• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Seiberg-Witten/Whitham Equations and Instanton Corrections in N=2 Supersymmetric Yang-Mills Theory?

    2018-06-11 12:21:14JiaLiangDai戴佳亮andEnGuiFan范恩貴
    Communications in Theoretical Physics 2018年5期

    Jia-Liang Dai(戴佳亮) and En-Gui Fan(范恩貴)

    School of Mathematical Science,Fudan University,Shanghai 200433,China

    1 Introduction

    The solution of exact low energy effective action in N=2 supersymmetric Yang-Mills theory with SU(2)gauge group was obtained by Seiberg and Witten in Ref.[1]and their work have been generalized to the other higher rank gauge group SU(n),SO(n)and Sp(n)without or with matter hypermultiplets in the fundamental representation as well as to the exceptional group.The key analysis in Ref.[1]was that the quantum moduli space of N=2 supersymmetric gauge theories coupled with or without hypermultiplets could be naturally identi fi ed with the moduli space of certain hyperelliptic curves or Riemann surfaces.More specifically,with the help of these hyperelliptic curves we can describe the low energy effective action by a single holomorphic function F called prepotential and the exact solution for the prepotential is completely determined from the period integrals of a meromorphic differential on the hyperelliptic curves.[2?4]In general,the expression of prepotential F in the weakcoupling region may be divided into three parts:classical part Fclass,perturbative part Fpertwhich arises only from one-loop effects,and a sum of n-instanton part Fnin[5?6]

    it is well known that various kinds of methods have been developed to derive the prepotential from the Seiberg-Witten curves such as hypergeometric functions,[3]Picard-Fuchs equations[7?12]and the renormalization group type equations,[13]however,their complexity increases rapidly as the rank of the gauge group is large,even without matter hypermultiplets.In addition,another important observation about prepotential was noticed by Nekrasov[14]who introduced a partition function which is the generating function of the integral of equivariant cohomology class on the moduli space of framed instantons and showed[15]that the logarithm of this partition function is the instanton part of the Seiberg-Witten prepotential in N=2 supersymmetric four-dimensional gauge theory with gauge group SU(n).Meanwhile,Nakajima and Yoshioka[16]independently proved Nekrasov’s conjecture using the blowup techniques and Hilbert scheme which relates the Seiberg-Witten curves,prepotential and partition function together.These give a framework for understanding the instantons in gauge theory,integrable systems and representation theory of in finite-dimensional algebras in an intricate way.

    On the other hand,it was soon discovered that there exists a deep connection between Seiberg-Witten gauge theory and integrable system.[17?21]Roughly speaking,the Seiberg-Witten solution for the N=2 supersymmetric Yang-Mills theory is equivalent to a homogeneous solution of the Whitham hierarchy as well as the prepotential F corresponds to the logarithm of the Toda’s quasiclassical tau function.In the theory of Whitham hierarchy,there is a new family of variables introduced into the prepotential known as Whitham slow times Tnwhile the Whitham equations parameterized by the slow times characterize the deformations of the Seiberg-Witten curves.Around this time,the RG equations in Seiberg-Witten theory were fi rst derived by Gorsky,Marshakov,Mironov,and Morozov in Ref.[13]with the aid of Whitham hierarchy.Furthermore,based on their work Takasaki pointed out that the deformations by T1are interpreted as the renormalization group flows while the other Whitham deformations may be viewed as generalized RG flows.[22?23]More importantly,it is of great significance to remark that the second derivative of the prepotential F with respect to the slow time Tnleads to the appearance of the Riemann Theta-function.In this sense,after appropriately rescaling the gauge invariant parameters,the T1can be naturally regarded as the dynamical scale Λ which explicitly occurs in the Seiberg-Witten theory and the main RG equations required in this paper are given by[24?25]

    here the symbol ΘE(0|τ)is the Riemann’s theta function associated to the hyperelliptic curve C

    where E=[α;β]Tstands for an even half integer characteristic and in the case of pure SU(n)gauge theory it will be in the form of E=[0,...,0;1/2,...,1/2]T.From the above discussion,there is no difficulty in seeing that one can calculate any desired order instanton correction terms in SU(n)supersymmetric gauge theory by comparing the expansion coefficients of powers of Λ on both sides of Eq.(2)if we insert into the semiclassical expression of the prepotential F.Therefore,one of the most fundamental results of the Seiberg-Witten/Whitham equations is that they provide us a precise description of general recursion relations for any order instanton correction coefficient Fnin terms of the lower order instanton correction terms.It then follows that from this point of view,in principle,we could obtain arbitrary higher order correction coefficient Fnwithout solving the explicit expressions for the Seiberg-Witten periods a,aDwhich is the major feature of this article.

    The paper is organized as follows. In Sec.2 we briefly deduce the instanton correction coefficients using the Seiberg-Witten/Whitham equations in the case of SU(2)supersymmetric gauge theory as an illustrative example.In Sec.3 we generalize this approach to the general SU(n)situation and mainly we compute one-and two-instanton correction coefficients in detail,moreover,our results are in agreement with those in Ref.[5].Section 4 contains some conclusions and discussions and Appendix supplies us with relevant calculations and specific proofs we needed in Sec.3.

