• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hierarchical Polygamy Inequality for Entanglement of Tsallis q-Entropy?

    2018-06-11 12:21:06YuLuo羅宇andYongMingLi李永明
    Communications in Theoretical Physics 2018年5期

    Yu Luo(羅宇)and Yong-Ming Li(李永明)

    1College of Computer Science,Shaanxi Normal University,Xi’an 710062,China

    2Centre for Quantum Software and Information(UTS:Q|SI?),Faculty of Engineering and Information Technology,University of Technology Sydney,Australia

    1 Introduction

    Multipartite entanglement plays a crucial role in quantum physics and is the key resource in many quantum information processing tasks.One of most surprising phenomena for multipartite entanglement is the monogamy property.A simple example of monogamy property can be interpreted as the amount of entanglement between A and B,plus the amount of entanglement between A and C,cannot be greater than the amount of entanglement between A and the pair BC.Monogamy property has been considered in many areas of physics,as like in quantum cryptography,[1?2]condensed matter physics[3?4]and black-hole physics.[5?6]Co ff man et al. first considered three qubits A,B and C which may be entangled with each other,[7]who showed that the squared concurrence C2follows this monogamy inequality.Later,Osborne et al.generalised Co ff man et al.’s result in multi-qubit system.[1]different kinds of monogamy inequalities have also been noted in Refs.[8–33]

    As dual to monogamy property,polygamy property in multi-particle systems has arised many interests by researchers.[34?37]Polygamy property was first provided by using the concurrence of assistance to quantify the distributed bipartite entanglement in multi-qubit systems.[34,36]Polygamy property has also been considered in many entanglement measures,such as R′enyi αentropy[26]and Tsallis q-entropy.[37]

    Tsallis q-entropy is an important entropic measure,which can be used in many areas of quantum information theory.[38?43]In this paper,we study the polygamy inequality of quantum entanglement in terms of Tsallis qentropy.We first give a lower bound of TOA in the 2?d systems.The lower bound between TEE and TOA is also given in the 2?d system.Furthermore,we prove TOA follows a hierarchical polygamy inequality in a 2?2?2N?2systems.

    This paper is organized as follows.In Sec.2,we recall some basic concepts to be used in this paper.In Sec.3,we present our main results.Finally,we summarize our results in Sec.4.

    2 Some Basic Concepts

    2.1 Concurrence and Concurrence of Assistance

    Quantifying entanglement is a core problem in quantum information theory.Given any pure state|ψ?ABin the Hilbert space HA?HB,the concurrence is definedas:[44]

    where ρA=TrB(|ψ?AB?ψ|).Note that

    with ρB=TrA(|ψ?AB?ψ|).

    Given a mixed state ρAB,the concurrence can be defined via the convex-roof extension:[45]

    where the minimum is taken over all possible pure state decompositions{pi,|ψi?AB}of ρABwith ∑ipi=1 and pi≥0.

    As a dual quantity to concurrence,the concurrence of assistance(COA)can be defined as:

    where the maximum is taken over all possible pure state decompositions{pi,|ψi?AB}of ρABwith ∑ipi=1 and pi≥0.

    To understand COA better,consider a tripartite pure state|ψ?ABCshared among three parties referred to as Alice,Bob,and Charlie.[34?35]The entanglement supplier,Charlie,performs a measurement on his share of the tripartite state,which yields a known bipartite entangled state for Alice and Bob.Tracing over Charlie’s system yields the bipartite mixed state ρAB=TrC(|ψ?ABC?ψ|)shared by Alice and Bob.Charlie’s aim is to maximize entanglement for Alice and Bob,and the maximum average entanglement he can create is the COA.

