• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Seiberg-Witten/Whitham Equations and Instanton Corrections in N=2 Supersymmetric Yang-Mills Theory?

    2018-06-11 12:21:14JiaLiangDai戴佳亮andEnGuiFan范恩貴
    Communications in Theoretical Physics 2018年5期

    Jia-Liang Dai(戴佳亮) and En-Gui Fan(范恩貴)

    School of Mathematical Science,Fudan University,Shanghai 200433,China

    1 Introduction

    The solution of exact low energy effective action in N=2 supersymmetric Yang-Mills theory with SU(2)gauge group was obtained by Seiberg and Witten in Ref.[1]and their work have been generalized to the other higher rank gauge group SU(n),SO(n)and Sp(n)without or with matter hypermultiplets in the fundamental representation as well as to the exceptional group.The key analysis in Ref.[1]was that the quantum moduli space of N=2 supersymmetric gauge theories coupled with or without hypermultiplets could be naturally identi fi ed with the moduli space of certain hyperelliptic curves or Riemann surfaces.More specifically,with the help of these hyperelliptic curves we can describe the low energy effective action by a single holomorphic function F called prepotential and the exact solution for the prepotential is completely determined from the period integrals of a meromorphic differential on the hyperelliptic curves.[2?4]In general,the expression of prepotential F in the weakcoupling region may be divided into three parts:classical part Fclass,perturbative part Fpertwhich arises only from one-loop effects,and a sum of n-instanton part Fnin[5?6]

    it is well known that various kinds of methods have been developed to derive the prepotential from the Seiberg-Witten curves such as hypergeometric functions,[3]Picard-Fuchs equations[7?12]and the renormalization group type equations,[13]however,their complexity increases rapidly as the rank of the gauge group is large,even without matter hypermultiplets.In addition,another important observation about prepotential was noticed by Nekrasov[14]who introduced a partition function which is the generating function of the integral of equivariant cohomology class on the moduli space of framed instantons and showed[15]that the logarithm of this partition function is the instanton part of the Seiberg-Witten prepotential in N=2 supersymmetric four-dimensional gauge theory with gauge group SU(n).Meanwhile,Nakajima and Yoshioka[16]independently proved Nekrasov’s conjecture using the blowup techniques and Hilbert scheme which relates the Seiberg-Witten curves,prepotential and partition function together.These give a framework for understanding the instantons in gauge theory,integrable systems and representation theory of in finite-dimensional algebras in an intricate way.

    On the other hand,it was soon discovered that there exists a deep connection between Seiberg-Witten gauge theory and integrable system.[17?21]Roughly speaking,the Seiberg-Witten solution for the N=2 supersymmetric Yang-Mills theory is equivalent to a homogeneous solution of the Whitham hierarchy as well as the prepotential F corresponds to the logarithm of the Toda’s quasiclassical tau function.In the theory of Whitham hierarchy,there is a new family of variables introduced into the prepotential known as Whitham slow times Tnwhile the Whitham equations parameterized by the slow times characterize the deformations of the Seiberg-Witten curves.Around this time,the RG equations in Seiberg-Witten theory were fi rst derived by Gorsky,Marshakov,Mironov,and Morozov in Ref.[13]with the aid of Whitham hierarchy.Furthermore,based on their work Takasaki pointed out that the deformations by T1are interpreted as the renormalization group flows while the other Whitham deformations may be viewed as generalized RG flows.[22?23]More importantly,it is of great significance to remark that the second derivative of the prepotential F with respect to the slow time Tnleads to the appearance of the Riemann Theta-function.In this sense,after appropriately rescaling the gauge invariant parameters,the T1can be naturally regarded as the dynamical scale Λ which explicitly occurs in the Seiberg-Witten theory and the main RG equations required in this paper are given by[24?25]

    here the symbol ΘE(0|τ)is the Riemann’s theta function associated to the hyperelliptic curve C

    where E=[α;β]Tstands for an even half integer characteristic and in the case of pure SU(n)gauge theory it will be in the form of E=[0,...,0;1/2,...,1/2]T.From the above discussion,there is no difficulty in seeing that one can calculate any desired order instanton correction terms in SU(n)supersymmetric gauge theory by comparing the expansion coefficients of powers of Λ on both sides of Eq.(2)if we insert into the semiclassical expression of the prepotential F.Therefore,one of the most fundamental results of the Seiberg-Witten/Whitham equations is that they provide us a precise description of general recursion relations for any order instanton correction coefficient Fnin terms of the lower order instanton correction terms.It then follows that from this point of view,in principle,we could obtain arbitrary higher order correction coefficient Fnwithout solving the explicit expressions for the Seiberg-Witten periods a,aDwhich is the major feature of this article.

    The paper is organized as follows. In Sec.2 we briefly deduce the instanton correction coefficients using the Seiberg-Witten/Whitham equations in the case of SU(2)supersymmetric gauge theory as an illustrative example.In Sec.3 we generalize this approach to the general SU(n)situation and mainly we compute one-and two-instanton correction coefficients in detail,moreover,our results are in agreement with those in Ref.[5].Section 4 contains some conclusions and discussions and Appendix supplies us with relevant calculations and specific proofs we needed in Sec.3.