    2 SU(2)Case

    Let us first discuss the simplest case of non-abelian SU(2)supersymmetric gauge theory.For the moment due to the instanton effect,it is sufficient to consider the prepotential in SU(2)case without hypermultiplets and the general form of the prepotential F is[3]

    here the first term in Eq.(4)is one-loop expression for the prepotential which does not receive higher order perturbative corrections and the coefficients Fkin second term are constants.Notice that searching for the exact low energy effective action solution is equivalent to evaluating Fkfor all the k,fortunately,the Seiberg-Witten/Whitham equations give us an effective and standard procedure to determine these coefficients.Firstly one has

    here we set F0=6 which makes the constant coefficient term to be zero and this will be re fl ected in our choice for the normalization of F if we are rescaling Λ appropriately.We apply Eq.(2)to receive

    Substituting τ into the Riemann’s theta function(3)we find

    and the derivative of the Riemann’s theta function is

    obviously,the Seiberg-Witten/Whitham equations in SU(2)case turns out to be extremely simple

    matching the coefficient of(Λ/a)4nterm on both sides of Eq.(9),we then obtain the recursion relations for Fnas follows

    here ΘjandeΘjare defined as in Eqs.(7),(8)respectively.Now if rescaling the renormalization parameter Λ?→Λ/2 we can reexpress the prepotential F more explicitly

    here the instanton corrections coefficients are F1=1/25,F2=5/214,F3=3/218and so on.[3]

    Alternatively one can consider the physics near the N=1 singularities where generically corresponding to N?1 massless magnetic monopoles and the basic idea now is to evaluate the dual variables aD,kobtained from the akafter an S duality transformation.As shown in Ref.[26],the general expression of the strong coupling expansion of the prepotential at such singularity is given by

    in this case the variable a and coupling coefficient τDcan be formally calculated as above

    by analogy with Eq.(6)we have

    However,it should note here that from the point of view of the dual transformation,the characteristic of the theta function near the N=1 points must be replaced byα=(1/2,...,1/2)andβ=(0,...,0),at the same time,the Riemann’s theta function becomes Θ = ∑∞n=?∞exp(iπ(n+1/2)2τD),consequently it reads

    We assume FD0= ?1 and that is just the outcome of normalization of the FDkif we are rescaling Λ appropriately.In this way,the prepotential FDtakes a more familiar form as that in[3]

    here=iaD/Λ and taking advantage of these relations,one could derive the strong coupling expansion coefficients FDnrecursively through comparing the coefficient of the term(aD/Λ)n+1/8on both sides of the Seiberg-Witten/Whitham equation(2).

    3 SU(n)Case

    In this section we mainly consider the general SU(n)non-abelian supersymmetric Yang-Mills theory without doubt that the associated formulae and computations are much more complicated.To illustrate this detailedly,let us first recall that the general form of the prepotential F in the pure SU(n)supersymmetric gauge theory consists of three parts:the classical prepotential,the perturbative one-loop effects,and the k-instanton corrections,[5]namely

    in this formalism,the derivatives of the prepotential F follow directly that

    In view of the restriction to the constrain hyperplanewe should view the prepotential F(a1,...,aN)as a function of all the independent variables akexcept aNwhich results in ?i(ak?aN)= δki+1(here?imeans the partial derivative with variable ai,1≤i≤N?1).Thus we can put the RG equations in the following precise way

    hererespectively.Now the need to pay attention to is that because of the constraint conditionthe dual variables aD,iare

    and after a simple calculation we get

    which leads to a fairly explicit expression for the coupling coefficients τij= ?aD,i/?aj? ?aD,i/?aN(ij)

    in particular,the coupling coefficients τiiare

    From the previous argument we are aware of that in the general SU(n)non-abelian case,the most crucial ingredient in our analysis is the expression of Θ function.Therefore under the substitution of Eqs.(22),(23)into the de fi nition of Θ,it turns out to be

    where

    herecomes from the aNkterms in Eqs.(22)and(23).We already eliminate the e?(3/2)Nαfactor in Eq.(24)by appropriately rescaling Λ and as explained above this will be reflected in our choice for the normalization of the Fk.In addition,Θ(0)=1.Then without more efforts one is able to write down the formula for the derivative of the Θ with respect to the period matrix τijin the following form although the expressions ofare rather more involved.However,it is not difficult to prove that the indice l starts from 1,since when l=0 all integers nimust be equal to zero and from Eq.(26)we easily conclude that the coefficientsvanish.

