstly, calculate the atmospheric transmittance and atmospheric radiance withR0, and then calculate the radiation difference between the target and the background,so we can determine whether the radiative emission difference meet the accuracy of the solutione. ΔMand ΔMMRTD(f)are calculated as

    (21)

    whereMt0is the target radiation value at zero line-of-sight distance,τ(R0) is the atmospheric transmittance at the distanceR0,MR0is the atmospheric radiance at the distanceR0,Mbis the background radiance value obtained from the radiometric calibration of the image,TS=300 K is the laboratory temperature at the MRTD measurement and solution accuracye=0.1. When the results do not reach the accuracy, discard half of the value range according to the value of Δ, and repeat the above steps in the new range of values until Δ meet the accuracy, at which timeR0is the operating range.

    Fig.5 Solution flow chart of the operating range equation

    5 Experimental Results and Discussion

    5.1 Radiometric calibration of blackbody

    The infrared thermal imager used in the experiment is FILR’s Tau2-640 movement with Bop’s 4x focusing lens. The main performance parameters are shown in Tab. 1. In Tab. 1, wavelength range is 7.5-13.5 μm, and the number of pixels is 640×512, the NETD of infrared thermal imager is less than 50 mK, the vertical field of view is less than 5.2°.

    Tab.1 Parameters of infrared thermal imager

    The IR-2103/301type blackbody was adopted. During the experiment, the environment temperature was 30.3°C and the relative humidity was 21%. Considering the operating temperature range of the infrared thermal imager, we calibrated the temperature range to 0-60 ℃, and the sampling interval was 2 ℃. The radiometric calibration results are shown in Fig. 6. The abscissa axis of Fig. 6 is the blackbody temperature value,with units of degree centigrade, and the vertical coordinate is the gray value of the blackbody.The experimental results in Fig. 6 show that the gray value of the blackbody increase with increasing blackbody temperature. After fitting the data we found that because of the impact of environment temperature, the curve slightly deviated from the center line in the range of the blackbody temperature below 30 ℃. The overall curve is approximate to a straight line showing that the output signal of the infrared thermal imager is approximately linearly positive related to the radiation intensity of the target.

    In order to obtain the correspondence between blackbody temperature value and its gray value, we use a sixth-order curve with MATLAB polynomial to fit the data, the result is

    (22)

    whereTis the blackbody temperature, andGis gray value.

    Fig.6 Blackbody calibration data

    5.2 Calculation of background radiation and operating range

    The temperatureTbcalculated above is substituted into the Planck formula as

    (23)

    whereC1is the first radiation constant,C1=3.741 8×10-16(W·m2),C2is the second radiation constant,C2=1.438 8×10-2(m·K), and the average wavelength isλ=10.5 μm. The desired value of background radiationMbis obtained.

    In Fig. 7, the area between the two lines above and below the sea-sky antenna is the background area of the target, the size of the fishing boat is about 40 m×8 m, the temperature is 300 K, the emissivity is 0.9, and the observation probability is 90%. The traditional method represented by Eq.(1) and the improved method REBR represented by Eq. (9) are respectively solved for the operating range. The radiation value calculation result in the background area of Fig.7 is shown in Tab.2, the operating range calculation results of the traditional method and the improved method REBR are shown in Tab.3. In Tab.2,Pdenotes background gray value,Tdenotes background temperature,Mbis the background radiance value, we get the gray value of the background region by a MATLAB program, and then we can obtain the average temperature value and the radiation value of the background region from Eqs.(22)(23).

    Fig.7 Sea-sky infrared image

    Tab.2 Calculation result of background radiation

    Tab.3 Contrasting of operating range calculation results

    The observation height is 1 m in the experiment, the sea-sky antenna distance is about 3.57 km, calculated from Eq.(20). In Fig.7, the ship is on the sea-sky antenna, thus the distance between the ship and the observation position is about 3.57 km. In Tab.3,R3andR4are the operating range values of the REBR method and the traditional method, respectively. From Tab.3, we found that the detection level is “distinguish”, the relative error between the result of the REBR method and the true distance value is 16.53%, the relative error between the result of the traditional method and the true distance value is 29.41%, showing that the REBR method is more accurate. The influence of the atmospheric radiance to the operating range will increase with increasing distance, thus the radiation difference between the target and the background will decrease, and this will make it harder for the system to distinguish the target and the background. Because the traditional method does not consider the impact of atmospheric radiance,therefore, the actual operating range value of the system should be smaller than the traditional method value.

