• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Network Sorting Algorithm of Multi-Frequency Signal with Adaptive SNR

    2018-06-15 04:41:00XinyongYuYingGuoKunfengZhangLeiLiandHongguangLiInstituteofInformationandNavigationAirForceEngineeringUniversityXian70077ChinaScienceandTechnologyonInformationTransmissionandDisseminationinCommunicationNetworksLaboratory

    Xinyong Yu, Ying Guo, Kunfeng Zhang, Lei Li and Hongguang Li(.Institute of Information and Navigation, Air Force Engineering University, Xi’an 70077, China; 2.Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory, Shijiazhuang 05008, China)

    Frequency-hopping (FH) communication has been widely used in military communication because of its characteristics of good security, strong anti-interference ability, low probability of interception and strong networking capability. Determining a technique to realize the correct network sorting for multiple frequency hopping signals with different frequency hopping parameters without prior knowledge, is the core problem of frequency hopping signal reconnaissance and countermeasure[1-2].

    For the multiple frequency hopping signals network sorting, the traditional algorithm mainly considers the characteristic parameters of FH signals, such as the hop time, amplitude, direction of arrival and so on, but the accuracy is low and the complexity is high[3-7]. The blind source separation method is proposed in Refs. [8-10] to realize the signal sorting of broadband frequency hopping signal. The idea is novel, but this method is only applicable to the orthogonal frequency hopping signal, which is powerless to the frequency hopping signal of asynchronous network. Two independent component analysis methods are proposed in Refs. [11-12] to separate FH signals. But the performance of the algorithm is poor under the condition of low signal noise ratio (SNR) or signal power disparity, and it is only applicable to the over-determined condition. Yang proposed a maximum SNR blind source separation method in Ref.[13]. For asynchronous non-orthogonal FH signals, the separation accuracy is high and fast, but for synchronous orthogonal FH signals, the accuracy is greatly reduced. The algorithm lacks universal applicability. Then Sha proposed an improved subspace projection method to realize the network separation under undetermined conditions, but the SNR adaptive capacity is weak, where the minimum SNR is 10 dB.

    Based on the above issues, aiming at the multi-FH signal sorting under undetermined and low SNR condition, in accordance with the “two step” method, this paper put forward a SNR-adaptive sorting algorithm using the time-frequency (TF) sparsity of FH signal. The hybrid frequency hopping signal is transformed by the Gabor transform, and the model of network sorting is constructed. Secondly, the mixing matrix is estimated accurately by the TF ratio matrix of TF single source point, and then an improved subspace projection method is used for network sorting. In order to improve the performance of network sorting under low SNR condition, the adaptive SNR TF pivot threshold method is used to find the TF single source point, and the AP clustering method is used to cluster the column vectors of TF ratio matrix. Finally, the algorithm in Ref. [14] is used as the reference algorithm and the simulation results using the two algorithms are compared as well.

    1 Mathematical Model

    1.1 FH signal model

    Suppose that the hopping period of FH signal sn(t) isT, there areKhops within time of Δtin total.ωnkandφnkrepresent the carrier frequency and initial phase ofK-th hop respectively and the time of initial hop is Δt0n. Then sn(t) can be written as[15]

    (1)

    wheret′=t-(k-1)Tn-Δt0n,υnstands for the complex envelope of base band of signal sn(t), andrectis the unit rectangle pulse.

    Suppose thatNFH signals s(t)=[s0(t) …sN-1(t)]Timpinge instantaneously onto anM-element array and the elements in the array are isotropic. Regardless of the effects of channel inconsistency and mutual coupling, the system model can be formulated as

    x(t)=As(t)+v(t)

    (2)

    where x(t)=[x0(t) …xM-1(t)]Tis observation signal; A=[a0…aN-1]T?CM×Nis anm×ncomplex valued mixing matrix whose columns are full rank; and v(t)=[v0(t),…,vM-1(t)]Tis the white Gaussian noise signal with zero mean value and varianceδ2, and the signal is not correlated with it.

    In this paper, multi-FH signal sorting under undetermined condition refers to the situation that the number of FH signal is greater than the received elements i.e.N>M. Since the mixing matrix A is unknown, we need to estimate the mixing matrix firstly. Since Eq.(2) has infinite solutions, we need to use the method of blind separation to solve it.

    1.2 Multi-FH signal sorting model

    TF domain is chosen as the sparse domain because of the good sparsity of FH signal domain. Since the TF ratio matrix is used in the estimation of the mixing matrix, the TF transformation of the observation signal should be linear. The short-time Fourier transform (STFT) and the Gabor transform are both commonly used linear transformations. The Gabor transform is the optimal linear transform whose window is a Gaussian window, which is the function when the window of time domain reaches its minimum. The localization of TF can be achieved as long as the area reaches the lower bound of the uncertainty principle. So the Gabor transform is chosen as the TF transform of the system.