    Now let us insert the formulae of ΘE(0|τ),?τijΘE(0|τ)obtained above into Eq.(2)

    which provides an exact expression for the instanton corrections coefficients

    here β =2N and comparing the coefficients of powers of Λ makes it possible to compute the Fkin a purely algebraic combinatorial way

    We remark here that Eq.(29)is a fundamental recursion relation for us to derive the exact n-instanton coefficient Fnby starting just from the coefficient F1through the Whitham hierarchy method in pure SU(n)supersymmetric gauge theory.As a matter of fact,the above results can even be extended to the more sophisticated situations of the massless or massive hypermultiplets included.Generally speaking,it is essentially no difficulty in applying this approach to the massless or massive hypermultiplets cases by repeating these relations(29)recursively,and after finitely many steps one is capable of getting all the correct instanton coefficients.However,in each case when k is larger,the functionsbecome much more complicated and of course the procedure of computation turns into cumbersome.Thereby for the purpose of the concrete evaluation of the Fk,one has to resort to the help of symbolic computation.In this article we basically compute 1-instanton and 2-instanton correction coefficients to illustrate the calculational procedure and then compare them with the results in paper.[5]

    3.1 1-Instanton Correction

    To derive the 1-instanton correction coefficient F1we consider k=1 in Eq.(29)which reads

    obviously from the definition ofwe have α=2,that is

    and we observe that the solutions of Eq.(31)are divided into two cases

    In the first case(a),under the condition ni=1 for some i,the expression A(a;n1,...,nN?1)turns out to be

    then analogous to Eq.(33)in case(b)we have

    clearly,notice that when ni= ?1 and nj= ?ni=1 we find A(?i)=A(i),A(?i,j)=A(i,?j)respectively.Then recalling the coefficients

    after a straightforward calculation,Eq.(30)becomes

    here we introduce the notationfor convenience and make use of(see the proof in Appendix A),the 1-instanton correction part of F can be written as

    now if defining the functionwe can rewrite Eq.(37)in the form ofwhich is the same as the expression in Ref.[5].

    3.2 2-instanton Correction

    In the following section we mainly compute the 2-instant correction coefficient and we are thus led,on account of the recursion relation(29),to the F2

    evidently,the calculation of F2is identical to the sum of three terms in Eq.(38)respectively.

    (a)term

    Taking into account of the definition oftogether with Eq.(35),we simplify the first term as

    here the accurate expression of F1,i(see Appendix B)is

    now utilizing Eq.(55)below,we may rewrite Eq.(39)as

    (b)term

    In order to obtain the explicit expression ofwe note that from Eq.(26)there are two conditions make contributions to the coefficients of Λ4N:(i) α =4,m=0;(ii) α =2,m=1,k=1.For the first condition α =4,or equivalentlywe find that the corresponding solutions are separated into two cases(we mainly consider N≥5)

    thus according to the definition of Eq.(25)one obtains as well as

    due to the symmetry between indices l and m,the functions of(ij)are now given by

    here the summation is for l,m and theare

    here we sum over for j,l,m.Now using these consequences and the expressions forogether with Eqs.(43),(44)above,we calculate

    Furthermore substituting the expressionsinto Eq.(47),it is immediate to see that

    and a tedious algebraic calculation of the mixed derivatives of the F1shows that

    the detailed proof of Eq.(49)can be consulted in Appendix B.

    (c) F1Θ(1)term

    Finally we want to compute the F1Θ(1)term and to begin with

    Hence,let us combineand we have

    Now to proceed further it is necessary to calculate the bibjblbmterms in Eqs.(41)and(49)explicitly,actually we find

    and from Appendix C,we conclude that

    The above analysis enables us to derive the 2-instanton correction coefficient F2in terms of variables aijand bk.Indeed,putting all these Eqs.(41),(47)–(49)and(51)–(53)together,we therefore arrive at a more compact expression as follows

    In particular,using the key relationit follows that

    and as a consequence,various identities can now be deduced from the above Eq.(55)which will play an important role to help us simplify the expression of F2.For instance,by differentiating Eq.(55)with respect to aiand multiplyingon both sides of the result equation,then summing over for i one finds that

    moreover,the similar process gives rise to

    analogously let us take derivative with respect to aion both sides of Eq.(57),multiplyon the result equation and sum over for i,through a direct calculation it yields

    hence inserting Eqs.(56)and(58)into(54)with the aid of Eq.(57),the computation of F2now is straightforward,and one finally obtains

    As a final comment,it is worth mentioning here that taking advantage of the notation Sk(x),the evaluation of 2-instanton correction coefficient F2can also be expanded in a more familiar form

    We point out here that the above expression is precisely the same as derived by E.D’Hoker,D.H.Phong and I.M.Krichever in Ref.[5].

    4 Conclusion

    In this paper,we primarily describe how to obtain arbitrary order instanton corrections coefficients of the effective prepotential F in N=2 pure SU(n)supersymmetric Yang-Mills theory from Whitham hierarchy and Seiberg-Witten/Whitham equations.The most important feature of this method is that there is no necessary to know the exact expressions of the Seiberg-Witten periods as functions of the moduli parameters.It is natural to generalize this idea to the other classical gauge group theory with or without hypermultiplets,which allows us to calculate the instanton corrections terms in various different Seiberg-Witten curves within a unified framework.We emphasize here that if one wants to get the recursion relations of instanton corrections coefficients from Seiberg-Witten/Whitham equations with massive or massless hypermultiplets,the number of hypermultiplets must be an even integer and the massive hypermultiplets must come up in degenerated pairs as shown in Ref.[10].Therefore it is essential to modify the formalism of the Whitham hierarchy and RG equations in order to extend our approach to the generic cases of unpaired and arbitrary masses.This would be interesting to further study.

