• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Copper-induced formation of heterostructured Co3O4/CuO hollow nanospheres towards greatly enhanced lithium storage performance

    2024-04-05 02:28:58JunjunZhngHuiyingLuTinhoYoXinJiQingmioZhngLingjieMengJinminFengHongkngWng
    Chinese Chemical Letters 2024年2期

    Junjun Zhng ,Huiying Lu ,Tinho Yo ,Xin Ji ,Qingmio Zhng ,Lingjie Meng ,Jinmin Feng,Hongkng Wng,*

    a College of Geography & Environment,Xianyang Normal University,Xianyang 712000,China

    b State Key Lab of Electrical Insulation and Power Equipment,Center of Nanomaterials for Renewable Energy (CNRE),School of Electrical Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    c School of Chemistry,Xi’an Key Laboratory of Sustainable Energy Material Chemistry,and Instrumental Analysis Center,Xi’an Jiaotong University,Xi’an 710049,China

    Keywords: Lithium-ion batteries Co/Cu-glycerate Hollow nanospheres Co3O4/CuO heterostructure Electrochemical properties

    ABSTRACT We report a facile template-free fabrication of heterostructured Co3O4/CuO hollow nanospheres using pre-synthesized Co/Cu-glycerate as conformal precursor.The introduction of copper nitrate in the solvothermal reaction system of glycerol/isopropanol/cobalt nitrate readily induces the conversion from solid Co-glycerate to hollow Co/Cu-glycerate nanospheres,and the effect of the Co/Cu atomic ratio on the structure evolution of the metal glycerates as well as their corresponding oxides were investigated.When examined as anode materials for lithium-ion batteries,the well-defined Co3O4/CuO hollow nanospheres with Co/Cu molar ratio of 2.0 demonstrate excellent lithium storage performance,delivering a high reversible capacity of 930 mAh/g after 300 cycles at a current density of 0.5 A/g and a stable capacity of 650 mAh/g after 500 cycles even at a higher current density of 2.0 A/g,which are much better than their counterparts of bare CuO and Co3O4.The enhanced lithium storage performance can be attributed to the synergistic effect of the CuO and Co3O4 heterostructure with hollow spherical morphology,which greatly enhances the charge/electrolyte transfer and effectively buffers the volume changes upon lithiation/delithiation cycling.

    Lithium-ion batteries (LIBs) have been considered as one of the most promising electrochemical energy storage devices owing to their high energy/power density,environmental friendliness and long lifespan [1-7].However,with the increasing demand for higher energy density and better safety in large-scale energy storage fields such as electric vehicles and smart-grid,the current graphite anode of commercial LIBs could not meet these requirements due to its lower theoretical capacity (372 mAh/g) and the safety problem arising from the lithium dendrite in the low working potential (vs.Li/Li+) [8-12].Therefore,it is highly desired to explore high-performance anode materials for next-generation LIBs.

    As a kind of promising alternative anode for LIBs,transition metal oxides (TMOs) have received considerable attention owing to their high theoretical capacities,abundant reserve,high safety and affordable cost [13-15].Especially,Co3O4(890 mAh/g) and CuO (674 mAh/g) have attracted many interests because of their high theoretical capacities,easy preparation and wide availability[16-19].Nevertheless,the poor electrical conductivity and large volume expansion hinder their practical application,as the large volume changes upon lithiation/delithiation processes usually lead to electrode pulverization and thus resulting in fast capacity fading with poor cycling stability,while the poor electrical conductivity would result in the unsatisfied rate capability [20].To address these drawbacks,nanostructure engineering with dimensional/morphological control and heterostructure construction has been widely adopted,as the well-designed nanostructures,such as nanofibers,nanosheets and nanospheres with hollow/porous interiors,could efficiently shorten the lithium-ion diffusion paths,expose more ion storage sites,and facilitate the fast electron/ion transport [21,22].For instance,Wangetal.fabricated hollow Co3O4nanoparticle-assembled nanofibersviaelectrospinning and subsequent annealing,which displayed excellent cycle stability of~871.5 mAh/g after 500 cycles at 0.2 A/g [23].Jietal.developed a porous hollow carbon scaffold to anchor ultrafine Co3O4nanoparticles,which showed enhanced cycling stability and lithium storage capacity compared to bare Co3O4[24].

    Heterostructured hybrid electrodes consisting of different active materials usually exhibit enhanced reaction kinetics,which could efficiently improve the electrochemical performance [25,26].To date,various Co3O4/CuO hybrids with well-defined microstructures have been developed to enhance their lithium storage performance by virtue of their synergistic enhancement effect of the two components.For example,Wuetal.designed and prepared graphene quantum dots modified yolk-shell Co3O4@CuO microspheres,which displayed a high reversible capacity of 1054 mAh/g after 200 cycles at 0.1 A/g [27].Wangetal.prepared heterostructured core/shell arrays of Co3O4nanosheets decorated CuO nanowire on nickel foam,which demonstrated good cycle performance and high reversible capacity (1191 mAh/g with 90.9% capacity retention after 200 cycles at 0.2 A/g) and excellent rate capability (810 mAh/g after 500 cycles at 1 A/g) [28].Even though greatly enhanced lithium storage performances have been achieved,these fabrication processes are complicated and not easy for scale-up production.Herein,we developed a facile one-pot route to synthesize hollow Co3O4/CuO nanospheres by using solvothermally prepared Co/Cu-glycerate as conformal precursor and studied the effect of Co/Cu atomic ratio on the microstructure evolution of the metal glycerates and their derivate oxides obtained by calcination method.When investigated as an anode material for LIBs,the hollow Co3O4/CuO nanospheres displayed excellent lithium storage performance including high reversible capacity,outstanding cycling stability and superior rate capability (930 mAh/g after 300 cycles at 0.5 A/g and 650 mAh/g after 500 cycles even at 2.0 A/g),which is owing to the unique hollow heterogeneous nanostructure.