    2 SU(2)Case

    Let us first discuss the simplest case of non-abelian SU(2)supersymmetric gauge theory.For the moment due to the instanton effect,it is sufficient to consider the prepotential in SU(2)case without hypermultiplets and the general form of the prepotential F is[3]

    here the first term in Eq.(4)is one-loop expression for the prepotential which does not receive higher order perturbative corrections and the coefficients Fkin second term are constants.Notice that searching for the exact low energy effective action solution is equivalent to evaluating Fkfor all the k,fortunately,the Seiberg-Witten/Whitham equations give us an effective and standard procedure to determine these coefficients.Firstly one has

    here we set F0=6 which makes the constant coefficient term to be zero and this will be re fl ected in our choice for the normalization of F if we are rescaling Λ appropriately.We apply Eq.(2)to receive

    Substituting τ into the Riemann’s theta function(3)we find

    and the derivative of the Riemann’s theta function is

    obviously,the Seiberg-Witten/Whitham equations in SU(2)case turns out to be extremely simple

    matching the coefficient of(Λ/a)4nterm on both sides of Eq.(9),we then obtain the recursion relations for Fnas follows

    here ΘjandeΘjare defined as in Eqs.(7),(8)respectively.Now if rescaling the renormalization parameter Λ?→Λ/2 we can reexpress the prepotential F more explicitly

    here the instanton corrections coefficients are F1=1/25,F2=5/214,F3=3/218and so on.[3]

    Alternatively one can consider the physics near the N=1 singularities where generically corresponding to N?1 massless magnetic monopoles and the basic idea now is to evaluate the dual variables aD,kobtained from the akafter an S duality transformation.As shown in Ref.[26],the general expression of the strong coupling expansion of the prepotential at such singularity is given by

    in this case the variable a and coupling coefficient τDcan be formally calculated as above

    by analogy with Eq.(6)we have

    However,it should note here that from the point of view of the dual transformation,the characteristic of the theta function near the N=1 points must be replaced byα=(1/2,...,1/2)andβ=(0,...,0),at the same time,the Riemann’s theta function becomes Θ = ∑∞n=?∞exp(iπ(n+1/2)2τD),consequently it reads

    We assume FD0= ?1 and that is just the outcome of normalization of the FDkif we are rescaling Λ appropriately.In this way,the prepotential FDtakes a more familiar form as that in[3]

    here=iaD/Λ and taking advantage of these relations,one could derive the strong coupling expansion coefficients FDnrecursively through comparing the coefficient of the term(aD/Λ)n+1/8on both sides of the Seiberg-Witten/Whitham equation(2).

    3 SU(n)Case

    In this section we mainly consider the general SU(n)non-abelian supersymmetric Yang-Mills theory without doubt that the associated formulae and computations are much more complicated.To illustrate this detailedly,let us first recall that the general form of the prepotential F in the pure SU(n)supersymmetric gauge theory consists of three parts:the classical prepotential,the perturbative one-loop effects,and the k-instanton corrections,[5]namely

    in this formalism,the derivatives of the prepotential F follow directly that

    In view of the restriction to the constrain hyperplanewe should view the prepotential F(a1,...,aN)as a function of all the independent variables akexcept aNwhich results in ?i(ak?aN)= δki+1(here?imeans the partial derivative with variable ai,1≤i≤N?1).Thus we can put the RG equations in the following precise way

    hererespectively.Now the need to pay attention to is that because of the constraint conditionthe dual variables aD,iare

    and after a simple calculation we get

    which leads to a fairly explicit expression for the coupling coefficients τij= ?aD,i/?aj? ?aD,i/?aN(ij)

    in particular,the coupling coefficients τiiare

    From the previous argument we are aware of that in the general SU(n)non-abelian case,the most crucial ingredient in our analysis is the expression of Θ function.Therefore under the substitution of Eqs.(22),(23)into the de fi nition of Θ,it turns out to be

    where

    herecomes from the aNkterms in Eqs.(22)and(23).We already eliminate the e?(3/2)Nαfactor in Eq.(24)by appropriately rescaling Λ and as explained above this will be reflected in our choice for the normalization of the Fk.In addition,Θ(0)=1.Then without more efforts one is able to write down the formula for the derivative of the Θ with respect to the period matrix τijin the following form although the expressions ofare rather more involved.However,it is not difficult to prove that the indice l starts from 1,since when l=0 all integers nimust be equal to zero and from Eq.(26)we easily conclude that the coefficientsvanish.