    6 Conclusion

    In this paper, the operating range Eq.(9) that contains atmospheric radiance effects is proposed. The image sea-sky antenna is detected by adaptive Canny operator and Hough transform method, and then the size of the background area according to the sea-sky antenna is determined. After obtaining the background radiance value, an iterative method is used to solve the operating range equation. The experimental results indicate that the proposed method (REBR) is more simple and accurate than the conventional operating range prediction method, and more suitable for the real-world situation of atmospheric transmission.

    [1] Sun Z, Hui B. A simple and efficient object detection method based on saliency measure for infrared radiation image[C]∥International Symposium on Optoelectronic Technology and Application 2014. International Society for Optics and Photonics, 2014: 930130.

    [2] Liu Zewen, Cao Fengmei, Wang Quanxi, et al.The performance assessment software design of shipboard infrared imaging system[C]∥Third Infrared Imaging System Simulation, Testing and Evaluation of Technical Symposium, Chinese Society of Astronautics, 2011: 5. (in Chinese)

    [3] Li Liumiao. The study of infrared radiation characteristics of sea and sky background target [D]. Xi’an: Xidian University, 2011. (in Chinese)

    [4] Bai Tingzhu.Optical imaging technology and systems [M].Beijing:Electronic Industry Press,2016. (in Chinese)

    [5] Hu Jianghua, Zhou Jianxun, Zhang Baomin. Evaluation principle of infrared thermal image stealth [J]. Infrared Technology, 1995, 2(6): 25-27.(in Chinese)

    [6] He Heng, Bai Tingzhu. Calculation error analysis of the distance equation for infrared imaging [J]. Infrared Technology, 2015, 37(9):713-718.(in Chinese)

    [7] Dong Renjie, Li Tongji, Chen Qinglian,et al. Methods for calculation of atmospheric transmittance and radiance in thermal infrared band[J].Marine Technology,2006, 19(2):78-83. (in Chinese)

    [8] Sun Zhiyuan, Chang Songtao, Zhu Wei. Simplifying method of radiance calibration for MWIR detector[J]. Infrared and Laser Engineering,2004,43(7):2132-2137. (in Chinese)

    [9] He Heng. Research of the operating range prediction of the infrared imagining detection system based on sea sky background[D]. Beijing: Beijing Institute of Technology, 2016. (in Chinese)

    [10] Jin Gang. Adaptive Canny algorithm research and its application in image edge detection [D].Hangzhou:Zhejiang University,2011. (in Chinese)

    [11] Xu J, Wan Y, Zhang X. A method of edge detection based on improved canny algorithm for the lidar depth image[C]∥Geoinformatics 2006: Remotely Sensed Data and Information, International Society for Optics and Photonics, 2006: 64190O.

    [12] Gao Wenjing, Qian Kemao, Wang Haixia, et al. General structure for real-time fringe pattern preprocessing and implementation of median filter and average filter on FPGA[C]∥Proc SPIE 2008, 7155: 71550Q.

    [13] Tong X, Ren A, Zhang H, et al. Edge detection based on genetic algorithm and sobel operator in image[C]∥2011 International Conference on Graphic and Image Processing. International Society for Optics and Photonics, 2011: 828572.

    [14] Hasenplaugh W C, Neifeld M A. Image binarization techniques for correlation-based pattern recognition[J]. Optical Engineering, 1999, 38(11): 1907-1917.

    [15] Li Mu, Yan Jihong, Li Ge, et al. Self-adaptive Canny operator edge detection technique[J]. Journal of Harbin Engineering University,2007, 28(9):1002-1007. (in Chinese)

    [16] Lee D, Park Y. Discrete Hough transform using line segment representation for line detection[J]. Optical Engineering, 2011, 50(8): 087004.