    Fig.1 illustrates the formation of hollow Co/Cu-glycerate and the derivate Co3O4/CuO nanospheres,which are preparedviasolvothermal method with subsequent calcination treatment (see more details in Supporting information).Typically,Co(NO3)2·6H2O and Cu(NO3)2·2.5H2O are dissolved in the mixture solution of isopropanol and glycerol,serving as precursor solution which is encapsulated in a Teflon vessel and reacted at 180 °C for 6 h.In this process,the Cu2+/Co2+metal ions are complexed with organic ligands through metal-hydroxyl interaction,forming uniform Co/Cu glycerate hollow nanospheres.As revealed by the thermogravimetric analysis (TGA),the Co/Cu-glycerate is thermally unstable and shows abrupt decomposition at around 260 °C with a total weight loss of~36.3 wt% (Fig.S1a in Supporting information),suggesting the organic component undergoes complete and fast combustion into gaseous species.Even further increasing the testing temperature,the weight still keeps constant and the residual is confirmed as Co3O4/CuO hybrid (Fig.S1b in Supporting information).

    Fig.1.Schematic illustration of the fabrication processes of the Co/Cu-glycerate and the resulting Co3O4/CuO hybrid with conformal hollow spherical morphology.

    To verify the effect of Cu ions on the formation of the hollow spherical structure,pure Co and Co/Cu ions were reacted with glycerol under solvothermal condition,forming spherical Co-glycerate with solid interiors and Co/Cu glycerate with hollow interiors,suggesting the introduction of Cu ions induce the formation of welldefined hollow nanospheres,which will be in favor of enhanced charge transferability and cycling stability.Fig.2a shows the scanning electron microscope (SEM) image of the Co-glycerate spheres,which display an average diameter of around 500 nm with smooth surface.Fig.2b shows the high-angle annular dark field (HAADF)scanning transmission electron microscopy (STEM) image of a single Co-glycerate sphere with solid structure,in which the Co and O elements are well distributed and overlapped within the sphere(Figs.2c and d).Interestingly,when substituting part of Co ions with Cu ions,the solid-to-hollow evolution is observed.As shown in Figs.2e and f,the as-prepared Co/Cu glycerate with Co/Cu molar ratio of 2.0 shows well-defined monodispersed hollow spherical morphology,and the hollow Co/Cu glycerate spheres show an average diameter of around 500 nm and a shell thickness of around 100 nm but with rough surface,which is composed of downy species.In addition,the corresponding elemental energydispersive X-ray spectrometer (EDS) maps of the single Cu/Coglycerate sphere intuitively illustrate the well-overlapped distribution of Cu and Co,indicating the uniform formation of the Co/Cuglycerol complex (Figs.2g and h).Moreover,Table S1 (Supporting information) compares the structure evolution upon varying the molar ratio of Co/Cu.Note that the pure Cu-glycerate displays irregular aggregate morphology,which consists of randomly packed nanoparticles.With increasing the Co/Cu molar ratio from 0.5 to 1.0,the as-prepared Co/Cu-glycerates show hollow spherical morphology but with poor uniformity and broken/opened structure.These results demonstrate that the Co-glycerol complex is prone to form spherical aggregation,while the Cu-glycerol complex would preferentially aggregate loosely,thus the synergistic interaction of Co-Cu ions and glycerol induces the hollowing of the Co/Cu-glycerate.

    The metal-glycerol complex can be an ideal conformal template to synthesize the oxide counterpart,and the bare Co,Cu and various Co/Cu glycerates readily converted into oxide phases with almost the same morphology (Table S1 and Fig.3).Fig.3a shows the SEM image of the well-defined Co3O4/CuO hollow spheres with uniform diameter and monodispersing.The transmission electron microscope (TEM) image reveals the hollow spheres show a shell thickness of~80 nm,which is composed of densely packed nanoparticles (Figs.3b and c).Figs.3d and e show the high-resolution TEM (HRTEM) images with different lattice fringes,which can be ascribed to the Co3O4and the CuO,respectively.In Fig.3d,two sets of lattice fringes showd-spacings of 0.47 and 0.28 nm,which are correspondingly indexed to the (111) and(ˉ220) planes of cubic Co3O4(JCPDS No.43-1003) with an angle of 90° [29,30],consistent with the theoretical value.Fig.3e shows another two sets of lattice fringes with the same d spacing of 0.30 nm and an angle of around 120°,which can be well ascribed to the (113)1/2and (11ˉ3)1/2of monoclinic CuO (JCPDS No.48-1548)[31].Note that the (113)1/2and (11ˉ3)1/2reflect the 1/2 positions of (113) and (11ˉ3) which is two times as much as that of (113)plane [32].Fig.3f shows the HAADF STEM image of a single hollow sphere,whose EDS maps are correspondingly shown in Figs.3g-j.It is noteworthy that the Co and O elements are well overlapped,while accumulation of Cu element can be observed,suggesting the phase separation of Co3O4and CuO to some extent.