    Now let us insert the formulae of ΘE(0|τ),?τijΘE(0|τ)obtained above into Eq.(2)

    which provides an exact expression for the instanton corrections coefficients

    here β =2N and comparing the coefficients of powers of Λ makes it possible to compute the Fkin a purely algebraic combinatorial way

    We remark here that Eq.(29)is a fundamental recursion relation for us to derive the exact n-instanton coefficient Fnby starting just from the coefficient F1through the Whitham hierarchy method in pure SU(n)supersymmetric gauge theory.As a matter of fact,the above results can even be extended to the more sophisticated situations of the massless or massive hypermultiplets included.Generally speaking,it is essentially no difficulty in applying this approach to the massless or massive hypermultiplets cases by repeating these relations(29)recursively,and after finitely many steps one is capable of getting all the correct instanton coefficients.However,in each case when k is larger,the functionsbecome much more complicated and of course the procedure of computation turns into cumbersome.Thereby for the purpose of the concrete evaluation of the Fk,one has to resort to the help of symbolic computation.In this article we basically compute 1-instanton and 2-instanton correction coefficients to illustrate the calculational procedure and then compare them with the results in paper.[5]

    3.1 1-Instanton Correction

    To derive the 1-instanton correction coefficient F1we consider k=1 in Eq.(29)which reads

    obviously from the definition ofwe have α=2,that is

    and we observe that the solutions of Eq.(31)are divided into two cases

    In the first case(a),under the condition ni=1 for some i,the expression A(a;n1,...,nN?1)turns out to be

    then analogous to Eq.(33)in case(b)we have

    clearly,notice that when ni= ?1 and nj= ?ni=1 we find A(?i)=A(i),A(?i,j)=A(i,?j)respectively.Then recalling the coefficients

    after a straightforward calculation,Eq.(30)becomes

    here we introduce the notationfor convenience and make use of(see the proof in Appendix A),the 1-instanton correction part of F can be written as

    now if defining the functionwe can rewrite Eq.(37)in the form ofwhich is the same as the expression in Ref.[5].

    3.2 2-instanton Correction

    In the following section we mainly compute the 2-instant correction coefficient and we are thus led,on account of the recursion relation(29),to the F2

    evidently,the calculation of F2is identical to the sum of three terms in Eq.(38)respectively.

    (a)term

    Taking into account of the definition oftogether with Eq.(35),we simplify the first term as

    here the accurate expression of F1,i(see Appendix B)is

    now utilizing Eq.(55)below,we may rewrite Eq.(39)as

    (b)term

    In order to obtain the explicit expression ofwe note that from Eq.(26)there are two conditions make contributions to the coefficients of Λ4N:(i) α =4,m=0;(ii) α =2,m=1,k=1.For the first condition α =4,or equivalentlywe find that the corresponding solutions are separated into two cases(we mainly consider N≥5)

    thus according to the definition of Eq.(25)one obtains as well as

    due to the symmetry between indices l and m,the functions of(ij)are now given by

    here the summation is for l,m and theare

    here we sum over for j,l,m.Now using these consequences and the expressions forogether with Eqs.(43),(44)above,we calculate

    Furthermore substituting the expressionsinto Eq.(47),it is immediate to see that

    and a tedious algebraic calculation of the mixed derivatives of the F1shows that

    the detailed proof of Eq.(49)can be consulted in Appendix B.

    (c) F1Θ(1)term

    Finally we want to compute the F1Θ(1)term and to begin with

    Hence,let us combineand we have

    Now to proceed further it is necessary to calculate the bibjblbmterms in Eqs.(41)and(49)explicitly,actually we find

    and from Appendix C,we conclude that

    The above analysis enables us to derive the 2-instanton correction coefficient F2in terms of variables aijand bk.Indeed,putting all these Eqs.(41),(47)–(49)and(51)–(53)together,we therefore arrive at a more compact expression as follows

    In particular,using the key relationit follows that

    and as a consequence,various identities can now be deduced from the above Eq.(55)which will play an important role to help us simplify the expression of F2.For instance,by differentiating Eq.(55)with respect to aiand multiplyingon both sides of the result equation,then summing over for i one finds that

    moreover,the similar process gives rise to

    analogously let us take derivative with respect to aion both sides of Eq.(57),multiplyon the result equation and sum over for i,through a direct calculation it yields

    hence inserting Eqs.(56)and(58)into(54)with the aid of Eq.(57),the computation of F2now is straightforward,and one finally obtains

    As a final comment,it is worth mentioning here that taking advantage of the notation Sk(x),the evaluation of 2-instanton correction coefficient F2can also be expanded in a more familiar form

    We point out here that the above expression is precisely the same as derived by E.D’Hoker,D.H.Phong and I.M.Krichever in Ref.[5].

    4 Conclusion

    In this paper,we primarily describe how to obtain arbitrary order instanton corrections coefficients of the effective prepotential F in N=2 pure SU(n)supersymmetric Yang-Mills theory from Whitham hierarchy and Seiberg-Witten/Whitham equations.The most important feature of this method is that there is no necessary to know the exact expressions of the Seiberg-Witten periods as functions of the moduli parameters.It is natural to generalize this idea to the other classical gauge group theory with or without hypermultiplets,which allows us to calculate the instanton corrections terms in various different Seiberg-Witten curves within a unified framework.We emphasize here that if one wants to get the recursion relations of instanton corrections coefficients from Seiberg-Witten/Whitham equations with massive or massless hypermultiplets,the number of hypermultiplets must be an even integer and the massive hypermultiplets must come up in degenerated pairs as shown in Ref.[10].Therefore it is essential to modify the formalism of the Whitham hierarchy and RG equations in order to extend our approach to the generic cases of unpaired and arbitrary masses.This would be interesting to further study.