    Since the Gabor transform is a linear TF distribution, we can rewrite the model from Eq.(2) as

    X(t,f)=AS(t,f)+V(t,f)

    (3)

    where X(t,f)=[X0(t,f) …XM-1(t,f)]T, S(t,f)=[S0(t,f) …SN-1(t,f)]Tand V(t,f)=[V0(t,f) …VM-1(t)]Tare the Gabor transform of observation signal x(t), source signal s(t), and additive noise signal v(t) respectively. Eq. (3) represents the model of multi-FH signal sorting under undetermined condition in the TF domain.

    2 Estimation of the Mixing Matrix

    2.1 Adaptive SNR pivot threshold setting

    (4)

    whereεis a threshold of TF pivot point. It can be seen that if the thresholdεis too small, the corresponding TF points of noise will be misinterpreted as TF pivot points. On the other hand, if the thresholdεis too large, some TF support points will be filtered out. In Ref. [14], although the effect of noise is considered, the threshold is set as three times of the noise variance, i.e.ε=3σn, (σnis the noise variance). As a result, the threshold is set too low to filter the noise out which directly influences the effect of subsequent network sorting. In order to solve this problem, the SNR adaptive pivot threshold setting method is proposed. This method takes all the TF points in TF domain into consideration and uses an iterative algorithm to calculate the threshold value. Since the value of TF points varies with the SNR, the threshold has adaptive SNR characteristics.

    The main idea of the algorithm is to find the minimum and maximum frequency module valueW1andWkof all TF points and the initial thresholdε1firstly

    ε1=(W1+Wk)/2

    (5)

    Then divide the TF points into two parts TF1, TF2withε1as the TF pivot point threshold. Calculate the number of TF points and average frequency module values of the two regions as

    (6)

    whereWtfis the frequency module value ofx(t,f). A new threshold is calculated according to the average frequency module value of the two regions.

    εK=(Wtf1+Wtf2)/2

    (7)

    Finally, the threshold is updated using the iterative idea according to the above method. The final iteration is determined until the (K+1)-th result equals theK-th result (i.e.εK+1=εK).

    2.2 Mixing matrix estimation based on the TF ratio matrix

    X(t,f)=akSk(t,f)+V(t,f)

    (8)

    Despite the influence of noise, the TF ratio matrix of observation signals of each receiving array to them-th receiving array is expressed as

    (9)

    It is visible that all columns of the ratio matrix in Eq.(9) are identical, so if we obtain the TF single-source point set the mixed matrix A can be estimated by

    (10)

    Considering the noise, the columns of the ratio matrix in Eq.(9) are different from each other, but have significant clustering characteristics.

    The mixing matrix estimation algorithm is summarized as follows.

    Step1Calculate the Gabor transform of the mixed signals X(t,f) to get the network sorting model by Eq.(3).

    Step2Calculate the initial thresholdε1according to the TF point of mixed signals in TF domain by Eq.(5).

    Step3Calculate the average frequency module value of the two regions by Eq.(6), and get the new thresholdεKby Eq.(7).

    Step4Start threshold iteration, ifεK+1=εK, then stop the iteration to get the final thresholdεK, otherwise go to step 2.

    Step5Get all the TF pivot points by Eq. (4).

    Step6Get the TF ratio matrix W of TF pivoting domain by Eq.(9).

    Step7Calculate the similarity matrix S of column vector data of W, attraction degree and attribution degree.

    Step8Determine the cluster center according to the judging condition, and get the TF single source setΛ(1),…,Λ(N).

    Step9Calculate the estimated mixed matrix by Eq.(10).

    3 Network Sorting under Undetermined Condition

    The improved subspace-based algorithm is used to sort the network, when the number of true FH signal sources is less than the hypothetical sources. Considering the influence of noise, there are not only noise residuals, but also the FH source signal residuals at the time point when calculating the orthogonal projection of the mixed matrix. So the general subspace-based algorithm will lead to non-ideal sorting effect. To solve this problem, Sha[14]proposed an improved subspace-based algorithm for undetermined network sorting to relax sparsity constraints. The improved subspace-based algorithm introduces the comparative powers of sources to the conventional subspace-based algorithm. The comparative powers of the source is set as an index of the FH network sorting. By combining the mixing matrix and comparative powers, the new algorithm can deal with the case whereK≤Mat any TF point. The relative power of the FH signal source can be defined as

    (11)

    where ‖·‖2denotes the 2-norm andLkdenotes the number of vectors contained in the setΛnof time-frequency source.