    Fig.3.(a) SEM,(b) TEM and (c) STEM images of the Co3O4/CuO hollow spheres.HRTEM images taken at different areas showing the lattice fringes of (d) Co3O4 and (e)CuO.(f) HAADF STEM image of a single hollow sphere with corresponding EDS maps of (g) Co,(h) Cu,(i) O and (j) the overlapping map of Co/Cu elements.

    X-ray diffraction (XRD) measurements were also conducted to verify the phase structure of the products.As shown in Fig.S2a(Supporting information),the products prepared with single metal source show typical diffraction peaks of Co3O4(JCPDS No.43-1003) and CuO (JCPDS No.48-1548),respectively,suggesting their pure phase.Fig.S2b (Supporting information) depicts the XRD patterns of Co3O4/CuO with different molar ratios,where the typical peaks for both Co3O4and CuO can be detected,suggesting their hybrid structure.As the Co/Cu molar ratio gradually decreases from 2/1 to 1/2,the peaks at 31.3° and 36.8° (Co3O4) become weaker,and the typical peaks for CuO (35.5° and 38.7°) become much more prominent,which is in good agreement with the content ratio in preparation.

    The chemical compositions and oxidation states of the asprepared Co3O4/CuO hollow spheres were revealed by X-ray photoelectron spectroscopy (XPS) analysis,and the survey spectrum clearly indicates the presence of Co,Cu and O elements (Fig.S3a in Supporting information).As shown in the high-resolution Co 2p XPS spectrum (Fig.S3b in Supporting information),two prominent peaks at 779.7 and 794.6 eV are typically assigned to the Co 2p3/2and Co 2p1/2of the Co3O4phase,respectively.In addition,two shake-up satellite peaks (“Sat”) appear at 789.4 and 803.6 eV.The Co 2p spectrum can be further fitted into two spin-orbit doublets,in which the peaks at around 779.7 and 794.6 eV are ascribed to Co3+,while the peaks at 781.9 and 796.6 eV relate to Co2+[33-36].Fig.S3c (Supporting information) shows the Cu 2p XPS spectrum,in which the two peaks at 933.9 and 953.5 eV are correspondingly assigned to the Cu 2p3/2and Cu 2p1/2,while three fitted satellite peaks appear at 941.0,943.4 and 961.8 eV,indicating the oxidation state of Cu2+as CuO in the hybrid [37,38].In the O 1s XPS spectrum (Fig.S3d in Supporting information),three characteristic peaks can be fitted and located at 529.6,531.2 and 532.9 eV,which can be ascribed to metal-oxygen bonds,the lattice oxygen,and the surface oxygen originated from the physically/chemically adsorbed water,respectively [39].

    To verify the efficacy of the Co3O4/CuO heterostructure as anode for LIBs,the lithium storage properties of Co3O4,CuO and various Co3O4/CuO were examined in half-cells using lithium metal as counter/reference electrode.Cyclic voltammograms (CV) were performed to investigate the lithium storage mechanism,and Fig.4a shows the typical CV curves of Co3O4/CuO for the first five cycles at 0.2 mV/s.In the first cathodic scan,three peaks are observed,and the minor cathodic peaks at 1.64 V can be attributed to the reduction of CuO into Cu2O [40],while the prominent peak at 0.96 V accompanied by a minor peak at 0.70 V can be ascribed to the reduction of Co3O4into Co and reduction of Cu2O into Cu,as well as the formation of solid electrolyte interface (SEI) film [41,42],in which the prominent peak at 0.96 V disappears in the following cycles,indicating the irreversible capacity loss owing to the structure destruction and the formation of SEI film [43,44].In the following four cycles,two newly merged cathodic peaks steadily appear at 0.92/1.16 V,corresponding to the highly reversible reduction of the Co/Cu oxides.In the anodic sweep,a broad peak at 2.07 V can be attributed to the oxidation of the metallic Cu and Co to CuO and Co3O4,respectively [45,46].The anodic peak in the following cycles remains similar,suggesting good reversibility for the redox reaction.Moreover,the CV curves for the bare Co3O4and CuO are provided in Fig.S4 (Supporting information),and the Co3O4/CuO electrode displays a smaller potential difference (0.94 V) between the anodic/cathodic peaks (ΔE) than those for the bare Co3O4(1.07 V) and the bare CuO (1.34 V) electrodes(Fig.4b),suggesting the faster kinetics of Co3O4/CuO [47].

    Fig.4.(a) CV curves of the Co3O4/CuO electrode for the first five cycles at 0.2 mV/s,and (b) comparison of the 5th CV curves for the CuO,Co3O4 and Co3O4/CuO electrodes.(c) Galvanostatic discharge/charge profiles of the Co3O4/CuO electrode at 0.2 A/g.(d) Rate performance at different current densities for the CuO,Co3O4 and Co3O4/CuO electrodes with different Co/Cu molar ratios.(e) Cycle performances of the optimized Co3O4/CuO electrode at 0.5 and 2.0 A/g.