    国产不卡一卡二| 母亲3免费完整高清在线观看| 精品熟女少妇八av免费久了| 日韩欧美国产在线观看| 曰老女人黄片| 97人妻精品一区二区三区麻豆| 99热只有精品国产| 久久天躁狠狠躁夜夜2o2o| 又爽又黄无遮挡网站| 波多野结衣巨乳人妻| 九九在线视频观看精品| 午夜免费观看网址| 欧美zozozo另类| 久久久久性生活片| 国产亚洲精品综合一区在线观看| 国产高潮美女av| 丰满的人妻完整版| 中国美女看黄片| 国产v大片淫在线免费观看| 在线国产一区二区在线| 国产高潮美女av| 十八禁网站免费在线| 国模一区二区三区四区视频 | 日本黄色视频三级网站网址| 免费av毛片视频| av视频在线观看入口| 夜夜夜夜夜久久久久| 免费一级毛片在线播放高清视频| 男人舔女人的私密视频| 九九热线精品视视频播放| 免费看十八禁软件| 国产高清videossex| 757午夜福利合集在线观看| 此物有八面人人有两片| 国产一区二区三区在线臀色熟女| av片东京热男人的天堂| 香蕉久久夜色| 91av网一区二区| 极品教师在线免费播放| 日本撒尿小便嘘嘘汇集6| 99久久精品一区二区三区| 精品国产超薄肉色丝袜足j| 免费av毛片视频| 色精品久久人妻99蜜桃| 级片在线观看| 成年女人看的毛片在线观看| 亚洲av成人av| 18禁黄网站禁片午夜丰满| 一级毛片女人18水好多| 身体一侧抽搐| 琪琪午夜伦伦电影理论片6080| tocl精华| 国产1区2区3区精品| 999久久久精品免费观看国产| 丰满的人妻完整版| 久久久色成人| 国产精品野战在线观看| 99国产极品粉嫩在线观看| 亚洲中文av在线| 麻豆国产av国片精品| 国产在线精品亚洲第一网站| 悠悠久久av| 免费高清视频大片| 国产成人av教育| 99久久精品一区二区三区| 国内少妇人妻偷人精品xxx网站 | 岛国在线观看网站| 99久久精品热视频| 男插女下体视频免费在线播放| 亚洲男人的天堂狠狠| 欧美精品啪啪一区二区三区| 久久99热这里只有精品18| 免费搜索国产男女视频| 一本精品99久久精品77| 三级国产精品欧美在线观看 | netflix在线观看网站| 黄色成人免费大全| 好男人电影高清在线观看| 免费高清视频大片| 97超级碰碰碰精品色视频在线观看| 亚洲中文日韩欧美视频| 亚洲成人精品中文字幕电影| 啪啪无遮挡十八禁网站| 国产高清videossex| 免费av不卡在线播放| 一级a爱片免费观看的视频| 中文字幕熟女人妻在线| 中出人妻视频一区二区| 免费av不卡在线播放| 久久天堂一区二区三区四区| 国产精品美女特级片免费视频播放器 | 日韩精品青青久久久久久| 色综合站精品国产| 久久久国产成人精品二区| 亚洲专区字幕在线| 久久亚洲精品不卡| 久9热在线精品视频| 一级毛片女人18水好多| 久久久国产欧美日韩av| 免费看十八禁软件| 天堂av国产一区二区熟女人妻| 精品电影一区二区在线| 日韩欧美免费精品| 少妇的丰满在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 一a级毛片在线观看| 色播亚洲综合网| 99热这里只有精品一区 | 天天添夜夜摸| www.