    Suppose that the number of sources in each TF point isR, and the mixing matrix column vector of the corresponding FH source signal at the TF point (t′,f′) is AR=[an1…anR], so the FH signal network sorting model at the TF point can be expressed as

    X(t′,f′)=ARSR(t′,f′)+V(t′,f′)

    (12)

    where SR(t′,f′)=[Sn1(t′,f′),…,SnR(t′,f′)]. Let H presents the orthogonal project matrix onto noise subspace of ARwhen the number of source signals at TF point (t′,f′) is less than the number of receiving elements. H is expressed as

    (13)

    where I denotes the unit matrix. Taking the noise into account, ARis estimated as

    (14)

    The source signal S(t′,f′) can be calculated by Eq. (12) and Eq. (14) in the case of known ARso as to realize the network sorting. When the number of source signals on the TF point (t′,f′) is equal to the number of receiving array elements, a thresholdεassociated with the relative power deviation of the source signal is used to determine in which case the number of source signal is equal to the number of receiving array elements.

    SinceR=M′, we can rewrite the model from Eq.(12) as

    X(t′,f)=an1Sn1(t′,f′)+…+
    anMSnM+V(t′,f′)

    (15)

    Eq.(15) can be expressed in the form of relative power as

    X(t′,f′)=an1En1ejθn1+…+
    anMEnMejθnM+V(t′,f′)

    (16)

    whereaniEniejθnidenotes the relative power of the FH source signal Sni(t′,f′). The TF active sources at TF point (t′,f′)are estimated by

    (t′,f′)=A-1X(t′,f′)

    (17)

    The network sorting algorithm is summarized as follows.

    Step1Calculate the FH signal network sorting model at the TF point by Eq.(12).

    Step2LetR=M-1, calculate the orthogonal project matrix by Eq.(13).

    4 Simulation and Analysis

    Suppose that the number of received array elementsM=2, the spacing of the elements is 2.5 m, the receiver processing bandwidth is[20 MHz, 500 MHz], and the sampling frequency is 1 000 MHz. In order to meet the narrow-band assumption, the FH signal frequency is set asfRF=10 GHz. The signal parameters of five sources are summarized in Tab.1.

    Tab.1 Parameters of FH source

    4.1 TF distribution of observation signal

    Fig. 1 is the TF distribution of proposed algorithm and reference algorithm in the situations that source signals are S0,S1,S2respectively while SNR=5 dB. It can be seen from Fig. 1 that under the same SNR, the TF spectrum of the proposed algorithm has strong focusing capability and small noise interference which lays a good foundation for the subsequent TF ratio matrix calculation.

    Fig.1 Comparison between T-F images of observed signal

    4.2 Multi-FH signal network sorting

    Fig. 2 is the TF distribution of network sorting results of the source signals S0,S1,S2,S3at SNR=0 dB in the proposed algorithm and reference algorithm. It can be seen from Fig. 2 that compared with the reference algorithm the TF distribution of the FH source signal of proposed algorithm is not affected by the noise and cross-interference term, and the energy of signal spectrum is more concentrated. The proposed algorithm can obtain four FH networks from the mixed signals of the received array elements effectively.

    Fig.2 FH sorting result comparison

    In order to measure the performance of multi-FH signal network sorting, the signal-to-interference ratio (SIR) is taken as the criterion. The SIR is defined as

    (18)

    Fig. 3 displays how the SIR of the proposed algorithm and the reference algorithm changes with the increase of SNR from 0 dB to 35 dB using Monte-Carlo simulation, when the source signals are S0,S1,S2,S0,S1,S2,S3,S0,S1,S2,S3,S4and the array elements remain the same. The results show that our algorithm reaches its limit when SIR=10 dB while the reference algorithm reaches its limit when SIR=15 dB. The sorting performance of the reference algorithm processing source signalN=3 is better thanN=4, but when the number of frequency hopping source signals reaches 5, the sorting performance is greatly reduced, regardless of the SNR; The sorting performance of the proposed algorithm is almost the same whenN=3, 4, 5, and the SIR does not decrease with the increase of FH signal.

    Fig.3 Comparison of SIR

    5 Conclusion

    Under the environment of intensified electronic warfare, especially in wartime, frequency-hopping network density is high, and it is easy to encounter under-determined condition. Multi-FH signal network sorting under undetermined condition is of great significance. We have introduced undetermined blind separation algorithm based on sparse representation to sort the FH signals. The adaptive-SNR threshold setting method improves estimation performance under low SNR conditions. Simulations demonstrated that the new algorithm can separate the FH signals efficiently in low SNR conditions.

    [1] Fu Weihong, Wang Lu, Jia Kun, et al. Blind parameter estimation algorithm for frequency hopping signals based on STFT and SPWVD[J]. Journal of Huazhong University of Science and Technology, 2014(42): 59-63. (in Chinese)

    [2] Sha Z C, Liu Z M, Huang Z T. Online hop timing detection and frequency estimation of multiple FH signals[J]. Etri Journal, 2013,35(5): 748-757.