    Fig.4c shows the galvanostatic discharge/charge profiles of the Co3O4/CuO electrode at different cycles at 0.2 A/g.The first discharge/charge capacities are 1900/1058 mAh/g with an initial Coulombic efficiency (CE) of 55.7%.The capacity loss in the first cycle is due to the reversible formation of SEI film [48].In the 2nd/3rdcycles,the CEs increase to 93.0%/95.0%,indicating the gradually increased reversibility of the redox reaction.With further increasing the cycling to the 50thand 100thcycles,the charge/discharge capacities increase,which is consistent with the rate test.Fig.4d displays the rate performance of the CuO,Co3O4and Co3O4/CuO electrodes with different Co/Cu molar ratios with current densities ranging from 0.2 A/g to 5.0 A/g,among which the Co3O4/CuO(Co/Cu=2/1) demonstrates the highest lithium storage capacity,delivering high reversible capacities of 1023,974,930,870 and 760 mAh/g each after 5 cycles at 0.2,0.5,1.0,2.0 and 5.0 A/g,respectively.When cycling again at 0.2 A/g,the Co3O4/CuO (Co/Cu=2/1)electrode shows steadily increased reversible capacity,delivering a high discharge capacity of 1156 mAh/g after another 20 cycles.However,the pure Co3O4and Co3O4/CuO (Co/Cu=1/1 and 1/2)electrodes suffer from capacity fading as the current increases,suggesting their poor rate capability.It is worth noting that the initial capacity of the Co3O4/CuO electrodes shows a downward trend as the Co concentration decreases,as the Co3O4counterpart would offer more theoretical capacity than that for CuO.Interestingly,the Co3O4/CuO (Co/Cu=2/1 and 1/1) almost show similar initial capacity compared to pure Co3O4electrode,which suggests that the heterostructured Co3O4/CuO with hollow structure would provide more lithium storage sites.In contrast,the pure CuO electrode displays the worst cycle and rate performances with the lowest discharge capacity of 390 mAh/g at 0.2 A/g and only 50 mAh/g at 5.0 A/g.Furthermore,Fig.S5 (Supporting information) compares the cycling performances of the CuO,Co3O4and Co3O4/CuO electrodes with different Co/Cu molar ratios at high current density,displaying the trend of descending in the initial cycles and then ascending,which can be seen in most transition metal oxide electrodes.The phenomena with continuous capacity increase can be widely observed in the transition metal-based anodes,which was generally attributed to the continuous activation of the electrode materials and the reversible formation/decomposition of electrolytederived surface layer,thus bringing additional charge storage capacity [49,50].When cycling at 0.5 A/g (Fig.4e),the Co3O4/CuO electrode exhibits a high reversible capacity of 883.5 mAh/g in the 2ndcycle and then the lowest capacity of 797.5 mAh/g at the 57thcycle,which may be due to the formation of thick SEI layer that retards electron transport and extends the diffusion length for lithium ions [31,51,52].In the subsequent cycles,the capacity increases to 938.6 mAh/g with a capacity retention of 106.2% after 300 cycles.Even cycling at 2.0 A/g (Fig.4e),the discharge capacity retains 693.4 mAh/g after 500 cycles,which is higher than most of other previously reported Co3O4or CuO-based anodes (Table S2 in Supporting information).Electrochemical impedance spectroscopy (EIS) measurements were also conducted to reveal the charge transfer kinetics of these electrodes,which clearly reveals that the Co3O4/CuO electrode exhibits the smallest charge transfer resistance (Rct) of 71.4Ω(Fig.S6 and Table S3 Supporting information),as compared with the CuO (109.1Ω) and Co3O4(267.4Ω) electrodes.

    The structural stability of the hollow Co3O4/CuO nanospheres upon lithiation/delithiation cycling was also examined byex-situTEM analysis (Fig.S7 in Supporting information),revealing that the hollow spherical shape of the discharged and charged Co3O4/CuO electrode in the initial cycle is well preserved,even after 300 cycles at 0.5 A/g.In addition,EDS maps clearly display that the Co and Cu elements are uniformly distributed and well overlapped with the discharged/charged Co3O4/CuO.These results demonstrate that the hollow Co3O4/CuO heterostructure can efficiently buffer the volume changes upon cycling,indicating its robust structure stability as an anode material for LIBs.

    In summary,we demonstrated a facile way to construct heterostructured Co3O4/CuO with well-defined hollow spherical morphology,using the solvothermally pre-synthesized Co/Cu-glycerate as the conformal template.The introduction of Cu species not only induced the formation of hollow Co/Cu-glycerate nanospheres from solid Co-glycerate nanospheres but also greatly enhanced the lithium storage performance of the Co/Cu-glycerate derived Co3O4/CuO.When examined as LIB anode,the optimized Co3O4/CuO hollow heterostructure displayed excellent lithium storage performance with high specific capacity (1156 mAh/g at 0.2 A/g),superior rate performance and outstanding cycling stability(930 mAh/g after 300 cycles at 0.5 A/g and 650 mAh/g after 500 cycles even at 2.0 A/g).Electrochemical analyses revealed that the Co3O4/CuO heterostructure demonstrated the synergistic enhancement effect with higher charge transfer rate and faster reaction kinetics as compared with the bare Co3O4and CuO counterparts,while the unique hollow spherical structure exhibited robust structural stability and effectively buffered the volume changes upon lithiation/delithiation cycling.More importantly,we developed a novel synthetic strategy to fabricate well-defined hollow spherical metal glycerates/oxides,which can be promising for the development of high-performance electrode materials for energy-related applications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    This work was supported by the National Natural Science Foundation of China (No.52077175).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108450.