    For a two-qubit mixed state ρAB,concurrence and COA are known to have analytic formula:[34,44]

    where λibeing the eigenvalues,in decreasing order,of matrix

    2.2 TEE and TOA

    Given a bipartite state ρABin the Hilbert space HA?HB.The Tsallis q-entropy is defined as:[46]

    for any q>0 and q1.When q tends to 1,the Tsallis qentropy Tq(ρ)converges to its von Neumann entropy:[47]limq→1Tq(ρ)= ? Tr(ρlnρ).For any pure state|ψAB?,the TEE is defined as:

    for any q>0.For a mixed state ρAB,the TEE can be defined as

    for any q>0,where the minimum is taken over all possible pure state decompositions{pi,|ψi?AB}of ρAB.TEE can be viewed as a general entanglement of formation when q tends to 1.The entanglement of formation is defined as:[48?49]

    whereis the von Neumann entropy,the minimum is taken over all possible pure state decompositions{pi,|ψi?AB}of ρAB.For a mixed state ρAB,the TOA can be defined as:

    for any q>0,where the maximum is taken over all possible pure state decompositions{pi,|ψi?AB}of ρAB.

    In Ref.[44],Wootters derived an analytical formula for a two-qubit mixed state ρAB:

    where H(x)=?xlnx?(1?x)ln(1?x)is the binary entropy and CAB=max{0,λ1?λ2?λ3?λ4}is the concurrence of ρAB,with λibeing the eigenvalues,in decreasing order,of matrix

    Tq(ρAB)has an analytical formula for a two-qubit mixed state,which can be expressed as a function of the squared concurrence

    where the function fq(x)has the form:

    2.3 Three Tangle

    For any tripartite pure state|ψ?ABCin a 2 ? 2 ? d system,the three tangle of it is defined as:

    For a mixed state ρABC,three tangle can be defined as:

    where the minimum is taken over all possible pure state decompositions{pi,|ψi?ABC}of ρABC.

    3 Main Results

    We will show our main results in this section.

    Theorem 1 For any bipartite mixed state ρABin a 2?d system,we have

    whereand=Ca(ρAB)is the COA of ρAB.

    Proof Let{pi,|ψi?AB}be an optimal convex decomposition for the COA CaAB,then we have

    where the second inequality holds is due to Tq(|ψ?AB) ≥fq[C2(|ψ?AB)]for q>0,[33]and we have used the convex-in the third inequality.[33]

    Thus,the proof is completed. ?

    Equation(16)provides a lower bound for TOA in the 2?d system.

    Example 1 Consider the reduced states ρABand ρACof general W state|W?ABC= α|100?+β|010?+γ|001?.From Eq.(5),we have Ca(ρAB)=2|αβ|and Ca(ρAC)=2|αγ|,thus we get the lower bounds:

    Now we will study the relationship between TEE and TOA.We have the following theorem first.

    Theorem 2 For any tripartite mixed state ρABCin a 2?2?d system,we have

    whereand τ3(ρABC)is three tangle of ρABC.

    Proof Let us consider a pure state|ψ?ABCfirst.For the state|ψ?ABC,the following inequality holds for q ∈

    where we have used the convexity of(x)in the second inequality,[33]the last equality holds because we have equalityfor any tripartite pure state|ψ?ABCin a 2?2?d system.[50]

    For a tripartite mixed state ρABCin a 2 ? 2 ? d system,supposeis the optimal decomposition in the senseand letwe have

    where the first inequality holds is due to fq(x)is an increase monotonic function of x,and we have used Cauchy-Schwarz inequality

    by settingThe second inequality holds is due to the convexity of(x).We have used definition in the last inequality.

    Thus,the proof is completed. ?

    As an application,we could calculate TOA of some state.

    Example 2 Consideratwo-qubitstateρAB=it is easy to show that the threequbit GHZ statepuri fi cation of ρAB.And we have τ(|GHZ?ABC)=1 and Tq(ρAB)=0.From Theorem 2,we have

    On theotherhand,forany two-qubitstateρAB,Note that

    Thus,we have

    which implies

    where

    Theorem 3 Shows that there is a gap between squared TOA and squared TEE in the 2?2?d system,the gap is connected with three-tangle.Similarly,we have following results for the gap between TOA and TEE:

    Theorem 3 For any tripartite mixed state ρABCin a 2?2?d system,we have

    where q∈[2,3].