    Appendix A

    For presenting the proof,it is convenient to define polynomial fand the first basic result is trivialBelow we will mostly focus on

    here(aN)means omitting the term fi(aN)in the products of f1(aN)··fi(aN)··fN?1(aN).Next for simplicity it is useful to introduce polynomialobviously we find gj(ak)=0 for jk,k≤N ?1,which provides

    Now let us make some general considerations on the following polynomial G(x)

    in fact,we notice that the degree of G(x)is N?2 but the polynomial has N?1 roots ai,i=1,...,N?1 which tells us that the polynomial G(x)is identically equal to zero,in other words,T(x)≡ (?1)(N?2)(N?3)/2∏N?1j

    on the other hand,from the definition of fi(x)we have

    then inserting Eqs.(A4)and(A5)into Eq.(A1),one obtains

    that is complete the proof.

    Appendix B

    Here we will exhibit some elementary identities about bi,which are applicable for our purpose and the corresponding proofs are straightforward

    According to these equations we can calculate the explicit form of F1,ij,indeed a simple and direct calculation shows that

    Then we give some details about how to evaluate the second derivative of Eq.(A8)with respect to the variable ajwhich can be seen as follows

    proceeding as before one finds(ij)

    Now if taking into account of Eq.(A7),we obtain a certain number of identities about the terms in Eq.(A9),these are

    Finally,let us substitute Eq.(A11)into(A9)together with Eq.(A10),we get

    Appendix C

    To begin with it is well known that from

    we have

    here the termsvanishing due to the antisymmetry of the indices i,j foror l,m for

    Analogously with the help of the equation

    it is enough to present that

    the termsvanishing because of the antisymmetry of the indices l,i or m,j for aliamj.

    Similarly from the identity

    we also have

    which gives rise to

    as explained above the first termsvanishing since the antisymmetry of the indices i,j or l,m for almaij.Now combining Eqs.(A14),(A16)with(A19)one can easily verify that

    [1]N.Seiberg and E.Witten,Nucl.Phys.B 426(1994)19.

    [2]A.Gorsky,I.Krichever,A.Marshakov,et al.,Phys.Lett.B 355(1995)466.

    [3]A.Klemm,W.Lerche,and S.Theisen,Int.J.Mod.Phys.A 11(1996)1929.

    [4]H.Itoyama and A.Morozov,Nucl.Phys.B 477(1996)855.

    [5]E.D’Hoker,D.H.Phong,and I.M.Krichever,Nucl.Phys.B 489(1997)179.

    [6]E.D’Hoker,D.H.Phong,and I.M.Krichever,Nucl.Phys.B 489(1997)211.

    [7]K.Ito and N.Sasakura,Nucl.Phys.B 484(1997)141.

    [8]J.M.Isidro,A.Mukherjee,J.P.Nunes,and H.J.Schnitzer,Nucl.Phys.B 492(1997)647.

    [9]M.Alishahiha,Phys.Lett.B 398(1997)100.

    [10]J.M.Isidro,A.Mukherjee,J.P.Nunes,and H.J.Schnitzer,Nucl.Phys.B 502(1997)363.

    [11]Y.Ohta,J.Math.Phys.40(1999)6292.

    [12]J.M.Isidro,arXiv:hep-th/0011253.

    [13]A.Gorsky,A.Marshakov,A.Mironov,and A.Morozov,Nucl.Phys.B 527(1998)690.

    [14]N.Nekrasov,Adv.Theor.Math.Phys.7(2004)831.

    [15]N.Nekrasov and A.Okounkov,arXiv:hep-th/0306238.

    [16]H.Nakajima and K.Yoshioka,Invent.Math.162(2005)313.

    [17]E.Martinec and N.Warner,Nucl.Phys.B 459(1995)97.

    [18]T.Nakatsu and K.Takasaki,Mod.Phys.Lett.A 11(1996)157.

    [19]E.D’Hoker and D.H.Phong,arXiv:hep-th/9903068.

    [20]A.Marshakov,Seiberg-Witten Theory and Integrable Systems,World Scientific,Singapore(1999).

    [21]A.Marshakov and N.Nekrasov,arXiv:hep-th/0612019.

    [22]K.Takasaki,Int.J.Mod.Phys.A 15(2000)3635.

    [23]K.Takasaki,Prog.Theor.Phys.Suppl.135(1999)53.

    [24]J.D.Edelstein and J.Mas,arXiv:hep-th/9902161.

    [25]J.D.Edelstein,M.G.Reino,and J.Mas,Nucl.Phys.B 561(1999)273.

    [26]J.D.Edelstein and J.Mas,Phys.Lett.B 452(1999)69.