    女的被弄到高潮叫床怎么办| 99久久久亚洲精品蜜臀av| 成人美女网站在线观看视频| 淫妇啪啪啪对白视频| 日本熟妇午夜| 麻豆久久精品国产亚洲av| 亚洲真实伦在线观看| 国产私拍福利视频在线观看| 国产一区二区亚洲精品在线观看| 亚洲av熟女| 午夜精品在线福利| 99久国产av精品| 亚洲三级黄色毛片| 国产精品人妻久久久久久| 插逼视频在线观看| 亚洲真实伦在线观看| 亚洲av免费在线观看| 久久久久久大精品| 春色校园在线视频观看| 亚洲精品456在线播放app| 国产探花在线观看一区二区| 欧美激情久久久久久爽电影| 又粗又爽又猛毛片免费看| 国产精品一及| 最近中文字幕高清免费大全6| av女优亚洲男人天堂| 亚洲图色成人| 欧美激情国产日韩精品一区| ponron亚洲| 九九久久精品国产亚洲av麻豆| 欧美性猛交╳xxx乱大交人| 禁无遮挡网站| 国产91av在线免费观看| 午夜免费男女啪啪视频观看 | 亚洲综合色惰| a级毛片a级免费在线| 中国国产av一级| 老师上课跳d突然被开到最大视频| 天美传媒精品一区二区| 露出奶头的视频| 岛国在线免费视频观看| 美女cb高潮喷水在线观看| 99久久精品国产国产毛片| 亚洲精品久久国产高清桃花| 国产精品美女特级片免费视频播放器| 精品日产1卡2卡| 亚洲av电影不卡..在线观看| 免费在线观看成人毛片| 国产乱人偷精品视频| 国产精品人妻久久久久久| 中文亚洲av片在线观看爽| 国产三级在线视频| 在线免费观看的www视频| 日韩欧美免费精品| 最近在线观看免费完整版| 成人亚洲精品av一区二区| 国产精品野战在线观看| 免费无遮挡裸体视频| 男人舔奶头视频| 国产蜜桃级精品一区二区三区| 午夜福利18| 欧美日韩综合久久久久久| 国产伦一二天堂av在线观看| 精品99又大又爽又粗少妇毛片| 久久人人爽人人片av| 午夜福利在线观看吧| 免费看美女性在线毛片视频| 国产精品三级大全| 亚洲国产欧美人成| 国产亚洲av嫩草精品影院| 亚洲国产精品久久男人天堂| 精品一区二区三区av网在线观看| 国产黄色视频一区二区在线观看 | 91麻豆精品激情在线观看国产| 一区福利在线观看| 国产一区二区在线观看日韩| 色在线成人网| 国产高清激情床上av| 国产高清有码在线观看视频| 国产69精品久久久久777片| 看片在线看免费视频| 成年女人看的毛片在线观看| 日韩精品有码人妻一区| 91在线精品国自产拍蜜月| 久久久久性生活片| 99久久精品一区二区三区| 日本-黄色视频高清免费观看| 久久久成人免费电影| 久久6这里有精品| 最新在线观看一区二区三区| 亚洲人成网站在线观看播放| 我的老师免费观看完整版| 久久久久久伊人网av| 欧美zozozo另类| 精品午夜福利视频在线观看一区| 国产伦在线观看视频一区| 久久欧美精品欧美久久欧美| 天堂√8在线中文| 禁无遮挡网站| 丝袜喷水一区| .国产精品久久| 3wmmmm亚洲av在线观看| 天美传媒精品一区二区| 久久精品国产99精品国产亚洲性色| 看黄色毛片网站| 一区二区三区高清视频在线| 我的女老师完整版在线观看| 一边摸一边抽搐一进一小说| 国产成年人精品一区二区| 国产不卡一卡二| 搡老妇女老女人老熟妇| 欧美丝袜亚洲另类| 赤兔流量卡办理| 日韩人妻高清精品专区| 成年女人永久免费观看视频| 人妻少妇偷人精品九色| 精品久久久噜噜| 亚洲第一区二区三区不卡| 日韩欧美三级三区| 高清毛片免费观看视频网站| 国产综合懂色| 99视频精品全部免费 在线| 国产蜜桃级精品一区二区三区| 亚洲高清免费不卡视频| 色尼玛亚洲综合影院| 一个人看的www免费观看视频| avwww免费| 欧美激情在线99| 久久99热6这里只有精品| 亚洲图色成人| 一级av片app| 少妇人妻一区二区三区视频| 成人特级黄色片久久久久久久| 欧美日韩综合久久久久久| .