    Appendix A

    For presenting the proof,it is convenient to define polynomial fand the first basic result is trivialBelow we will mostly focus on

    here(aN)means omitting the term fi(aN)in the products of f1(aN)··fi(aN)··fN?1(aN).Next for simplicity it is useful to introduce polynomialobviously we find gj(ak)=0 for jk,k≤N ?1,which provides

    Now let us make some general considerations on the following polynomial G(x)

    in fact,we notice that the degree of G(x)is N?2 but the polynomial has N?1 roots ai,i=1,...,N?1 which tells us that the polynomial G(x)is identically equal to zero,in other words,T(x)≡ (?1)(N?2)(N?3)/2∏N?1j

    on the other hand,from the definition of fi(x)we have

    then inserting Eqs.(A4)and(A5)into Eq.(A1),one obtains

    that is complete the proof.

    Appendix B

    Here we will exhibit some elementary identities about bi,which are applicable for our purpose and the corresponding proofs are straightforward

    According to these equations we can calculate the explicit form of F1,ij,indeed a simple and direct calculation shows that

    Then we give some details about how to evaluate the second derivative of Eq.(A8)with respect to the variable ajwhich can be seen as follows

    proceeding as before one finds(ij)

    Now if taking into account of Eq.(A7),we obtain a certain number of identities about the terms in Eq.(A9),these are

    Finally,let us substitute Eq.(A11)into(A9)together with Eq.(A10),we get

    Appendix C

    To begin with it is well known that from

    we have

    here the termsvanishing due to the antisymmetry of the indices i,j foror l,m for

    Analogously with the help of the equation

    it is enough to present that

    the termsvanishing because of the antisymmetry of the indices l,i or m,j for aliamj.

    Similarly from the identity

    we also have

    which gives rise to

    as explained above the first termsvanishing since the antisymmetry of the indices i,j or l,m for almaij.Now combining Eqs.(A14),(A16)with(A19)one can easily verify that

    [1]N.Seiberg and E.Witten,Nucl.Phys.B 426(1994)19.

    [2]A.Gorsky,I.Krichever,A.Marshakov,et al.,Phys.Lett.B 355(1995)466.

    [3]A.Klemm,W.Lerche,and S.Theisen,Int.J.Mod.Phys.A 11(1996)1929.

    [4]H.Itoyama and A.Morozov,Nucl.Phys.B 477(1996)855.

    [5]E.D’Hoker,D.H.Phong,and I.M.Krichever,Nucl.Phys.B 489(1997)179.

    [6]E.D’Hoker,D.H.Phong,and I.M.Krichever,Nucl.Phys.B 489(1997)211.

    [7]K.Ito and N.Sasakura,Nucl.Phys.B 484(1997)141.

    [8]J.M.Isidro,A.Mukherjee,J.P.Nunes,and H.J.Schnitzer,Nucl.Phys.B 492(1997)647.

    [9]M.Alishahiha,Phys.Lett.B 398(1997)100.

    [10]J.M.Isidro,A.Mukherjee,J.P.Nunes,and H.J.Schnitzer,Nucl.Phys.B 502(1997)363.

    [11]Y.Ohta,J.Math.Phys.40(1999)6292.

    [12]J.M.Isidro,arXiv:hep-th/0011253.

    [13]A.Gorsky,A.Marshakov,A.Mironov,and A.Morozov,Nucl.Phys.B 527(1998)690.

    [14]N.Nekrasov,Adv.Theor.Math.Phys.7(2004)831.

    [15]N.Nekrasov and A.Okounkov,arXiv:hep-th/0306238.

    [16]H.Nakajima and K.Yoshioka,Invent.Math.162(2005)313.

    [17]E.Martinec and N.Warner,Nucl.Phys.B 459(1995)97.

    [18]T.Nakatsu and K.Takasaki,Mod.Phys.Lett.A 11(1996)157.

    [19]E.D’Hoker and D.H.Phong,arXiv:hep-th/9903068.

    [20]A.Marshakov,Seiberg-Witten Theory and Integrable Systems,World Scientific,Singapore(1999).

    [21]A.Marshakov and N.Nekrasov,arXiv:hep-th/0612019.

    [22]K.Takasaki,Int.J.Mod.Phys.A 15(2000)3635.

    [23]K.Takasaki,Prog.Theor.Phys.Suppl.135(1999)53.

    [24]J.D.Edelstein and J.Mas,arXiv:hep-th/9902161.

    [25]J.D.Edelstein,M.G.Reino,and J.Mas,Nucl.Phys.B 561(1999)273.

    [26]J.D.Edelstein and J.Mas,Phys.Lett.B 452(1999)69.