    亚洲av免费高清在线观看| 国产精品福利在线免费观看| 99国产精品免费福利视频| 美女中出高潮动态图| 国产在线一区二区三区精| 香蕉精品网在线| 免费看av在线观看网站| 一级黄片播放器| 亚洲精品第二区| 男人和女人高潮做爰伦理| 啦啦啦中文免费视频观看日本| av又黄又爽大尺度在线免费看| 美女主播在线视频| 久久99蜜桃精品久久| 亚洲av中文av极速乱| 亚洲精品自拍成人| 22中文网久久字幕| av在线蜜桃| 天堂中文最新版在线下载| 久久女婷五月综合色啪小说| 看免费成人av毛片| 午夜免费男女啪啪视频观看| 欧美一级a爱片免费观看看| 国产乱人偷精品视频| 亚洲av综合色区一区| 热re99久久精品国产66热6| 国产中年淑女户外野战色| 97热精品久久久久久| 国产免费视频播放在线视频| 视频中文字幕在线观看| 久久ye,这里只有精品| 噜噜噜噜噜久久久久久91| av一本久久久久| 一级毛片久久久久久久久女| 噜噜噜噜噜久久久久久91| 日本猛色少妇xxxxx猛交久久| 亚洲欧洲日产国产| 成人18禁高潮啪啪吃奶动态图 | 亚洲综合精品二区| 国产免费视频播放在线视频| 久久 成人 亚洲| 日本av手机在线免费观看| 青春草亚洲视频在线观看| 久久ye,这里只有精品| av一本久久久久| 国产精品欧美亚洲77777| 伦理电影免费视频| 一级片'在线观看视频| 精品一区二区免费观看| 欧美bdsm另类| 日韩中字成人| 日韩伦理黄色片| 看非洲黑人一级黄片| 国产精品秋霞免费鲁丝片| 色吧在线观看| 日韩中文字幕视频在线看片 | 建设人人有责人人尽责人人享有的 | 黄片无遮挡物在线观看| av在线观看视频网站免费| 只有这里有精品99| 日韩中字成人| 精品久久久久久久久亚洲| 欧美日韩在线观看h| 视频区图区小说| 最新中文字幕久久久久| 噜噜噜噜噜久久久久久91| 男的添女的下面高潮视频| 男的添女的下面高潮视频| 我的老师免费观看完整版| 日本-黄色视频高清免费观看| 午夜福利在线观看免费完整高清在| 伦理电影大哥的女人| 国产高清不卡午夜福利| 永久网站在线| 欧美xxⅹ黑人| 欧美xxⅹ黑人| 亚洲欧美一区二区三区黑人 | 日本黄色片子视频| 国产精品免费大片| 97超视频在线观看视频| 一级片'在线观看视频| av又黄又爽大尺度在线免费看| 大片电影免费在线观看免费| av一本久久久久| 日韩成人av中文字幕在线观看| 18禁在线播放成人免费| 高清不卡的av网站| 99久国产av精品国产电影| 国产人妻一区二区三区在| 热99国产精品久久久久久7| 在线免费十八禁| 国产美女午夜福利| 久久人人爽人人片av| 亚洲精品乱码久久久v下载方式| 内地一区二区视频在线| 男人添女人高潮全过程视频| 亚洲国产精品999| 看免费成人av毛片| av天堂中文字幕网| 日韩欧美 国产精品| 人妻夜夜爽99麻豆av| 亚洲av中文av极速乱| 国产精品秋霞免费鲁丝片| a级毛片免费高清观看在线播放| 久久ye,这里只有精品| 国产免费视频播放在线视频| 免费观看的影片在线观看| 婷婷色av中文字幕| 又黄又爽又刺激的免费视频.| 精品视频人人做人人爽| 亚洲av二区三区四区| 免费av不卡在线播放| 久久精品国产自在天天线| 亚洲一级一片aⅴ在线观看| 男女国产视频网站| 色视频在线一区二区三区| 国产精品久久久久久av不卡| 亚洲综合精品二区| 啦啦啦啦在线视频资源| 成人一区二区视频在线观看| www.av在线官网国产| 在线天堂最新版资源| 午夜福利在线在线| 精品一区二区免费观看| 国产精品三级大全| 欧美zozozo另类| 美女cb高潮喷水在线观看| 午夜激情福利司机影院| 国产久久久一区二区三区| 美女中出高潮动态图| 成人免费观看视频高清| 欧美精品一区二区大全| 又大又黄又爽视频免费| 色网站视频免费| 日韩人妻高清精品专区| 日本色播在线视频| 精品一区二区免费观看| 欧美少妇被猛烈插入视频| 国产高清有码在线观看视频| 亚洲av免费高清在线观看| 免费看日本二区| 老师上课跳d突然被开到最大视频| 欧美老熟妇乱子伦牲交| 插逼视频在线观看| 国产真实伦视频高清在线观看| 欧美另类一区| 99久久综合免费| 久久精品国产亚洲网站| av在线老鸭窝| 成人高潮视频无遮挡免费网站| 肉色欧美久久久久久久蜜桃| 午夜福利在线在线| 欧美精品国产亚洲| av在线播放精品| 