    [3] Zhang Dongwei, Guo Ying, Qi Zisen, et al. Joint estimation algorithm of direction of arrival and polarization for multiple frequency-hopping signals[J]. Journal of Electronics & Information Technology, 2015,37(7): 1695-1701. (in Chinese)

    [4] Zhang Dongwei, Guo Ying, Qi Zisen, et al. A joint estimation algorithm of multiple parameters for frequency hopping signals using spatial polarimetric time frequency distributions[J]. Journal of Xi’an Jiaotong University, 2015,49(8):17-23. (in Chinese)

    [5] Lin C H, Fang W H. Joint angle and delay estimation in frequency hopping system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013,49(2):1042-1056.

    [6] Fu W H, Hei Y Q, Li X H. UBSS and blind parameters estimation algorithms for synchronous orthogonal FH signals[J]. Journal of System Engineering and Electronics, 2014,25(6): 911-920.

    [7] Liu X Q, Nicholas D S, Swami A. Joint hop timing and frequency estimation for collision resolution in FH networks[J]. IEEE Transactions on Wireless Communications, 2005,4(6): 3063-3074.

    [8] Wong K T. Blind beamforming/geolocation for wideband-FFHs with unknown hop-sequences[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001,37(1): 65-76.

    [9] Zhang Chaoyang, Cao Qianqian, Chen Wenzheng. Blind separation parameter estimation of multiple frequency-hopping signals[J]. Journal of Zhejiang University, 2005,39(4): 465-470. (in Chinese)

    [10] Comon P, Jutten C. Handbook of blind source separation: independent component analysis and application[M]. New York: Academic Press,2010.

    [11] Chen Chao, Gao Xianjun, Li Dexin. Overlapped frequency-hopping communication signals separation algorithm based on independent component analysis[J]. Journal of Jilin University, 2008,26(4): 347-353. (in Chinese)

    [12] Cardoso J F, Donoho D I. Equivariant adaptive source separation[J]. IEEE Trans Signal Processing, 1996,44(12): 3017-3030.

    [13] Yang Baoping, Chen Yongguang, Yang Luan, et al. A blind separating method for asynchronous nonorthogonal frequency hopping network[J]. High Power Laser and Particle Beams, 2015,27(10): 103251-1-103251-6. (in Chinese)

    [14] Sha S C, Huang Z T, Zhou Y Y, et al. Frequency-hopping signals sorting based on underdetermined blind source separation[J]. IET Communications, 2013,7(14): 1456-1464.

    [15] Fu K C, Chen Y F. Blind iterative maximum likelihood-based frequency and transition for frequency hopping systems[J]. IET Communications, 2013,7(9):883-892.