国产精品久久| 91在线观看av| 熟女电影av网| 色综合亚洲欧美另类图片| 亚洲五月天丁香| 欧美国产日韩亚洲一区| 日本成人三级电影网站| 高清日韩中文字幕在线| 毛片女人毛片| 黄色欧美视频在线观看| 日韩人妻高清精品专区| 激情 狠狠 欧美| 欧美xxxx性猛交bbbb| 少妇的逼水好多| 男人舔奶头视频| 成人漫画全彩无遮挡| 亚洲一区高清亚洲精品| 日韩国内少妇激情av| 精华霜和精华液先用哪个| 岛国在线免费视频观看| 亚洲第一电影网av| 国产视频一区二区在线看| 国产精品久久久久久精品电影| 夜夜爽天天搞| 久久人妻av系列| 三级国产精品欧美在线观看| 久久久久久国产a免费观看| 99热6这里只有精品| 中文资源天堂在线| 欧美日韩精品成人综合77777| 69av精品久久久久久| 国内久久婷婷六月综合欲色啪| 在线观看免费视频日本深夜| 国产男人的电影天堂91| 免费在线观看成人毛片| 免费看光身美女| 亚洲欧美成人综合另类久久久 | 日韩欧美三级三区| 亚洲国产精品成人久久小说 | 亚洲av中文av极速乱| 我要看日韩黄色一级片| 久久草成人影院| 亚洲精品一卡2卡三卡4卡5卡| 日日撸夜夜添| 99在线视频只有这里精品首页| 亚洲av中文字字幕乱码综合| 无遮挡黄片免费观看| 色播亚洲综合网| 久久久a久久爽久久v久久| 12—13女人毛片做爰片一| 一级毛片电影观看 | 深爱激情五月婷婷| 成人亚洲精品av一区二区| 精品不卡国产一区二区三区| 欧美精品国产亚洲| a级毛色黄片| 成人高潮视频无遮挡免费网站| 亚洲国产精品sss在线观看| 亚洲熟妇熟女久久| 亚洲内射少妇av| 97超碰精品成人国产| 亚洲性久久影院| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久亚洲av鲁大| 国产高清激情床上av| 国产成年人精品一区二区| 69av精品久久久久久| 亚洲欧美清纯卡通| 最近在线观看免费完整版| 直男gayav资源| 中文资源天堂在线| 欧美日韩一区二区视频在线观看视频在线 | 亚洲熟妇中文字幕五十中出| 在线免费十八禁| 日日摸夜夜添夜夜添av毛片| 少妇丰满av| 午夜免费激情av| 成人精品一区二区免费| 色噜噜av男人的天堂激情| 久久天躁狠狠躁夜夜2o2o| 少妇人妻精品综合一区二区 | 成人永久免费在线观看视频| 日韩欧美精品v在线| 国产国拍精品亚洲av在线观看| 亚洲国产精品成人久久小说 | 国产成人freesex在线 | 国产亚洲精品综合一区在线观看| 2021天堂中文幕一二区在线观| 99久久无色码亚洲精品果冻| 国产色婷婷99| 午夜影院日韩av| 久久天躁狠狠躁夜夜2o2o| 免费人成在线观看视频色| 网址你懂的国产日韩在线| 色综合亚洲欧美另类图片| 久99久视频精品免费| 久久久久久久久久成人| 国产精品久久久久久精品电影| 久99久视频精品免费| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美成人综合另类久久久 | 午夜福利在线观看吧| 亚洲丝袜综合中文字幕| www日本黄色视频网| 久久九九热精品免费| 搡老熟女国产l中国老女人| 99久久精品热视频| 午夜爱爱视频在线播放| 看免费成人av毛片| 久久这里只有精品中国| 成人av在线播放网站| 亚洲最大成人中文| 九九久久精品国产亚洲av麻豆| 午夜福利成人在线免费观看| 高清毛片免费看| 日韩欧美一区二区三区在线观看| 国产极品精品免费视频能看的| 国产探花极品一区二区| 国产成人精品久久久久久| 男人舔奶头视频| 哪里可以看免费的av片| 精品免费久久久久久久清纯| 亚洲国产精品成人久久小说 | 麻豆精品久久久久久蜜桃| 老女人水多毛片| 99热精品在线国产| 插逼视频在线观看| 男女啪啪激烈高潮av片| 亚洲自偷自拍三级| 国产精品爽爽va在线观看网站| 人妻少妇偷人精品九色| 99热这里只有是精品50| 黄色配什么色好看| 无遮挡黄片免费观看| 最近视频中文字幕2019在线8| 欧美精品国产亚洲| 精品熟女少妇av免费看| 亚洲美女黄片视频| 国产私拍福利视频在线观看| 欧美性猛交╳xxx乱大交人| 99riav亚洲国产免费| 干丝袜人妻中文字幕| 麻豆一二三区av精品| 亚洲成人久久性| 国产蜜桃级精品一区二区三区| 超碰av人人做人人爽久久| 在线免费十八禁| 久久久精品大字幕| 国产老妇女一区| 大型黄色视频在线免费观看| 国产精品人妻久久久影院| 深爱激情五月婷婷| 成人二区视频| 亚洲经典国产精华液单| 国产精品爽爽va在线观看网站| 老司机福利观看| 精品久久久久久久久久免费视频| 国产片特级美女逼逼视频| 久久久久久久亚洲中文字幕| 麻豆久久精品国产亚洲av| 一进一出好大好爽视频| 别揉我奶头~嗯~啊~动态视频| 中文字幕久久专区| 婷婷精品国产亚洲av在线| 18禁在线播放成人免费| 亚洲久久久久久中文字幕| 久久精品91蜜桃| 亚洲综合色惰| 最近在线观看免费完整版| 一级毛片aaaaaa免费看小| 午夜福利18| 一区二区三区四区激情视频 | 一区二区三区免费毛片| 日本三级黄在线观看| 国产高清不卡午夜福利| 在线观看一区二区三区| 最近手机中文字幕大全| 精品人妻一区二区三区麻豆 | 欧美精品国产亚洲| 国产日本99.