精华液| 国产亚洲精品久久久久久毛片| 欧美黄色片欧美黄色片| 国产视频内射| av福利片在线观看| 久久中文看片网| 美女cb高潮喷水在线观看 | 舔av片在线| av片东京热男人的天堂| 一级黄色大片毛片| 亚洲精品粉嫩美女一区| 欧美中文日本在线观看视频| 亚洲专区国产一区二区| 99精品欧美一区二区三区四区| 最近在线观看免费完整版| 国产精品电影一区二区三区| 成人三级黄色视频| 久久久久九九精品影院| 天堂av国产一区二区熟女人妻| 欧美日本亚洲视频在线播放| 嫁个100分男人电影在线观看| 国产精品一区二区免费欧美| 精品人妻1区二区| 日韩欧美免费精品| 九色国产91popny在线| 不卡一级毛片| 我要搜黄色片| 亚洲天堂国产精品一区在线| 亚洲真实伦在线观看| 国产黄色小视频在线观看| 美女扒开内裤让男人捅视频| 一二三四在线观看免费中文在| 1024香蕉在线观看| 99热6这里只有精品| 99久久99久久久精品蜜桃| 国产真人三级小视频在线观看| 欧美黑人巨大hd| 黑人欧美特级aaaaaa片| 精品人妻1区二区| 久久久久久久精品吃奶| 久久久久久久久免费视频了| 最好的美女福利视频网| 禁无遮挡网站| 国产伦在线观看视频一区| 日韩 欧美 亚洲 中文字幕| 午夜免费激情av| 窝窝影院91人妻| 人人妻人人澡欧美一区二区| 日韩av在线大香蕉| 欧美最黄视频在线播放免费| 成人三级黄色视频| 最近在线观看免费完整版| 国产亚洲精品一区二区www| 日本 av在线| 精品欧美国产一区二区三| 看片在线看免费视频| 国产野战对白在线观看| 性色avwww在线观看| 真人做人爱边吃奶动态| 一a级毛片在线观看| 给我免费播放毛片高清在线观看| 国产精品99久久久久久久久| 国产精品一区二区三区四区久久| 精品日产1卡2卡| 九九在线视频观看精品| 久久中文字幕一级| 男女那种视频在线观看| 久久国产乱子伦精品免费另类| 一个人观看的视频www高清免费观看 | 999久久久精品免费观看国产| 亚洲无线在线观看| 日本在线视频免费播放| 久久久久久九九精品二区国产| 俄罗斯特黄特色一大片| 亚洲天堂国产精品一区在线| 色在线成人网| 免费观看的影片在线观看| 中文字幕av在线有码专区| 丁香欧美五月| 精品一区二区三区视频在线 | 午夜福利在线在线| 性色avwww在线观看| 人人妻人人看人人澡| 色噜噜av男人的天堂激情| 男插女下体视频免费在线播放| 亚洲av成人一区二区三| 国产精品av视频在线免费观看| 香蕉国产在线看| 无限看片的www在线观看| 国产精品一及| 日本黄色片子视频| 欧美日韩黄片免| 舔av片在线| www.熟女人妻精品国产| 2021天堂中文幕一二区在线观| 老鸭窝网址在线观看| 中文字幕久久专区| 男人舔女人下体高潮全视频| 亚洲人成伊人成综合网2020| 欧美日韩黄片免| 51午夜福利影视在线观看| 91老司机精品| 久久婷婷人人爽人人干人人爱| 亚洲欧美日韩高清专用| 老熟妇乱子伦视频在线观看| a级毛片a级免费在线| 国内久久婷婷六月综合欲色啪| 日韩欧美 国产精品| 制服丝袜大香蕉在线| 天堂影院成人在线观看| 国产一区在线观看成人免费| 女警被强在线播放| 女同久久另类99精品国产91| 丝袜人妻中文字幕| 搞女人的毛片| 成年女人永久免费观看视频| 中文字幕最新亚洲高清| 搡老岳熟女国产| 麻豆国产av国片精品| 亚洲国产精品合色在线| 黄色视频,在线免费观看| 国内久久婷婷六月综合欲色啪| 欧美+亚洲+日韩+国产| 91久久精品国产一区二区成人 | 一本综合久久免费| 亚洲熟妇中文字幕五十中出| 午夜成年电影在线免费观看| 亚洲美女黄片视频| 男人的好看免费观看在线视频| netflix在线观看网站| 久久精品国产清高在天天线| 免费看日本二区| 亚洲成人久久性| 精品免费久久久久久久清纯| 99久久精品一区二区三区| 久久这里只有精品中国| 国产精品亚洲av一区麻豆| 中文亚洲av片在线观看爽| 