    Proof For a tripartite mixed state ρABCin a 2 ? 2 ? 2 system,supposeis the optimal decomposition in the sense ofand let

    where the first inequality is due to fq(x)is an increase monotonic function of x,and we have used Cauchy-Schwarz inequality

    by settingSecond inequality is due to fq(x?y)≤fq(x)?fq(y)for q∈[2,3],and we have used definition in the last inequality.

    Thus,the proof is completed. ?

    We also find a relationship between TEE and TOA:

    Theorem 4 For any tripartite pure state|ψ>ABCin a 2?2?d system,we have

    where

    Proof

    where we use thein the last equality,and the first inequality holds is due to the convexity of increasing fq(x).

    Thus,the proof is completed. ?

    The bound in Eq.(19)can be saturated for any tripartite pure statein a 2 ? 2 ? d system.It is obvious that the reduced state ρABis separable,and thus the reduced state ρACis a pure state,which implies

    Finally,we obtain a polygamy relation for TOA:

    Theorem 5 For any mixed state ρABCin a 2?2?2N?2system,the following hierarchical polygamy relation holds

    where

    Proof First,we should consider a pure statewe have

    where the first inequality is due to

    holds in the 2?2?2N?2system,[53]the second inequality is due to Theorem 1.

    Second,suppose that the optimal decomposition forwe can derive

    Thus,the proof is completed. ?

    A straightforward corollary is for any N-qubit mixed state ρA1|A2···AN,the following polygamy inequality holds:

    whereThis inequality has been discussed in Ref.[51].We also note that in Ref.[37],Kim derives a sufficient condition for the general polygamy inequality of multipartite quantum entanglement in arbitrary dimensions using Tsallis q-entropy for q≥1(Theorem 1 in his paper).While,the sufficient condition is not easy to derive a certain polygamy inequality because of the hard analysis of parameter q.Our method not only derived a polygamy inequality for the parameter q in a 2?2?2N?2systems,but also the new polygamy inequality holds forThe new polygamy inequality can be seen as a supplement for Kim’s result.

    Moreover,we could compare Theorem 5 with our another result in Ref.[54].The main result in Ref.[54]claimed for any states ρABC,TOA satisfies:

    This result describes another distribution in the multipartite quantum system than the polygamy relations in Eq.(22),and the equality holds above for arbitrary dimensional space of states.

    Example 3 Consider a three-qubit W state|W>ABC=The TOA of|W>A|BCisOn the other hand,from Example 1,we have the lower bound:fq(8/9),we have?.As shown in Fig.1,we plot the function? with?is nonnegative forThus

    Fig.1 (Color online)The function?with q∈?is nonnegative for q∈

    4 Conclusion

    We have provided a one-parameter class of polygamy inequalities in terms of Tsallis q-entropy.We have found a lower bound of TOA in the 2?d systems.The lower bound between TEE and TOA is also given in the 2?d system.Furthermore,we have proven TOA follows a hierarchical polygamy inequality in a 2?2?2N?2systems.A straightforward corollary of this hierarchical polygamy inequality is for any N-qubit mixed state ρA1A2···ANthe general polygamy inequality holds.Based on the one-parameter class of entanglement measurements,some interesting results have been provided in this paper.We hope our results can be a useful tool to understand the property of multi-party quantum entanglement.

    Acknowledgments

    Y.Luo thanks prof Min-Hsiu Hsieh for comments.

    [1]T.J.Osborne and F.Verstraete,Phys.Rev.Lett.96(2006)220503.

    [2]J.Barrett,L.Hardy,and A.Kent,Phys.Rev.Lett.95(2005)010503.

    [3]X.S.Ma,B.Dakic,W.Naylor,et al.,Nat.Phys.7(2009)399.

    [4]L.Amico,R.Fazio,A.Osterloh,and V.Vedral,Rev.Mod.Phys.80(2008)517.