    一区二区三区激情视频| 一本大道久久a久久精品| 满18在线观看网站| 女人被躁到高潮嗷嗷叫费观| 精品久久久久久久久久免费视频| 国产精品久久久久久亚洲av鲁大| 欧美丝袜亚洲另类 | 欧美日韩亚洲国产一区二区在线观看| 亚洲第一av免费看| 757午夜福利合集在线观看| 老司机福利观看| 人成视频在线观看免费观看| 亚洲熟妇中文字幕五十中出| 欧美不卡视频在线免费观看 | 婷婷丁香在线五月| 在线观看免费午夜福利视频| 国产成人精品久久二区二区91| 久久久水蜜桃国产精品网| 两个人免费观看高清视频| 12—13女人毛片做爰片一| 国产精品98久久久久久宅男小说| 热99re8久久精品国产| 大陆偷拍与自拍| 老司机靠b影院| 欧洲精品卡2卡3卡4卡5卡区| 国产精品 国内视频| 97人妻精品一区二区三区麻豆 | 午夜福利欧美成人| 又黄又爽又免费观看的视频| av天堂久久9| 久9热在线精品视频| 日韩欧美免费精品| 免费少妇av软件| 动漫黄色视频在线观看| 波多野结衣巨乳人妻| 99久久国产精品久久久| 亚洲精品国产精品久久久不卡| 黑人巨大精品欧美一区二区蜜桃| 日日摸夜夜添夜夜添小说| 99国产精品一区二区蜜桃av| 免费少妇av软件| 国产精品免费视频内射| 丰满人妻熟妇乱又伦精品不卡| 夜夜爽天天搞| 久久天堂一区二区三区四区| 欧美激情久久久久久爽电影 | 男女之事视频高清在线观看| 婷婷精品国产亚洲av在线| 国产极品粉嫩免费观看在线| 亚洲国产高清在线一区二区三 | 91精品国产国语对白视频| 成人18禁高潮啪啪吃奶动态图| 免费久久久久久久精品成人欧美视频| 老鸭窝网址在线观看| 亚洲成av片中文字幕在线观看| 午夜影院日韩av| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品久久男人天堂| 好男人在线观看高清免费视频 | 操出白浆在线播放| 亚洲狠狠婷婷综合久久图片| 一级a爱片免费观看的视频| 日本黄色视频三级网站网址| 国产1区2区3区精品| 97超级碰碰碰精品色视频在线观看| 国产成人精品久久二区二区91| 亚洲精品国产精品久久久不卡| 一区二区日韩欧美中文字幕| 老熟妇仑乱视频hdxx| 岛国在线观看网站| 亚洲av成人一区二区三| 亚洲欧美精品综合久久99| 午夜免费激情av| 免费女性裸体啪啪无遮挡网站| 欧美日本中文国产一区发布| 欧美av亚洲av综合av国产av| 变态另类成人亚洲欧美熟女 | 成人欧美大片| 午夜精品在线福利| 久久久久久久精品吃奶| 日韩欧美一区二区三区在线观看| 免费看a级黄色片| 国产亚洲精品久久久久久毛片| 欧美性长视频在线观看| 国产精品一区二区免费欧美| 自拍欧美九色日韩亚洲蝌蚪91| 制服诱惑二区| 亚洲av日韩精品久久久久久密| 国产免费av片在线观看野外av| 亚洲精品一区av在线观看| 国产精品亚洲一级av第二区| 亚洲国产欧美网| 正在播放国产对白刺激| 欧美丝袜亚洲另类 | avwww免费| 国产精品一区二区精品视频观看| 波多野结衣巨乳人妻| 色尼玛亚洲综合影院| 波多野结衣一区麻豆| 搡老妇女老女人老熟妇| 色综合站精品国产| 18禁国产床啪视频网站| 亚洲第一av免费看| 亚洲少妇的诱惑av| 嫩草影视91久久| 国产一级毛片七仙女欲春2 | 露出奶头的视频| av在线天堂中文字幕| av超薄肉色丝袜交足视频| 男人的好看免费观看在线视频 | 12—13女人毛片做爰片一| 日韩成人在线观看一区二区三区| 午夜福利一区二区在线看| 国产亚洲欧美在线一区二区| 精品久久久久久久毛片微露脸| 国产一区二区激情短视频| 欧美黑人精品巨大| 久久中文看片网| 国产一区二区在线av高清观看| 亚洲第一av免费看| 日本五十路高清| 欧美成人午夜精品| 午夜精品国产一区二区电影| 欧美av亚洲av综合av国产av| 一进一出好大好爽视频| 国产一区二区在线av高清观看| 中文字幕另类日韩欧美亚洲嫩草| av超薄肉色丝袜交足视频| 18美女黄网站色大片免费观看| 欧美人与性动交α欧美精品济南到| 欧美黄色淫秽网站| 欧美另类亚洲清纯唯美| 久久影院123| 看黄色毛片网站| 亚洲国产精品合色在线| 亚洲欧美激情在线| 侵犯人妻中文字幕一二三四区| 亚洲成人久久性| 波多野结衣av一区二区av| 欧美黄色片欧美黄色片| 国产精品av久久久久免费| 久久天躁狠狠躁夜夜2o2o| 欧美色视频一区免费| 如日韩欧美国产精品一区二区三区| 亚洲激情在线av| 女人爽到高潮嗷嗷叫在线视频| av视频免费观看在线观看| 亚洲成av人片免费观看| 国产精品亚洲一级av第二区| 不卡av一区二区三区| 曰老女人黄片| 久久精品91蜜桃| 欧美+亚洲+日韩+国产| 