亚洲性夜色夜夜综合| 日韩欧美在线二视频| 午夜福利高清视频| 高清毛片免费观看视频网站| 人人妻人人看人人澡| 国产91精品成人一区二区三区| 首页视频小说图片口味搜索| 波多野结衣高清无吗| 亚洲欧美一区二区三区黑人| 中文字幕av在线有码专区| 香蕉av资源在线| 最近最新免费中文字幕在线| 99热这里只有是精品50| 巨乳人妻的诱惑在线观看| 观看美女的网站| 欧美国产日韩亚洲一区| av中文乱码字幕在线| 啪啪无遮挡十八禁网站| 天天一区二区日本电影三级| 一个人免费在线观看的高清视频| 高潮久久久久久久久久久不卡| av欧美777| 国产成人aa在线观看| 国产乱人伦免费视频| 久久久久久大精品| 久久国产精品人妻蜜桃| 国产主播在线观看一区二区| 亚洲一区高清亚洲精品| 久久精品人妻少妇| 亚洲色图 男人天堂 中文字幕| 天天一区二区日本电影三级| 亚洲av电影在线进入| 精品一区二区三区av网在线观看| 国产真人三级小视频在线观看| 午夜激情福利司机影院| 999久久久国产精品视频| 久久精品91无色码中文字幕| 又黄又粗又硬又大视频| 精品久久久久久久毛片微露脸| 亚洲在线自拍视频| 在线免费观看的www视频| 欧美另类亚洲清纯唯美| av国产免费在线观看| 99在线视频只有这里精品首页| av福利片在线观看| 男女视频在线观看网站免费| 天天一区二区日本电影三级| 日本免费a在线| 国产精品电影一区二区三区| 免费高清视频大片| 天堂影院成人在线观看| 国产精品久久久久久精品电影| 美女高潮的动态| 国产爱豆传媒在线观看| 成年人黄色毛片网站| 欧美日韩精品网址| 免费人成视频x8x8入口观看| 国产熟女xx| 一二三四社区在线视频社区8| 高清在线国产一区| 国产免费av片在线观看野外av| 国产精品亚洲av一区麻豆| 又粗又爽又猛毛片免费看| 一本久久中文字幕| 全区人妻精品视频| 欧美xxxx黑人xx丫x性爽| 国产免费男女视频| 一个人免费在线观看电影 | 日日干狠狠操夜夜爽| 波多野结衣巨乳人妻| 亚洲18禁久久av| 级片在线观看| 18禁国产床啪视频网站| 在线播放国产精品三级| 热99在线观看视频| 法律面前人人平等表现在哪些方面| 亚洲精品一区av在线观看| 亚洲国产色片| 久久久久久人人人人人| 99在线视频只有这里精品首页| 亚洲熟女毛片儿| 91久久精品国产一区二区成人 | 变态另类成人亚洲欧美熟女| 色精品久久人妻99蜜桃| 三级男女做爰猛烈吃奶摸视频| 精品免费久久久久久久清纯| 亚洲va日本ⅴa欧美va伊人久久| 极品教师在线免费播放| 一本综合久久免费| 日本免费a在线| 在线观看舔阴道视频| 亚洲精品粉嫩美女一区| 亚洲av中文字字幕乱码综合| 亚洲熟妇熟女久久| 啦啦啦观看免费观看视频高清| 他把我摸到了高潮在线观看| 国产人伦9x9x在线观看| 久久中文看片网| av黄色大香蕉| 国产精品久久久久久精品电影| 国产激情久久老熟女| 少妇人妻一区二区三区视频| 99久久综合精品五月天人人| 在线观看一区二区三区| 欧美另类亚洲清纯唯美| 久久精品国产亚洲av香蕉五月| 午夜福利成人在线免费观看| 久久亚洲精品不卡| 色尼玛亚洲综合影院| 国产一区二区在线观看日韩 | 日韩欧美在线二视频| 在线观看一区二区三区| 午夜成年电影在线免费观看| 色综合亚洲欧美另类图片| 国产久久久一区二区三区| avwww免费| 亚洲avbb在线观看| 国内揄拍国产精品人妻在线| 99热这里只有精品一区 | aaaaa片日本免费| 波多野结衣高清无吗| 三级毛片av免费| 日韩欧美 国产精品| 