    日韩欧美国产在线观看| 精品不卡国产一区二区三区| av天堂在线播放| 国产私拍福利视频在线观看| 老鸭窝网址在线观看| 国产视频内射| 中文字幕高清在线视频| 好男人电影高清在线观看| 免费电影在线观看免费观看| 亚洲欧美清纯卡通| 日韩欧美在线二视频| 特级一级黄色大片| 久久人人精品亚洲av| 男女床上黄色一级片免费看| 一区二区三区免费毛片| 欧美日韩亚洲国产一区二区在线观看| 伊人久久精品亚洲午夜| 久久国产乱子伦精品免费另类| 久久久久久国产a免费观看| 午夜免费激情av| 日韩欧美在线二视频| 天天一区二区日本电影三级| 日韩中字成人| 性色av乱码一区二区三区2| bbb黄色大片| 夜夜躁狠狠躁天天躁| 在线观看66精品国产| 精华霜和精华液先用哪个| 中文字幕熟女人妻在线| 美女高潮的动态| 看黄色毛片网站| 每晚都被弄得嗷嗷叫到高潮| 宅男免费午夜| 男人和女人高潮做爰伦理| 直男gayav资源| 黄色配什么色好看| 搡女人真爽免费视频火全软件 | 亚洲 国产 在线| 精品午夜福利在线看| 日韩高清综合在线| av黄色大香蕉| 亚洲av二区三区四区| 一级a爱片免费观看的视频| 综合色av麻豆| 麻豆成人午夜福利视频| 国产在线男女| 国产午夜精品久久久久久一区二区三区 | 国产又黄又爽又无遮挡在线| 亚洲中文字幕一区二区三区有码在线看| 免费av毛片视频| 老鸭窝网址在线观看| 99热这里只有精品一区| 波野结衣二区三区在线| 亚洲av美国av| 精品熟女少妇八av免费久了| 国产精品电影一区二区三区| 久久热精品热| 国产精品精品国产色婷婷| 三级毛片av免费| 国产成人a区在线观看| 亚洲中文字幕日韩| 麻豆国产97在线/欧美| 亚洲最大成人手机在线| 精品一区二区三区av网在线观看| 一进一出抽搐gif免费好疼| www.999成人在线观看| www.www免费av| 久久精品国产清高在天天线| 午夜福利视频1000在线观看| 精品一区二区三区av网在线观看| 婷婷精品国产亚洲av| 身体一侧抽搐| 欧美区成人在线视频| 久久久久久国产a免费观看| or卡值多少钱| 国产精品久久久久久人妻精品电影| АⅤ资源中文在线天堂| 国产高清激情床上av| 在线免费观看的www视频| 免费高清视频大片| 在线十欧美十亚洲十日本专区| 日本一二三区视频观看| 国产精品美女特级片免费视频播放器| 亚洲人与动物交配视频| 99久久成人亚洲精品观看| 99久久99久久久精品蜜桃| 亚洲av五月六月丁香网| 男人舔奶头视频| 久久国产乱子伦精品免费另类| 色噜噜av男人的天堂激情| 国产成人福利小说| 欧美xxxx黑人xx丫x性爽| 免费在线观看亚洲国产| 内地一区二区视频在线| 中文字幕久久专区| 亚洲一区二区三区不卡视频| 变态另类成人亚洲欧美熟女| 欧美又色又爽又黄视频| 午夜福利18| 一区福利在线观看| 欧美在线黄色| 亚洲激情在线av| 国产av不卡久久| 观看美女的网站| 男人的好看免费观看在线视频| 成人性生交大片免费视频hd| 午夜福利成人在线免费观看| 日韩大尺度精品在线看网址| 在线播放无遮挡| 伊人久久精品亚洲午夜| 精品久久久久久,| 男女之事视频高清在线观看| 日本三级黄在线观看| 变态另类成人亚洲欧美熟女| 欧美精品国产亚洲| 麻豆av噜噜一区二区三区| 国产免费男女视频| 国产私拍福利视频在线观看| x7x7x7水蜜桃| 老熟妇乱子伦视频在线观看| 天堂动漫精品| 老司机午夜十八禁免费视频| 白带黄色成豆腐渣| 97超视频在线观看视频| 亚洲人成伊人成综合网2020| 亚洲一区二区三区不卡视频| 国产精品免费一区二区三区在线| 三级毛片av免费| 久久久久久久久久成人| 免费av毛片视频| 亚洲欧美日韩高清专用| 91狼人影院| 美女免费视频网站| 俺也久久电影网| 日日夜夜操网爽| 日韩欧美国产一区二区入口| 91久久精品国产一区二区成人| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人免费电影在线观看| 欧美一区二区国产精品久久精品| 欧美另类亚洲清纯唯美| 午夜两性在线视频| 欧美精品国产亚洲| 免费看日本二区| 国产白丝娇喘喷水9色精品| 久久这里只有精品中国| a在线观看视频网站| 美女被艹到高潮喷水动态| 亚洲精品在线美女| 女生性感内裤真人,穿戴方法视频| 亚洲成人久久爱视频| 在线观看舔阴道视频| 一区福利在线观看| 欧美成狂野欧美在线观看| 欧美色欧美亚洲另类二区| 国产伦精品一区二区三区四那| 在线a可以看的网站| 精品人妻熟女av久视频| 国产高清视频在线观看网站| 观看免费一级毛片| 免费av观看视频| 国语自产精品视频在线第100页| 99国产极品粉嫩在线观看| av欧美777| 亚洲,欧美精品.