免费观看| 熟妇人妻久久中文字幕3abv| 婷婷色综合大香蕉| 日本欧美国产在线视频| 天堂av国产一区二区熟女人妻| 此物有八面人人有两片| 欧美性猛交╳xxx乱大交人| 男人狂女人下面高潮的视频| 亚洲精品一卡2卡三卡4卡5卡| 黑人高潮一二区| 熟女人妻精品中文字幕| 欧美最黄视频在线播放免费| 国产男靠女视频免费网站| 毛片一级片免费看久久久久| 亚洲欧美日韩高清在线视频| 婷婷精品国产亚洲av在线| 91在线精品国自产拍蜜月| 亚洲国产精品久久男人天堂| 国产毛片a区久久久久| 香蕉av资源在线| 国模一区二区三区四区视频| 亚洲最大成人手机在线| 天堂av国产一区二区熟女人妻| 亚洲精品一区av在线观看| 中国美女看黄片| 国产在线精品亚洲第一网站| 在线天堂最新版资源| 女生性感内裤真人,穿戴方法视频| 少妇熟女欧美另类| 真人做人爱边吃奶动态| 国产成人精品久久久久久| 国产一区二区在线av高清观看| 97超级碰碰碰精品色视频在线观看| av在线亚洲专区| 日韩精品青青久久久久久| 男女边吃奶边做爰视频| 少妇熟女欧美另类| 小蜜桃在线观看免费完整版高清| 变态另类丝袜制服| 校园人妻丝袜中文字幕| 99久久精品一区二区三区| 在线免费观看的www视频| 欧美极品一区二区三区四区| 国产男靠女视频免费网站| 别揉我奶头~嗯~啊~动态视频| 99视频精品全部免费 在线| 日本免费a在线| 亚洲av中文字字幕乱码综合| 天堂动漫精品| 国产又黄又爽又无遮挡在线| 久久精品国产自在天天线| 一级黄片播放器| 日本黄色视频三级网站网址| 亚洲五月天丁香| 国产精品不卡视频一区二区| 99久久精品热视频| 99久国产av精品国产电影| 亚洲人与动物交配视频| 精品一区二区三区视频在线| 男女那种视频在线观看| 我的老师免费观看完整版| 亚洲欧美成人精品一区二区| 成人永久免费在线观看视频| 日韩制服骚丝袜av| 禁无遮挡网站| 国产在视频线在精品| 三级经典国产精品| 精品久久久久久久久av| 免费黄网站久久成人精品| 国产免费一级a男人的天堂| 一夜夜www| 中文在线观看免费www的网站| 一区二区三区高清视频在线| 国国产精品蜜臀av免费| 麻豆精品久久久久久蜜桃| 国产精品一区二区三区四区免费观看 | 久久精品夜夜夜夜夜久久蜜豆| 亚洲四区av| 国产精品亚洲美女久久久| 久久久成人免费电影| 国产黄色视频一区二区在线观看 | 亚洲四区av| 尾随美女入室| 91av网一区二区| 午夜福利在线观看吧| 乱码一卡2卡4卡精品| 免费无遮挡裸体视频| 免费看a级黄色片| 给我免费播放毛片高清在线观看| 中国美白少妇内射xxxbb| 久久精品国产清高在天天线| 韩国av在线不卡| 精品一区二区三区视频在线观看免费| 国产黄a三级三级三级人| 美女高潮的动态| 欧美日韩一区二区视频在线观看视频在线 | 两个人视频免费观看高清| 麻豆av噜噜一区二区三区| 日韩,欧美,国产一区二区三区 | 精品久久久噜噜| 免费在线观看影片大全网站| a级毛片免费高清观看在线播放| 亚洲精品乱码久久久v下载方式| 三级经典国产精品| 久久久成人免费电影| 免费观看的影片在线观看| 小蜜桃在线观看免费完整版高清| 美女大奶头视频| 岛国在线免费视频观看| 国产久久久一区二区三区| 三级国产精品欧美在线观看| 淫秽高清视频在线观看| 女的被弄到高潮叫床怎么办| 身体一侧抽搐| 男女之事视频高清在线观看| 国产大屁股一区二区在线视频| 悠悠久久av| 露出奶头的视频| 国产av一区在线观看免费| 国产精品久久久久久久电影| 免费不卡的大黄色大毛片视频在线观看 | 美女大奶头视频| 91久久精品国产一区二区成人| 亚洲国产精品久久男人天堂| 白带黄色成豆腐渣| 国产黄a三级三级三级人| 国产中年淑女户外野战色| 国产伦在线观看视频一区| 我的女老师完整版在线观看| 日本撒尿小便嘘嘘汇集6| 村上凉子中文字幕在线| 久久国内精品自在自线图片| 久久久久国产网址| 97在线视频观看| 色尼玛亚洲综合影院| 蜜臀久久99精品久久宅男| 欧美成人一区二区免费高清观看| 欧美3d第一页| 久久久久免费精品人妻一区二区| 男人舔女人下体高潮全视频| 在现免费观看毛片| 看片在线看免费视频| 欧美日韩一区二区视频在线观看视频在线 | 亚洲成a人片在线一区二区| 91狼人影院| 免费看a级黄色片| 