午夜精品久久久久久毛片777| 动漫黄色视频在线观看| 俺也久久电影网| 九九在线视频观看精品| 两性夫妻黄色片| 午夜福利在线观看免费完整高清在 | 国产精品影院久久| 欧美3d第一页| 美女大奶头视频| 精品久久蜜臀av无| 午夜福利欧美成人| 亚洲国产中文字幕在线视频| 久久这里只有精品中国| 久久午夜综合久久蜜桃| 久久精品国产清高在天天线| 观看免费一级毛片| 亚洲18禁久久av| 免费观看精品视频网站| 视频区欧美日本亚洲| 亚洲中文日韩欧美视频| 我要搜黄色片| 曰老女人黄片| 99riav亚洲国产免费| 日韩中文字幕欧美一区二区| 人妻久久中文字幕网| 人人妻人人澡欧美一区二区| 欧美一级毛片孕妇| 国内揄拍国产精品人妻在线| 欧美大码av| 深夜精品福利| 成人一区二区视频在线观看| 琪琪午夜伦伦电影理论片6080| 久久久久久久久中文| 黄色视频,在线免费观看| 久久精品亚洲精品国产色婷小说| 日韩av在线大香蕉| 久久香蕉精品热| 免费观看的影片在线观看| 日本黄大片高清| tocl精华| 国产精品影院久久| 婷婷丁香在线五月| 久久这里只有精品中国| 两个人看的免费小视频| 国产精品,欧美在线| 九色国产91popny在线| 十八禁网站免费在线| 黑人欧美特级aaaaaa片| 国产三级黄色录像| 国产成+人综合+亚洲专区| 日韩欧美免费精品| 网址你懂的国产日韩在线| 亚洲国产欧美一区二区综合| 午夜福利在线观看免费完整高清在 | 午夜影院日韩av| 老司机午夜福利在线观看视频| 啦啦啦免费观看视频1| 日韩欧美在线二视频| 午夜免费观看网址| 啦啦啦韩国在线观看视频| 欧美性猛交黑人性爽| 一级毛片女人18水好多| 成人特级av手机在线观看| 99精品在免费线老司机午夜| 天堂√8在线中文| 国产欧美日韩精品一区二区| 日韩三级视频一区二区三区| 麻豆一二三区av精品| 亚洲狠狠婷婷综合久久图片| 亚洲一区二区三区不卡视频| 偷拍熟女少妇极品色| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩乱码在线| 成年版毛片免费区| 久久亚洲真实| 亚洲欧美精品综合一区二区三区| 亚洲精华国产精华精| 手机成人av网站| 两个人视频免费观看高清| 国产精品影院久久| 亚洲欧美激情综合另类| 日韩欧美国产一区二区入口| 午夜激情福利司机影院| 日本五十路高清| 国内精品久久久久久久电影| 午夜免费成人在线视频| e午夜精品久久久久久久| 久久欧美精品欧美久久欧美| 美女高潮的动态| 少妇人妻一区二区三区视频| 欧美成人免费av一区二区三区| 一a级毛片在线观看| 欧洲精品卡2卡3卡4卡5卡区| 91麻豆精品激情在线观看国产| 国产综合懂色| 岛国视频午夜一区免费看| 亚洲欧美日韩高清在线视频| 一二三四社区在线视频社区8| 成人一区二区视频在线观看| 综合色av麻豆| www日本在线高清视频| 91在线精品国自产拍蜜月 | 欧美日韩综合久久久久久 | 亚洲精华国产精华精| 黑人巨大精品欧美一区二区mp4| 欧美成人一区二区免费高清观看 | 最近最新免费中文字幕在线| 国产精品久久久久久久电影 | 免费在线观看成人毛片| 最好的美女福利视频网| 欧美成人免费av一区二区三区| 精品国产三级普通话版| 午夜久久久久精精品| 国产av不卡久久| 日日摸夜夜添夜夜添小说| 亚洲av电影在线进入| 国产伦在线观看视频一区| 亚洲七黄色美女视频| 亚洲欧美日韩东京热| 亚洲av熟女| 亚洲av五月六月丁香网| 麻豆av在线久日| 免费在线观看影片大全网站| 桃色一区二区三区在线观看| 精品国产美女av久久久久小说| 怎么达到女性高潮| 叶爱在线成人免费视频播放| 又紧又爽又黄一区二区| 成人性生交大片免费视频hd| 在线视频色国产色| 男女那种视频在线观看| 偷拍熟女少妇极品色| 在线观看66精品国产| 午夜精品久久久久久毛片777| 日韩欧美精品v在线| 国产精品永久免费网站| 久久精品综合一区二区三区| 国产午夜精品论理片| 男女视频在线观看网站免费| 国产爱豆传媒在线观看| 亚洲av电影不卡..