| 亚洲最大成人av| 国产日本99.免费观看| 天堂影院成人在线观看| 亚洲 欧美 日韩 在线 免费| 国产精品一及| 两个人视频免费观看高清| 能在线免费观看的黄片| 国产精品久久电影中文字幕| 91在线观看av| 老熟妇乱子伦视频在线观看| 久久久久国产精品人妻aⅴ院| 少妇人妻一区二区三区视频| 国产精品av视频在线免费观看| 欧美日韩中文字幕国产精品一区二区三区| 欧美zozozo另类| 简卡轻食公司| 日韩大尺度精品在线看网址| 白带黄色成豆腐渣| 五月伊人婷婷丁香| 亚洲国产欧洲综合997久久,| 久久6这里有精品| 非洲黑人性xxxx精品又粗又长| 国产av一区在线观看免费| 少妇高潮的动态图| 婷婷精品国产亚洲av在线| 欧美一区二区国产精品久久精品| 国产一区二区亚洲精品在线观看| 欧美成人一区二区免费高清观看| 国产69精品久久久久777片| 综合色av麻豆| 男人的好看免费观看在线视频| 非洲黑人性xxxx精品又粗又长| 欧美日韩亚洲国产一区二区在线观看| 国产av一区在线观看免费| 亚洲国产精品久久男人天堂| 久久精品国产亚洲av天美| 一进一出抽搐动态| 熟女人妻精品中文字幕| 国产中年淑女户外野战色| 首页视频小说图片口味搜索| 桃色一区二区三区在线观看| 亚洲成av人片免费观看| 久久久久国内视频| 午夜福利在线观看吧| 久久亚洲真实| 国产一区二区亚洲精品在线观看| 亚洲综合色惰| av欧美777| 国产精品一及| 久久久久久久久大av| 色综合亚洲欧美另类图片| 18禁黄网站禁片免费观看直播| 欧美bdsm另类| 无遮挡黄片免费观看| 99国产极品粉嫩在线观看| 日本黄大片高清| 亚洲 欧美 日韩 在线 免费| 精品国产三级普通话版| 啪啪无遮挡十八禁网站| 蜜桃亚洲精品一区二区三区| 国产精品乱码一区二三区的特点| 日韩欧美精品v在线| 床上黄色一级片| 国产精品爽爽va在线观看网站| 十八禁人妻一区二区| 欧美成人免费av一区二区三区| 国产中年淑女户外野战色| 国产精品久久久久久人妻精品电影| 午夜福利成人在线免费观看| 波野结衣二区三区在线| 最新中文字幕久久久久| 亚洲欧美日韩卡通动漫| 麻豆av噜噜一区二区三区| 内射极品少妇av片p| 自拍偷自拍亚洲精品老妇| 床上黄色一级片| 久久午夜福利片| 欧美高清性xxxxhd video| 欧美绝顶高潮抽搐喷水| 我的老师免费观看完整版| 香蕉av资源在线| 欧美zozozo另类| 久99久视频精品免费| 成人欧美大片| 亚洲国产高清在线一区二区三| 国产精品免费一区二区三区在线| 日韩欧美精品免费久久 | 又爽又黄a免费视频| 网址你懂的国产日韩在线| 村上凉子中文字幕在线| 精品午夜福利在线看| 无人区码免费观看不卡| 人妻丰满熟妇av一区二区三区| 亚洲欧美日韩东京热| 亚洲专区国产一区二区| 国产三级中文精品| 亚洲性夜色夜夜综合| 国产日本99.免费观看| 国产熟女xx| 午夜福利在线观看免费完整高清在 | 网址你懂的国产日韩在线| av欧美777| 亚洲精品影视一区二区三区av| 国内久久婷婷六月综合欲色啪| 欧美极品一区二区三区四区| 国产高清三级在线| 搡老熟女国产l中国老女人| 脱女人内裤的视频| 动漫黄色视频在线观看| 久久精品国产清高在天天线| 欧美黑人巨大hd| 99热这里只有精品一区| 人妻制服诱惑在线中文字幕| 欧美日本亚洲视频在线播放| 免费观看人在逋| 美女 人体艺术 gogo| 波多野结衣巨乳人妻| 日韩欧美国产一区二区入口| 天堂√8在线中文| 成年人黄色毛片网站| 国产在线精品亚洲第一网站| 亚洲专区中文字幕在线| 长腿黑丝高跟| 久久久久久久亚洲中文字幕 | 首页视频小说图片口味搜索| 搞女人的毛片| 国产av在哪里看| 国产精品久久久久久精品电影| 亚洲狠狠婷婷综合久久图片| 18禁在线播放成人免费| 精品国产三级普通话版| 精品乱码久久久久久99久播| 亚洲av成人av| 亚洲自偷自拍三级| 搡老妇女老女人老熟妇| 日韩亚洲欧美综合| 国产精品永久免费网站| 中文字幕av在线有码专区| 国产精品乱码一区二三区的特点| 国产视频一区二区在线看| 在线观看av片永久免费下载| 91麻豆精品激情在线观看国产| 国产欧美日韩一区二区精品| av专区在线播放| 