亚洲国产精品999在线| 亚洲片人在线观看| 午夜福利,免费看| or卡值多少钱| 丝袜美腿诱惑在线| 免费人成视频x8x8入口观看| 国产成人影院久久av| 麻豆国产av国片精品| 桃色一区二区三区在线观看| 日本在线视频免费播放| 两个人看的免费小视频| 日日夜夜操网爽| 国产伦一二天堂av在线观看| 亚洲av五月六月丁香网| 色哟哟哟哟哟哟| 免费看a级黄色片| 搡老岳熟女国产| 欧美日本亚洲视频在线播放| 精品人妻在线不人妻| 亚洲精品国产精品久久久不卡| 黄色视频,在线免费观看| 亚洲七黄色美女视频| 好男人在线观看高清免费视频 | 欧美色视频一区免费| 国产精品美女特级片免费视频播放器 | 精品国内亚洲2022精品成人| 亚洲国产欧美网| 一本大道久久a久久精品| 亚洲欧美精品综合一区二区三区| 欧美一区二区精品小视频在线| 久久国产乱子伦精品免费另类| 久久草成人影院| 亚洲avbb在线观看| 国产高清videossex| 欧美乱码精品一区二区三区| 中文亚洲av片在线观看爽| 波多野结衣高清无吗| 久热这里只有精品99| 淫秽高清视频在线观看| 啪啪无遮挡十八禁网站| 国产国语露脸激情在线看| 欧美国产日韩亚洲一区| 丝袜美足系列| 国产精品国产高清国产av| 亚洲电影在线观看av| 精品人妻1区二区| 宅男免费午夜| 99国产综合亚洲精品| 嫁个100分男人电影在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲欧洲精品一区二区精品久久久| 久久 成人 亚洲| 国产精品免费视频内射| 亚洲美女黄片视频| 免费少妇av软件| 黄片小视频在线播放| 丝袜美腿诱惑在线| 嫁个100分男人电影在线观看| 国内精品久久久久久久电影| 多毛熟女@视频| 国产成人免费无遮挡视频| 国产欧美日韩一区二区三区在线| 老汉色av国产亚洲站长工具| 69精品国产乱码久久久| 99精品在免费线老司机午夜| 欧美不卡视频在线免费观看 | 精品国产美女av久久久久小说| 天天添夜夜摸| 视频在线观看一区二区三区| 亚洲欧美激情综合另类| xxx96com| 超碰成人久久| 丝袜在线中文字幕| av欧美777| 天天添夜夜摸| 99精品久久久久人妻精品| 亚洲精品国产一区二区精华液| 色综合婷婷激情| 精品国产亚洲在线| 亚洲国产精品999在线| 欧美黑人欧美精品刺激| 性色av乱码一区二区三区2| 国产欧美日韩一区二区精品| 成人三级做爰电影| 国产精品电影一区二区三区| 国语自产精品视频在线第100页| 国产高清视频在线播放一区| 一a级毛片在线观看| 精品久久久久久久毛片微露脸| 成年人黄色毛片网站| 精品久久久久久成人av| 国产1区2区3区精品| 在线观看www视频免费| 国产又爽黄色视频| 欧美日韩亚洲综合一区二区三区_| 99riav亚洲国产免费| 久久久久国产一级毛片高清牌| 啦啦啦韩国在线观看视频| 夜夜看夜夜爽夜夜摸| 国产真人三级小视频在线观看| av有码第一页| 麻豆国产av国片精品| 久久午夜综合久久蜜桃| 成人永久免费在线观看视频| 亚洲电影在线观看av| 免费少妇av软件| 久久久精品欧美日韩精品| 18美女黄网站色大片免费观看| 操美女的视频在线观看| 我的亚洲天堂| 一级黄色大片毛片| 久久国产精品男人的天堂亚洲| 91成年电影在线观看| 给我免费播放毛片高清在线观看| 欧美日韩亚洲国产一区二区在线观看| 看黄色毛片网站| 少妇 在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲人成77777在线视频| 国产成人av教育| 淫妇啪啪啪对白视频| 在线观看免费视频日本深夜| 在线观看免费视频网站a站| 91av网站免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 中出人妻视频一区二区| 免费在线观看日本一区| 自线自在国产av| 51午夜福利影视在线观看| 欧美黄色淫秽网站| 亚洲av成人一区二区三| 男人舔女人的私密视频| 久久久国产精品麻豆| 久久香蕉激情| 50天的宝宝边吃奶边哭怎么回事| 激情视频va一区二区三区| 亚洲视频免费观看视频| 最近最新免费中文字幕在线| 在线av久久热| 久久国产亚洲av麻豆专区| 日本黄色视频三级网站网址| 久久狼人影院| 久久久久久久精品吃奶| 亚洲av电影不卡..