在线观看| 亚洲18禁久久av| 亚洲无线观看免费| 高清毛片免费观看视频网站| 亚洲真实伦在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产精品九九99| 99国产精品一区二区三区| 丝袜人妻中文字幕| 男人舔奶头视频| 日韩欧美在线二视频| 国产成人福利小说| 婷婷亚洲欧美| 亚洲人成电影免费在线| 巨乳人妻的诱惑在线观看| 淫妇啪啪啪对白视频| 舔av片在线| 一级黄色大片毛片| 亚洲人成伊人成综合网2020| 国产精品久久久久久精品电影| 少妇的逼水好多| 欧美激情在线99| 99久久久亚洲精品蜜臀av| 少妇的丰满在线观看| 男女床上黄色一级片免费看| 一个人看视频在线观看www免费 | 国产成人av激情在线播放| 国产精品精品国产色婷婷| 国产精品1区2区在线观看.| 午夜精品久久久久久毛片777| 国产一区在线观看成人免费| 99精品在免费线老司机午夜| 日韩av在线大香蕉| 日韩免费av在线播放| 亚洲国产中文字幕在线视频| 欧美一区二区国产精品久久精品| 国产精品一区二区精品视频观看| 亚洲人成电影免费在线| 久久亚洲精品不卡| 久久久久久久久中文| 免费看十八禁软件| 免费看a级黄色片| 久久人妻av系列| 成在线人永久免费视频| 国产精品久久久久久久电影 | 国产成+人综合+亚洲专区| 毛片女人毛片| 巨乳人妻的诱惑在线观看| 中文字幕久久专区| 日韩av在线大香蕉| www.自偷自拍.com| 亚洲欧洲精品一区二区精品久久久| 欧美性猛交黑人性爽| 日本成人三级电影网站| 国产97色在线日韩免费| 日本精品一区二区三区蜜桃| 国内精品一区二区在线观看| 日韩有码中文字幕| 久久久成人免费电影| 中文资源天堂在线| 十八禁人妻一区二区| 最好的美女福利视频网| 亚洲av成人精品一区久久| 免费观看人在逋| 黄色 视频免费看| 婷婷丁香在线五月| 麻豆国产97在线/欧美| 国产精品国产高清国产av| 一级作爱视频免费观看| 久久精品国产亚洲av香蕉五月| 99久久99久久久精品蜜桃| 桃红色精品国产亚洲av| 午夜福利18| 看免费av毛片| 天天躁日日操中文字幕| www.熟女人妻精品国产| 成人精品一区二区免费| 久久久久久久久久黄片| 高潮久久久久久久久久久不卡| 18禁国产床啪视频网站| 久久久久精品国产欧美久久久| 99久久精品热视频| 亚洲av成人精品一区久久| 亚洲18禁久久av| 中文字幕久久专区| 久久久久久国产a免费观看| 亚洲av片天天在线观看| 90打野战视频偷拍视频| 国产亚洲精品一区二区www| 黄频高清免费视频| 色老头精品视频在线观看| 一个人观看的视频www高清免费观看 | 亚洲第一欧美日韩一区二区三区| 女人高潮潮喷娇喘18禁视频| 婷婷丁香在线五月| 宅男免费午夜| 可以在线观看毛片的网站| 欧美日韩乱码在线| 国产欧美日韩精品一区二区| 国内毛片毛片毛片毛片毛片| 亚洲欧美精品综合一区二区三区| 国产欧美日韩一区二区精品| 亚洲精品一区av在线观看| 国产成人啪精品午夜网站| 日本精品一区二区三区蜜桃|