    [5]L.Suskind,arXiv:hep-th/1301.4505(2013).

    [6]S.Lloyd and J.Preskill,J.High Energy Phys.83(2014)126.

    [7]V.Co ff man,J.Kundu,and W.K.Wootters,Phys.Rev.A 61(2000)052306.

    [8]B.Regula,S.D.Martino,S.Lee,and G.Adesso,Phys.Rev.Lett.113(2014)110501.

    [9]Y.C.Ou,H.Fan,and S.M.Fei,Phys.Rev.A 78(2008)012311.

    [10]M.Li,S.M.Fei,X.Li-Jost,and H.Fan,Phys.Rev.A 92(2015)062338.

    [11]X.N.Zhu,and S.M.Fei,Phys.Rev.A 90(2014)024304.

    [12]X.N.Zhu,and S.M.Fei,Phys.Rev.A 92(2015)062345.

    [13]C.Eltschka and J.Siewert,Phys.Rev.Lett.114(2015)140402.

    [14]Y.K.Bai,Y.F.Xu,and Z.D.Wang,Phys.Rev.Lett.113(2014)100503.

    [15]Y.K.Bai,Y.F.Xu,and Z.D.Wang,Phys.Rev.A 90(2014)062343.

    [16]J.S.Kim,A.Das,and B.C.Sanders,Phys.Rev.A 79(2009)012329.

    [17]Y.C.Ou and H.Fan,Phys.Rev.A 75(2007)062308.

    [18]Y.Luo and Y.Li,Ann.Phys.362(2015)511.

    [19]H.He and G.Vidal,Phys.Rev.A 91(2015)012339.

    [20]T.Tian,Y.Luo,and Y.Li,Sci.Report 6(2016)36700.

    [21]K.Li and A.Winter,Commun.Math.Phys.326(2014)63.

    [22]C.Lancien,S.D.Martino,M.Huber,et al.,Phys.Rev.Lett.117(2016)060501.

    [23]T.Hiroshima,G.Adesso,and F.Illuminati,Phys.Rev.Lett.98(2007)050503.

    [24]G.Adesso and F.Illuminati,Phys.Rev.Lett.99(2007)150501.

    [25]G.Adesso and F.Illuminati,Phys.Rev.A 78(2008)042310.

    [26]J.S.Kim,A.Das,and B.C.Sanders,J.Phys.A:Math.Theor.43(2010)445305.

    [27]W.Song,Y.K.Bai,Mou Yang,et al.,Phys.Rev.A 93(2016)022306.

    [28]Y.K.Bai,N.Zhang,M.Y.Ye,and Z.D.Wang,Phys.Rev.A 88(2013)012123.

    [29]A.Streltsov,G.Adesso,M.Piani,and D.Bru?,Phys.Rev.Lett.109(2012)050503.

    [30]Q.Y.He and M.D.Reid,Phys.Rev.Lett.111(2013)250403.

    [31]T.Pramanik,M.Kaplan,and A.S.Majumdar,Phys.Rev.A 90(2014)050305(R).

    [32]G.M.Yuan,W.Song,M.Yang,et al.,Sci.Rep.6(2016)28719.

    [33]Y.Luo,T.Tian,L.H.Shao,and Y.Li,Phys.Rev.A 93(2016)062340.

    [34]T.Laustsen,F.Verstraete,and S.J.van Enk,Quantum Inf.Comput.3(2003)64.

    [35]G.Gour,D.A.Meyer,and B.C.Sanders,Phys.Rev.A 72(2005)042329.

    [36]G.Gour,S.Bandyopadhay,and B.C.Sanders,J.Math.Phys.48(2007)012108.

    [37]J.S.Kim,Phys.Rev.A 94(2016)062338.

    [38]A.K.Rajagopal and R.W.Rendell,Phys.Rev.A 72(2005)022322.

    [39]R.Rossignoli and N.Canosa,Phys.Rev.A 66(2002)042306.