99久国产av精品国产电影| 国产精品伦人一区二区| 国产欧美日韩精品一区二区| 国产成人freesex在线| 1000部很黄的大片| 亚洲怡红院男人天堂| 伦理电影免费视频| 亚洲综合精品二区| 国产精品伦人一区二区| 国产淫语在线视频| 色综合色国产| 在线看a的网站| 日本wwww免费看| 在线观看美女被高潮喷水网站| 一本一本综合久久| 欧美成人精品欧美一级黄| 成人一区二区视频在线观看| 夫妻性生交免费视频一级片| 亚洲精品亚洲一区二区| 国产成人免费观看mmmm| 高清av免费在线| 高清不卡的av网站| 国产黄色视频一区二区在线观看| 中文字幕免费在线视频6| 在线播放无遮挡| av.在线天堂| 少妇人妻一区二区三区视频| 少妇的逼好多水| 亚洲国产最新在线播放| 少妇熟女欧美另类| 精品久久久噜噜| 九草在线视频观看| 亚洲av中文av极速乱| 一本色道久久久久久精品综合| 国产综合精华液| 日韩 亚洲 欧美在线| videos熟女内射| 91狼人影院| 国产女主播在线喷水免费视频网站| 日韩不卡一区二区三区视频在线| 精品久久久久久久久av| 久久午夜福利片| 欧美日韩亚洲高清精品| 亚洲av中文字字幕乱码综合| 夜夜看夜夜爽夜夜摸| 国产精品秋霞免费鲁丝片| 91在线精品国自产拍蜜月| 国产 精品1| 久久久久久久亚洲中文字幕| 国产黄片美女视频| 日本av免费视频播放| 多毛熟女@视频| 国产精品嫩草影院av在线观看| 免费黄频网站在线观看国产| 网址你懂的国产日韩在线| 少妇人妻 视频| 国产黄片视频在线免费观看| 国产亚洲一区二区精品| 另类亚洲欧美激情| 1000部很黄的大片| 色婷婷av一区二区三区视频| 91精品伊人久久大香线蕉| 国产乱来视频区| a级一级毛片免费在线观看| 成人亚洲欧美一区二区av| 亚洲欧美成人综合另类久久久| 免费大片18禁| 韩国av在线不卡| a级一级毛片免费在线观看| 肉色欧美久久久久久久蜜桃| 一区二区av电影网| 超碰av人人做人人爽久久| 乱系列少妇在线播放| 在线观看一区二区三区激情| 在线天堂最新版资源| 久久99蜜桃精品久久| 国产一区亚洲一区在线观看| 亚洲va在线va天堂va国产| 亚洲精品456在线播放app| 国产又色又爽无遮挡免| 国产永久视频网站| 国产欧美另类精品又又久久亚洲欧美| 亚洲色图综合在线观看| 久热久热在线精品观看| 人人妻人人看人人澡| 国产免费福利视频在线观看| 一级毛片 在线播放| 国产精品久久久久久av不卡| 极品教师在线视频| 高清视频免费观看一区二区| 亚洲精品乱码久久久久久按摩| 97超视频在线观看视频| 久久 成人 亚洲| 亚洲精品456在线播放app| 亚洲无线观看免费| 久久久午夜欧美精品| 国产精品三级大全| 国产成人aa在线观看| 久热这里只有精品99| 午夜福利高清视频| 97在线人人人人妻| 小蜜桃在线观看免费完整版高清| 黑丝袜美女国产一区| 少妇被粗大猛烈的视频| 狂野欧美激情性xxxx在线观看| 麻豆成人午夜福利视频| 联通29元200g的流量卡| 99精国产麻豆久久婷婷| 一级毛片 在线播放| av卡一久久| 在线亚洲精品国产二区图片欧美 | 97在线视频观看| 国内精品宾馆在线| 在线观看一区二区三区激情| 人妻夜夜爽99麻豆av| 一本色道久久久久久精品综合| 国产免费一区二区三区四区乱码| 中文字幕免费在线视频6| 人人妻人人澡人人爽人人夜夜| 日韩伦理黄色片| 久久97久久精品| 韩国高清视频一区二区三区| 免费看不卡的av| freevideosex欧美| 2018国产大陆天天弄谢| 日韩亚洲欧美综合| 又黄又爽又刺激的免费视频.| 九九在线视频观看精品| 日韩不卡一区二区三区视频在线| 亚洲色图综合在线观看| 国产亚洲一区二区精品| 91狼人影院| 最黄视频免费看| 在线观看美女被高潮喷水网站| 啦啦啦啦在线视频资源| 91狼人影院| 久久国产乱子免费精品| 校园人妻丝袜中文字幕| 久久精品久久久久久久性| 另类亚洲欧美激情| 在线观看免费日韩欧美大片 | 日日摸夜夜添夜夜添av毛片| 两个人的视频大全免费| 男女边吃奶边做爰视频| 少妇人妻精品综合一区二区| 免费看不卡的av| 亚洲欧美日韩无卡精品| 国产免费视频播放在线视频| 欧美成人精品欧美一级黄| 亚洲,欧美,日韩| 免费观看a级毛片全部| 午夜福利视频精品| 亚洲精品一区蜜桃| 国产精品久久久久久久电影| 精品午夜福利在线看| 亚洲欧美中文字幕日韩二区| 久久毛片免费看一区二区三区| 人妻夜夜爽99麻豆av| 多毛熟女@视频| 51国产日韩欧美| 欧美激情国产日韩精品一区| 观看av在线不卡| 欧美zozozo另类| 久久精品国产亚洲av天美| av.