欧美一区二区精品小视频在线| 色哟哟·www| 日本撒尿小便嘘嘘汇集6| 久久久久久久久久成人| 国产精品免费一区二区三区在线| 1024手机看黄色片| 亚洲午夜理论影院| 国产av在哪里看| 欧美在线一区亚洲| 国产色婷婷99| 亚洲成人久久性| 偷拍熟女少妇极品色| 成年女人毛片免费观看观看9| 亚洲av二区三区四区| 成年女人永久免费观看视频| 如何舔出高潮| 3wmmmm亚洲av在线观看| 蜜桃亚洲精品一区二区三区| www日本黄色视频网| 99热这里只有是精品在线观看 | x7x7x7水蜜桃| 欧美+亚洲+日韩+国产| 别揉我奶头~嗯~啊~动态视频| 激情在线观看视频在线高清| 国产高清视频在线观看网站| 麻豆国产av国片精品| 精品久久久久久久久久久久久| 三级男女做爰猛烈吃奶摸视频| 91麻豆精品激情在线观看国产| 日本一二三区视频观看| 老司机深夜福利视频在线观看| 亚洲美女黄片视频| 狠狠狠狠99中文字幕| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 婷婷精品国产亚洲av在线| 99久久无色码亚洲精品果冻| 99热精品在线国产| 国内揄拍国产精品人妻在线| 国产成人av教育| 中文亚洲av片在线观看爽| a级毛片a级免费在线| 一卡2卡三卡四卡精品乱码亚洲| 三级男女做爰猛烈吃奶摸视频| 九色成人免费人妻av| 在线看三级毛片| 精品福利观看| 欧美黄色片欧美黄色片| 桃红色精品国产亚洲av| 亚洲av中文字字幕乱码综合| 少妇丰满av| 熟女人妻精品中文字幕| 国产白丝娇喘喷水9色精品| 亚洲熟妇熟女久久| 直男gayav资源| 亚洲专区中文字幕在线| 毛片一级片免费看久久久久 | 国产精品久久久久久久久免 | 色哟哟·www| 精品久久久久久成人av| 亚洲专区中文字幕在线| 精品久久久久久久末码| 精品久久久久久久人妻蜜臀av| 精品国产三级普通话版| 国产成人av教育| 中文亚洲av片在线观看爽| 久久天躁狠狠躁夜夜2o2o| 波野结衣二区三区在线| 男插女下体视频免费在线播放| 国产精品久久久久久久电影| 一夜夜www| 看免费av毛片| 一进一出抽搐gif免费好疼| 观看美女的网站| 欧美另类亚洲清纯唯美| 两个人的视频大全免费| 老鸭窝网址在线观看| 99久久99久久久精品蜜桃| 国产欧美日韩一区二区三| 国产日本99.免费观看| 一级黄色大片毛片| 国产一区二区激情短视频| av黄色大香蕉| www日本黄色视频网| 国产成人av教育| 熟女电影av网| 国产黄色小视频在线观看| 乱码一卡2卡4卡精品| 精品人妻1区二区| 99riav亚洲国产免费| 国产精品不卡视频一区二区 | 99在线视频只有这里精品首页| 波多野结衣巨乳人妻| 色综合亚洲欧美另类图片| 成年免费大片在线观看| av天堂中文字幕网| 我要搜黄色片| 国产精品野战在线观看| 亚洲激情在线av| 老司机午夜福利在线观看视频| 91久久精品电影网| 啪啪无遮挡十八禁网站| 国产精品不卡视频一区二区 | 人妻丰满熟妇av一区二区三区| 国产不卡一卡二| 两人在一起打扑克的视频| 人妻夜夜爽99麻豆av| 亚洲欧美清纯卡通| 日本免费一区二区三区高清不卡| 色视频www国产| 亚洲成人精品中文字幕电影| 亚洲精品乱码久久久v下载方式| 国产精品久久久久久精品电影| 真实男女啪啪啪动态图| 九色成人免费人妻av| 欧美高清成人免费视频www| 我要搜黄色片| 欧美最新免费一区二区三区 | 99久久九九国产精品国产免费| 久久天躁狠狠躁夜夜2o2o| 欧美三级亚洲精品| 午夜激情欧美在线| 婷婷色综合大香蕉| 国产大屁股一区二区在线视频| 亚洲国产欧洲综合997久久,| 午夜视频国产福利| 亚洲七黄色美女视频| 亚洲,欧美,日韩| 亚洲狠狠婷婷综合久久图片| 国产色婷婷99| 久久这里只有精品中国| 久久久国产成人免费| 亚洲av二区三区四区| 深爱激情五月婷婷| 夜夜躁狠狠躁天天躁| eeuss影院久久| 在线免费观看不下载黄p国产 | 91在线精品国自产拍蜜月| 免费av观看视频| 色哟哟·www| 欧美最黄视频在线播放免费| 亚洲乱码一区二区免费版| 亚洲人成伊人成综合网2020| 欧美三级亚洲精品| 色播亚洲综合网| 国产免费男女视频| 90打野战视频偷拍视频| 久久国产精品人妻蜜桃| 精品国产三级普通话版| 欧美黄色淫秽网站| 一级黄色大片毛片| 天美传媒精品一区二区| 中文字幕av在线有码专区| www.999成人在线观看| 