欧美在线一区亚洲| 日本在线视频免费播放| 国产一级毛片七仙女欲春2| 91久久精品国产一区二区三区| 亚洲图色成人| 美女黄网站色视频| 日韩大尺度精品在线看网址| 国产一区二区亚洲精品在线观看| 国产亚洲精品av在线| 97在线视频观看| 男女那种视频在线观看| 少妇被粗大猛烈的视频| 欧美色视频一区免费| 中文字幕av在线有码专区| 国产精品av视频在线免费观看| 久久精品夜色国产| 亚洲最大成人中文| 久久久久久伊人网av| 在线免费十八禁| 少妇高潮的动态图| 俄罗斯特黄特色一大片| 中文字幕人妻熟人妻熟丝袜美| 此物有八面人人有两片| 中国美女看黄片| 欧美人与善性xxx| 久久99热这里只有精品18| 免费看日本二区| 一区二区三区高清视频在线| 亚洲五月天丁香| 亚洲人成网站在线观看播放| 婷婷六月久久综合丁香| 中文字幕精品亚洲无线码一区| 日本-黄色视频高清免费观看| 亚洲国产精品成人综合色| 国产精品不卡视频一区二区| 亚洲av成人av| 国产 一区 欧美 日韩| 最新中文字幕久久久久| 99热这里只有是精品在线观看| 老熟妇乱子伦视频在线观看| 国产精品女同一区二区软件| 成人美女网站在线观看视频| 2021天堂中文幕一二区在线观| 麻豆成人午夜福利视频| .国产精品久久| 嫩草影院新地址| 午夜视频国产福利| 欧美性感艳星| 国产黄片美女视频| 亚洲四区av| 此物有八面人人有两片| 亚洲欧美精品综合久久99| 亚洲欧美成人综合另类久久久 | 国产精品美女特级片免费视频播放器| 国产精品福利在线免费观看| 高清毛片免费看| 亚洲18禁久久av| 天堂av国产一区二区熟女人妻| 偷拍熟女少妇极品色| 亚洲av五月六月丁香网| 亚洲av免费高清在线观看| ponron亚洲| 性欧美人与动物交配| 九九久久精品国产亚洲av麻豆| 午夜精品一区二区三区免费看| 露出奶头的视频| 日韩精品中文字幕看吧| 国产亚洲av嫩草精品影院| 又粗又爽又猛毛片免费看| 欧美中文日本在线观看视频| 一进一出好大好爽视频| 国产激情偷乱视频一区二区| 最近中文字幕高清免费大全6| 女同久久另类99精品国产91| 国产精品美女特级片免费视频播放器| 日本色播在线视频| 国产大屁股一区二区在线视频| 男女边吃奶边做爰视频| 国产成人freesex在线 | 久久欧美精品欧美久久欧美| 亚洲av电影不卡..在线观看| 亚洲av免费在线观看| 日韩欧美在线乱码| 日韩av在线大香蕉| 欧美日韩一区二区视频在线观看视频在线 | 六月丁香七月| 91久久精品电影网| 国产精品久久久久久久久免| 国产精品国产三级国产av玫瑰| 少妇的逼水好多| 69人妻影院| 免费观看在线日韩| 99热这里只有是精品在线观看| 久久亚洲精品不卡| 99热精品在线国产| 亚洲av第一区精品v没综合| 在线天堂最新版资源| 在线免费观看不下载黄p国产| 一级a爱片免费观看的视频| 观看免费一级毛片| 中国国产av一级| 亚洲专区国产一区二区| 一进一出抽搐动态| 精品久久久久久久久亚洲| 99热这里只有是精品50| 深爱激情五月婷婷| 九九在线视频观看精品| 51国产日韩欧美| avwww免费| 大又大粗又爽又黄少妇毛片口| av在线天堂中文字幕| 日本成人三级电影网站| 非洲黑人性xxxx精品又粗又长| 久久亚洲精品不卡| 日韩一区二区视频免费看| 日本爱情动作片www.在线观看 | 麻豆乱淫一区二区| 国产蜜桃级精品一区二区三区| 免费一级毛片在线播放高清视频| 久久久久久大精品| 国产精品人妻久久久久久| 国产精品爽爽va在线观看网站| 国产精品野战在线观看| 成年女人永久免费观看视频| av专区在线播放| 日日撸夜夜添| 久久久久精品国产欧美久久久| av免费在线看不卡| 亚洲在线观看片| 精品久久久久久久久av| 黄色欧美视频在线观看| 天堂动漫精品| 国产色婷婷99| 床上黄色一级片| a级一级毛片免费在线观看| 九九热线精品视视频播放| 国产亚洲精品综合一区在线观看| 久久久精品欧美日韩精品| 亚洲无线观看免费| 免费大片18禁| 久久久久国产网址| 麻豆成人午夜福利视频| 无遮挡黄片免费观看| 国产成人a区在线观看| 欧美性猛交╳xxx乱大交人| 精品少妇黑人巨大在线播放 | 亚洲精品国产成人久久av| 欧美最新免费一区二区三区| 国产中年淑女户外野战色| 免费av毛片视频| 日日摸夜夜添夜夜添av毛片| 一级毛片我不卡| 欧美又色又爽又黄视频| 亚洲天堂国产精品一区在线| 俄罗斯特黄特色一大片| 夜夜看夜夜爽夜夜摸|