在线天堂| 一级a做视频免费观看| 99热这里只有是精品在线观看| 大香蕉久久网| 国产成人91sexporn| 久久久久精品性色| 中国美白少妇内射xxxbb| 五月伊人婷婷丁香| 亚洲高清免费不卡视频| 日日啪夜夜爽| 高清黄色对白视频在线免费看 | 国产精品人妻久久久影院| 国产精品久久久久久精品电影小说 | 99re6热这里在线精品视频| 精品人妻视频免费看| 天天躁日日操中文字幕| 国产久久久一区二区三区| 亚洲欧美精品自产自拍| 一级a做视频免费观看| 三级国产精品片| 久久鲁丝午夜福利片| 中国三级夫妇交换| 下体分泌物呈黄色| 80岁老熟妇乱子伦牲交| 亚洲真实伦在线观看| 亚洲av电影在线观看一区二区三区| 亚洲成人一二三区av| 国产精品.久久久| 爱豆传媒免费全集在线观看| 一本一本综合久久| 国产精品人妻久久久久久| 最黄视频免费看| 久久久久网色| 97超碰精品成人国产| 黄片wwwwww| 91精品伊人久久大香线蕉| 国产大屁股一区二区在线视频| 日韩一本色道免费dvd| 久久综合国产亚洲精品| 久热久热在线精品观看| 看十八女毛片水多多多| 亚州av有码| 色视频www国产| 色网站视频免费| 久久ye,这里只有精品| 欧美日韩亚洲高清精品| 国产av码专区亚洲av| 91久久精品国产一区二区三区| 中文字幕亚洲精品专区| 日本免费在线观看一区| 国产精品国产三级国产av玫瑰| 国产美女午夜福利| 久久鲁丝午夜福利片| 18禁裸乳无遮挡动漫免费视频| 麻豆乱淫一区二区| 人妻制服诱惑在线中文字幕| 成人国产av品久久久| 国产亚洲91精品色在线| 性色av一级| 黄色日韩在线| 一边亲一边摸免费视频| 国产精品久久久久久久久免| 卡戴珊不雅视频在线播放| 观看免费一级毛片| 免费高清在线观看视频在线观看| 男男h啪啪无遮挡| 美女中出高潮动态图| 日本av免费视频播放| 亚洲婷婷狠狠爱综合网| 国产淫语在线视频| 婷婷色综合大香蕉| 插阴视频在线观看视频| 蜜桃在线观看..| 草草在线视频免费看| 在现免费观看毛片| 亚洲精品一二三| 一本—道久久a久久精品蜜桃钙片| 久久久久国产精品人妻一区二区| 91精品一卡2卡3卡4卡| 精品一区二区免费观看| 久久久久国产精品人妻一区二区| 熟女av电影| 亚州av有码| 婷婷色av中文字幕| 一级毛片黄色毛片免费观看视频| 一边亲一边摸免费视频| 美女视频免费永久观看网站| 成人亚洲欧美一区二区av| 舔av片在线| 久久久久久久久久久丰满| 日韩人妻高清精品专区| 午夜福利视频精品| 久热这里只有精品99| 欧美日韩精品成人综合77777| 国产淫片久久久久久久久| 日韩,欧美,国产一区二区三区| xxx大片免费视频| 亚洲人成网站在线播| 亚洲av欧美aⅴ国产| 欧美成人一区二区免费高清观看| 人妻 亚洲 视频| 又大又黄又爽视频免费| 最近2019中文字幕mv第一页| 岛国毛片在线播放| 男女边吃奶边做爰视频| 国产在线一区二区三区精| 欧美精品一区二区免费开放| 夜夜骑夜夜射夜夜干| 伊人久久精品亚洲午夜| 夫妻午夜视频| 老熟女久久久| 免费高清在线观看视频在线观看| 亚洲成人手机| 免费看不卡的av| 丰满人妻一区二区三区视频av| 少妇熟女欧美另类| 身体一侧抽搐| 亚洲aⅴ乱码一区二区在线播放| 午夜视频国产福利| 日韩一本色道免费dvd| 高清欧美精品videossex| 高清视频免费观看一区二区| 各种免费的搞黄视频| 91精品国产九色| 高清黄色对白视频在线免费看 | 亚洲激情五月婷婷啪啪| 亚洲怡红院男人天堂| 我要看日韩黄色一级片| 嫩草影院新地址| 亚洲综合精品二区| a级毛色黄片| 亚洲精品一区蜜桃| 欧美区成人在线视频| 亚洲av.av天堂| 一级av片app| freevideosex欧美| 国产精品熟女久久久久浪| 精品少妇黑人巨大在线播放| 国产精品三级大全| 久久久a久久爽久久v久久| 日本午夜av视频| 亚洲精品第二区| 欧美精品人与动牲交sv欧美| 亚洲国产最新在线播放| 伦理电影大哥的女人| 91在线精品国自产拍蜜月| 