在线观看| 欧美 亚洲 国产 日韩一| 国产一级毛片七仙女欲春2 | 亚洲自拍偷在线| 久久久久久久午夜电影| 九色国产91popny在线| 欧美乱码精品一区二区三区| 日韩精品青青久久久久久| 国产午夜精品久久久久久| 国产精品美女特级片免费视频播放器 | 成在线人永久免费视频| aaaaa片日本免费| 9191精品国产免费久久| 免费看a级黄色片| 国产成人精品在线电影| 国产成人一区二区三区免费视频网站| 国产99久久九九免费精品| 欧美亚洲日本最大视频资源| 99在线人妻在线中文字幕| 十八禁人妻一区二区| 国产精品一区二区在线不卡| 亚洲五月色婷婷综合| 国产免费av片在线观看野外av| 免费人成视频x8x8入口观看| 亚洲男人的天堂狠狠| 亚洲欧美精品综合一区二区三区| 国产av一区二区精品久久| av超薄肉色丝袜交足视频| 久久久久精品国产欧美久久久| 久热爱精品视频在线9| 精品国产超薄肉色丝袜足j| 精品电影一区二区在线| 亚洲 国产 在线| 久久狼人影院| 人人妻人人爽人人添夜夜欢视频| 久久香蕉国产精品| 中亚洲国语对白在线视频| 欧美日韩亚洲综合一区二区三区_| 国产av精品麻豆| av网站免费在线观看视频| 99精品久久久久人妻精品| 午夜福利成人在线免费观看| 怎么达到女性高潮| 搡老熟女国产l中国老女人| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产欧美日韩在线播放| 无遮挡黄片免费观看| 国产精品香港三级国产av潘金莲| 日韩欧美一区视频在线观看| 99热只有精品国产| 亚洲狠狠婷婷综合久久图片| 啪啪无遮挡十八禁网站| 真人一进一出gif抽搐免费| 亚洲免费av在线视频| 国产精品久久电影中文字幕| 精品国产乱子伦一区二区三区| 成人精品一区二区免费| 一边摸一边抽搐一进一出视频| 成人三级黄色视频| 黄频高清免费视频| 午夜成年电影在线免费观看| 国产视频一区二区在线看| 男女床上黄色一级片免费看| 99精品久久久久人妻精品| 久久 成人 亚洲| 国产精品久久久久久亚洲av鲁大| 十八禁网站免费在线| 中文字幕人妻熟女乱码| 日韩大尺度精品在线看网址 | 人成视频在线观看免费观看| 欧美国产日韩亚洲一区| 变态另类成人亚洲欧美熟女 | 国内久久婷婷六月综合欲色啪| 一级黄色大片毛片| 亚洲成人国产一区在线观看| 久99久视频精品免费| 精品卡一卡二卡四卡免费| 国产三级在线视频| 最近最新中文字幕大全免费视频| 婷婷丁香在线五月| 欧美精品啪啪一区二区三区| 一a级毛片在线观看| 亚洲av熟女| 国产高清videossex| 久久婷婷成人综合色麻豆| videosex国产| 欧美黄色淫秽网站| 欧美激情久久久久久爽电影 | 免费在线观看亚洲国产| 欧美绝顶高潮抽搐喷水| 久久久国产欧美日韩av| 免费观看人在逋| 高清在线国产一区| 精品国产超薄肉色丝袜足j| 美女高潮到喷水免费观看| 性欧美人与动物交配| 欧美日韩瑟瑟在线播放| 国产高清激情床上av| 久久九九热精品免费| 久久青草综合色| 日韩成人在线观看一区二区三区| 大型av网站在线播放| 午夜久久久久精精品| 欧美日韩黄片免| 琪琪午夜伦伦电影理论片6080| aaaaa片日本免费| 久久精品亚洲熟妇少妇任你| 18禁国产床啪视频网站| 免费在线观看黄色视频的| 女人爽到高潮嗷嗷叫在线视频| 巨乳人妻的诱惑在线观看| 又大又爽又粗| 一区二区三区国产精品乱码| 久久国产精品男人的天堂亚洲| 日韩av在线大香蕉| xxx96com| 人人妻,人人澡人人爽秒播| 色播亚洲综合网| 国产在线精品亚洲第一网站| 婷婷精品国产亚洲av在线| 夜夜爽天天搞| 国内精品久久久久精免费| 在线视频色国产色| 十八禁人妻一区二区| xxx96com| 午夜视频精品福利| 久久中文字幕一级| 国产高清videossex| 午夜精品国产一区二区电影| 国产精品日韩av在线免费观看 | 国产精品1区2区在线观看.| 好男人电影高清在线观看| 99精品欧美一区二区三区四区| 久99久视频精品免费| 麻豆一二三区av精品| 丁香欧美五月| 在线观看午夜福利视频| 50天的宝宝边吃奶边哭怎么回事| 很黄的视频免费| 禁无遮挡网站| 黑人操中国人逼视频| 久久精品aⅴ一区二区三区四区| a在线观看视频网站| 在线国产一区二区在线| 美女免费视频网站| 十八禁人妻一区二区| 一区二区三区国产精品乱码| av视频免费观看在线观看| 午夜精品久久久久久毛片777| 久久久久久久久中文| 欧美在线黄色| 操出白浆在线播放| 又紧又爽又黄一区二区| 久久精品人人爽人人爽视色| 欧美国产日韩亚洲一区| 丝袜在线中文字幕| 国产高清有码在线观看视频 | 欧美精品亚洲一区二区| 天堂动漫精品| 午夜福利成人在线免费观看| 天天躁夜夜躁狠狠躁躁| 亚洲aⅴ乱码一区二区在线播放 | 99热只有精品国产| aaaaa片日本免费| 亚洲电影在线观看av| 99精品欧美一区二区三区四区| 亚洲第一欧美日韩一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 