久久精品国产亚洲av天美| 国产精品综合久久久久久久免费| 国产精品爽爽va在线观看网站| 亚洲欧美日韩高清在线视频| 99热只有精品国产| 久久久国产成人免费| 午夜福利在线观看免费完整高清在 | av欧美777| 夜夜夜夜夜久久久久| av天堂在线播放| 很黄的视频免费| 12—13女人毛片做爰片一| 性色avwww在线观看| 看十八女毛片水多多多| 在线观看美女被高潮喷水网站 | 亚洲真实伦在线观看| 久99久视频精品免费| 身体一侧抽搐| 色精品久久人妻99蜜桃| 成人永久免费在线观看视频| 琪琪午夜伦伦电影理论片6080| 亚洲av成人精品一区久久| 九九久久精品国产亚洲av麻豆| 亚洲av电影不卡..在线观看| 国产午夜精品久久久久久一区二区三区 | 欧美国产日韩亚洲一区| 色噜噜av男人的天堂激情| 蜜桃亚洲精品一区二区三区| 国产午夜精品久久久久久一区二区三区 | 淫妇啪啪啪对白视频| 在线免费观看的www视频| 国产又黄又爽又无遮挡在线| 91麻豆精品激情在线观看国产| 丁香六月欧美| 亚洲性夜色夜夜综合| 黄色日韩在线| 精品一区二区三区视频在线| 日本免费一区二区三区高清不卡| 国产美女午夜福利| 97碰自拍视频| 色精品久久人妻99蜜桃| 国产毛片a区久久久久| 91久久精品国产一区二区成人| 久久久久久久久久成人| 欧美性感艳星| 成人永久免费在线观看视频| 免费观看人在逋| 国产探花极品一区二区| 黄色视频,在线免费观看| 在线国产一区二区在线| 亚洲无线在线观看| 久久久久久久亚洲中文字幕 | 天堂影院成人在线观看| 国产精品一及| 国产色爽女视频免费观看| 精品午夜福利在线看| 啦啦啦观看免费观看视频高清| 亚洲国产欧洲综合997久久,| 亚洲天堂国产精品一区在线| 国产欧美日韩一区二区三| 色尼玛亚洲综合影院| 久久这里只有精品中国| 欧洲精品卡2卡3卡4卡5卡区| 少妇丰满av| 中出人妻视频一区二区| 日本与韩国留学比较| 午夜精品在线福利| 国产极品精品免费视频能看的| 日韩高清综合在线| 一区二区三区激情视频| 18禁裸乳无遮挡免费网站照片| 亚洲中文字幕日韩| 好男人在线观看高清免费视频| 1000部很黄的大片| 亚洲人成电影免费在线| 好男人电影高清在线观看| 很黄的视频免费| 村上凉子中文字幕在线| 特大巨黑吊av在线直播| 国产主播在线观看一区二区| www.熟女人妻精品国产| 免费电影在线观看免费观看| 怎么达到女性高潮| 亚洲av日韩精品久久久久久密| 午夜日韩欧美国产| 日本免费a在线| 亚洲av五月六月丁香网| 69人妻影院| 在线天堂最新版资源| 最新在线观看一区二区三区| 深夜精品福利| 人妻制服诱惑在线中文字幕| 亚洲人成电影免费在线| 搡女人真爽免费视频火全软件 | 好男人在线观看高清免费视频| 久久国产乱子免费精品| 中文字幕人妻熟人妻熟丝袜美| 亚洲内射少妇av| 搡老熟女国产l中国老女人| 国产精品女同一区二区软件 | 看片在线看免费视频| 日韩欧美三级三区| 欧美潮喷喷水| 听说在线观看完整版免费高清| 成人高潮视频无遮挡免费网站| 啪啪无遮挡十八禁网站| 国产精品1区2区在线观看.| 一本一本综合久久| 男人舔奶头视频| 在线看三级毛片| eeuss影院久久| 观看免费一级毛片| 琪琪午夜伦伦电影理论片6080| 亚洲,欧美,日韩| 老鸭窝网址在线观看| 国产精品一区二区性色av| 美女 人体艺术 gogo| 亚洲欧美日韩无卡精品| 国产成人啪精品午夜网站| 国产91精品成人一区二区三区| 高潮久久久久久久久久久不卡| 欧美性猛交黑人性爽| 欧美乱色亚洲激情| 一个人观看的视频www高清免费观看| 三级男女做爰猛烈吃奶摸视频| 成年人黄色毛片网站| 国产午夜福利久久久久久| 午夜激情福利司机影院| 日本 av在线| 国产在线男女| 美女cb高潮喷水在线观看| а√天堂www在线а√下载| 一区二区三区激情视频| 成熟少妇高潮喷水视频| or卡值多少钱| 国产一级毛片七仙女欲春2| 精品99又大又爽又粗少妇毛片 | 欧美乱妇无乱码| 日本五十路高清| 一卡2卡三卡四卡精品乱码亚洲| 丰满人妻一区二区三区视频av| 精品一区二区三区av网在线观看| 久久精品综合一区二区三区| 日韩欧美在线乱码| 淫秽高清视频在线观看| 亚洲,欧美,日韩| 午夜老司机福利剧场| 我的老师免费观看完整版| 国产亚洲欧美98| 日韩欧美一区二区三区在线观看| 精品一区二区三区av网在线观看| 噜噜噜噜噜久久久久久91| 成人高潮视频无遮挡免费网站|