亚洲欧美成人精品一区二区| 亚洲精品色激情综合| 国产久久久一区二区三区| 哪个播放器可以免费观看大片| 熟女人妻精品中文字幕| 午夜福利在线观看免费完整高清在| 毛片女人毛片| 一边亲一边摸免费视频| 亚洲国产成人一精品久久久| 国产永久视频网站| av不卡在线播放| 日韩,欧美,国产一区二区三区| 2018国产大陆天天弄谢| 国产 一区 欧美 日韩| 3wmmmm亚洲av在线观看| 久久99热6这里只有精品| 中文字幕av成人在线电影| 18禁在线无遮挡免费观看视频| 男女无遮挡免费网站观看| 精品国产乱码久久久久久小说| 国产精品一二三区在线看| 国产乱人视频| 国内精品宾馆在线| 国产av码专区亚洲av| 亚洲欧美日韩卡通动漫| 人人妻人人爽人人添夜夜欢视频 | kizo精华| av又黄又爽大尺度在线免费看| 欧美日韩亚洲高清精品| 交换朋友夫妻互换小说| av不卡在线播放| 国产高清不卡午夜福利| 国产成人免费无遮挡视频| 十八禁网站网址无遮挡 | 99九九线精品视频在线观看视频| 精品视频人人做人人爽| 成人国产av品久久久| 国内少妇人妻偷人精品xxx网站| av一本久久久久| 久久久a久久爽久久v久久| 国产亚洲91精品色在线| 国产无遮挡羞羞视频在线观看| 亚洲真实伦在线观看| 久久久久网色| 老司机影院毛片| 在线观看美女被高潮喷水网站| 国产精品国产av在线观看| 777米奇影视久久| 99久久人妻综合| 免费观看a级毛片全部| 99热6这里只有精品| 国产爱豆传媒在线观看| 婷婷色综合www| 亚洲国产高清在线一区二区三| 国产成人a∨麻豆精品| 久久久久国产网址| 黄色怎么调成土黄色| 联通29元200g的流量卡| 国产精品人妻久久久影院| 直男gayav资源| 亚洲怡红院男人天堂| 国产久久久一区二区三区| 亚洲欧美精品专区久久| 狂野欧美激情性bbbbbb| 天堂中文最新版在线下载| 97热精品久久久久久| 国产在线视频一区二区| 人人妻人人添人人爽欧美一区卜 | 夜夜看夜夜爽夜夜摸| 一二三四中文在线观看免费高清| 在线精品无人区一区二区三 | 99热这里只有是精品50| 最黄视频免费看| 久久久久久久大尺度免费视频| 亚洲国产高清在线一区二区三| 18禁裸乳无遮挡免费网站照片| 黄色日韩在线| 精品久久久久久久末码| 国产高清不卡午夜福利| 99久久综合免费| 国产av精品麻豆| 六月丁香七月| .国产精品久久| 亚洲国产最新在线播放| 夫妻性生交免费视频一级片| 美女内射精品一级片tv| 免费av不卡在线播放| 美女福利国产在线 | 日本色播在线视频| 嘟嘟电影网在线观看| 欧美日韩精品成人综合77777| 亚洲精品456在线播放app| 日本色播在线视频| 亚洲成人一二三区av| av在线观看视频网站免费| 三级国产精品片| 国产精品无大码| 国产v大片淫在线免费观看| 国产 一区精品| 一级av片app| 男女下面进入的视频免费午夜| 亚洲美女搞黄在线观看| 欧美bdsm另类| 亚洲不卡免费看| 久久99热这里只有精品18| 熟妇人妻不卡中文字幕| 看非洲黑人一级黄片| 中文字幕免费在线视频6| 精品久久久久久电影网| 亚洲国产精品国产精品| 亚洲一级一片aⅴ在线观看| 国产免费又黄又爽又色| 欧美少妇被猛烈插入视频| 亚洲精华国产精华液的使用体验| 激情五月婷婷亚洲| 少妇的逼水好多| 美女xxoo啪啪120秒动态图| 亚洲欧美日韩东京热| 国产精品久久久久久av不卡| 插逼视频在线观看| 热99国产精品久久久久久7| av网站免费在线观看视频| 51国产日韩欧美| 国产精品福利在线免费观看| 国产精品久久久久久久久免| 久久99热这里只有精品18| 老女人水多毛片| 麻豆国产97在线/欧美| 18+在线观看网站| 欧美性感艳星| 免费看光身美女| 国产精品久久久久久av不卡| 久久久久久久久久人人人人人人| 婷婷色综合www| 交换朋友夫妻互换小说| 国产视频内射| 欧美日韩视频精品一区| 在线亚洲精品国产二区图片欧美 | 大又大粗又爽又黄少妇毛片口| 国产精品三级大全| 人人妻人人看人人澡| 观看美女的网站| 看十八女毛片水多多多| 美女cb高潮喷水在线观看| 久久久久久九九精品二区国产| 国产视频内射| 精品国产乱码久久久久久小说| 老师上课跳d突然被开到最大视频| 午夜激情久久久久久久| 97超碰精品成人国产| 一区二区三区四区激情视频|