高清黄色对白视频在线免费看| 可以在线观看毛片的网站| 日韩精品免费视频一区二区三区| 男人操女人黄网站| 国产精品免费视频内射| av在线天堂中文字幕| 久久人人爽av亚洲精品天堂| 韩国精品一区二区三区| 最近最新免费中文字幕在线| 热re99久久国产66热| 午夜免费观看网址| 国产精品亚洲av一区麻豆| 亚洲国产高清在线一区二区三 | 国产精品综合久久久久久久免费 | 欧美中文日本在线观看视频| 黄色 视频免费看| 欧美日韩乱码在线| 50天的宝宝边吃奶边哭怎么回事| 日本欧美视频一区| 在线观看日韩欧美| 亚洲色图av天堂| 日韩视频一区二区在线观看| 亚洲国产中文字幕在线视频| 亚洲精品在线观看二区| 亚洲黑人精品在线| 两个人看的免费小视频| 亚洲国产看品久久| 操出白浆在线播放| 国语自产精品视频在线第100页| 精品久久久久久久毛片微露脸| 丰满人妻熟妇乱又伦精品不卡| 女人高潮潮喷娇喘18禁视频| 国产精华一区二区三区| 99国产精品一区二区三区| 亚洲久久久国产精品| 成年女人毛片免费观看观看9| 久久久久久人人人人人| 中亚洲国语对白在线视频| 91九色精品人成在线观看| 男女床上黄色一级片免费看| 美女扒开内裤让男人捅视频| 免费看a级黄色片| 视频在线观看一区二区三区| 中文字幕高清在线视频| 黑人巨大精品欧美一区二区蜜桃| 少妇被粗大的猛进出69影院| 国产av精品麻豆| 操出白浆在线播放| 国产日韩一区二区三区精品不卡| 韩国av一区二区三区四区| 亚洲一区中文字幕在线| 久久精品91蜜桃| 亚洲精品在线观看二区| av视频在线观看入口| 91老司机精品| 男女下面进入的视频免费午夜 | 亚洲一区二区三区不卡视频| 国产又爽黄色视频| 久久精品91无色码中文字幕| 午夜免费鲁丝| 精品久久久久久,| 久久精品成人免费网站| 国产乱人伦免费视频| 成人三级黄色视频| 国产国语露脸激情在线看| 亚洲成人久久性| 好男人在线观看高清免费视频 | 麻豆一二三区av精品| 深夜精品福利| 制服人妻中文乱码| 他把我摸到了高潮在线观看| 亚洲avbb在线观看| 国产又色又爽无遮挡免费看| 亚洲第一欧美日韩一区二区三区| 亚洲av成人不卡在线观看播放网| 99在线视频只有这里精品首页| 国产精品1区2区在线观看.| 亚洲黑人精品在线| 757午夜福利合集在线观看| 亚洲七黄色美女视频| 又黄又粗又硬又大视频| 大陆偷拍与自拍| 真人做人爱边吃奶动态| 美女高潮喷水抽搐中文字幕| 久久久久久久久免费视频了| 亚洲中文日韩欧美视频| 国产精品,欧美在线| 校园春色视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 性欧美人与动物交配| 亚洲欧美日韩无卡精品| 久久久国产成人精品二区| 欧美日本亚洲视频在线播放| 国内精品久久久久久久电影| 国产精品影院久久| aaaaa片日本免费| 午夜免费成人在线视频| 操美女的视频在线观看| 人人妻人人澡欧美一区二区 | 久久久久久免费高清国产稀缺| 日韩大码丰满熟妇| 变态另类成人亚洲欧美熟女 | 成人国产综合亚洲| av视频在线观看入口| 亚洲av五月六月丁香网| 久久久久久久久久久久大奶| 欧美不卡视频在线免费观看 | 成人特级黄色片久久久久久久| a在线观看视频网站| 久久精品91蜜桃| 两性夫妻黄色片| 久久婷婷成人综合色麻豆| 欧美成狂野欧美在线观看| 亚洲中文字幕一区二区三区有码在线看 | 日韩欧美一区视频在线观看| 美女扒开内裤让男人捅视频| 亚洲片人在线观看| 黄色丝袜av网址大全| 1024香蕉在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲熟妇熟女久久| 久久久久久久久中文| 国产精品九九99| 中文字幕av电影在线播放| 一个人免费在线观看的高清视频| 国产亚洲精品av在线| 欧美日韩亚洲综合一区二区三区_| 无限看片的www在线观看| 免费女性裸体啪啪无遮挡网站| 久久精品亚洲熟妇少妇任你| 啪啪无遮挡十八禁网站| 日韩中文字幕欧美一区二区| 欧美人与性动交α欧美精品济南到| www.自偷自拍.com| 亚洲成国产人片在线观看| 亚洲国产毛片av蜜桃av| 美女扒开内裤让男人捅视频| 国产欧美日韩一区二区三| 亚洲欧洲精品一区二区精品久久久| 亚洲成av片中文字幕在线观看| 国产99久久九九免费精品| 久久久国产精品麻豆| 久久精品亚洲精品国产色婷小说| 日本a在线网址| 国产精品一区二区精品视频观看| 日韩大码丰满熟妇| 国产成人欧美| 欧美日韩福利视频一区二区| 免费看a级黄色片| 欧美中文日本在线观看视频| 天天躁夜夜躁狠狠躁躁|