    [40]J.Batle,A.R.Plastino,M.Casas,and A.Plastino,J.Phys.A 35(2002)10311.

    [41]S.Abe and A.K.Rajagopal,Physica A 289(2001)157.

    [42]C.Tsallis,S.Lloyd,and M.Baranger,Phys.Rev.A 63(2001)042104.

    [43]A.Vidiella-Barranco,Phys.Lett.A 260(1999)335.

    [44]W.K.Wootters,Phys.Rev.Lett.80(1998)2245.

    [45]A.Osterloh,J.Siewert,and A.Uhlmann,Phys.Rev.A 77(2008)032310.

    [46]C.Tsallis,J.Stat.Phys.52(1988)479.

    [47]M.A.Nielsen and I.L.Chuang Quantum Computation and Quantum Information,Cambridge Univ.Press,Cambridge(2000).

    [48]C.H.Bennett,H.J.Bernstein,S.Popescu,and B.Schumacher,Phys.Rev.A 53(1996)2046.

    [49]C.H.Bennett,D.P.DiVincenzo,J.A.Smolin,and W.K.Wootters,Phys.Rev.A 54(1996)3824.

    [50]C.S.Yu and H.S.Song,Phys.Rev.A 77(2008)032329.

    [51]In Ref.[52]the author proved the inequality fq(x2+y2)≤fq(x2)+fq(y2)holds for q∈ [1,2]∪[3,4],and it is easy to check the inequality also holds for

    [52]J.S.Kim,Phys.Rev.A 81(2010)062328.

    [53]Z.G.Li,S.M.Fei,S.Albeverio,and W.M.Liu,Phys.Rev.A 80(2009)034301.

    [54]Y.Luo,F.G.Zhang,and Y.Li,Sci.Rep.7(2017)1122.

    男女床上黄色一级片免费看| 99re在线观看精品视频| 变态另类丝袜制服| 亚洲五月婷婷丁香| 亚洲精品国产色婷婷电影| 女人爽到高潮嗷嗷叫在线视频| 国产一区二区三区视频了| 婷婷六月久久综合丁香| 国产av精品麻豆| 又大又爽又粗| 国产aⅴ精品一区二区三区波| 亚洲最大成人中文| 一a级毛片在线观看| 美女高潮喷水抽搐中文字幕| 男人的好看免费观看在线视频 | 久久香蕉国产精品| 国产亚洲av嫩草精品影院| 亚洲国产精品久久男人天堂| 久久精品亚洲熟妇少妇任你| 亚洲av成人不卡在线观看播放网| 黄色视频,在线免费观看| 国产欧美日韩综合在线一区二区| 午夜日韩欧美国产| 少妇粗大呻吟视频| 久久久久久久午夜电影| 精品国产一区二区久久| 一区二区三区国产精品乱码| 日韩欧美国产一区二区入口| 少妇裸体淫交视频免费看高清 | 视频区欧美日本亚洲| 后天国语完整版免费观看| 成人18禁高潮啪啪吃奶动态图| 欧美精品亚洲一区二区| 1024香蕉在线观看| 波多野结衣一区麻豆| 国产成人啪精品午夜网站| 免费观看精品视频网站| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩乱码在线| 88av欧美| 深夜精品福利| 亚洲av电影在线进入| 国产伦人伦偷精品视频| 桃红色精品国产亚洲av| tocl精华| 成年女人毛片免费观看观看9| 精品久久久久久成人av| 中文字幕av电影在线播放| 亚洲一区二区三区不卡视频| 美国免费a级毛片| 在线观看免费日韩欧美大片| 久久久久久亚洲精品国产蜜桃av| 精品久久久久久久人妻蜜臀av | 日韩中文字幕欧美一区二区| 国产又色又爽无遮挡免费看| 亚洲人成77777在线视频| 国产精品久久视频播放| 最新在线观看一区二区三区| 久久人妻av系列| 麻豆一二三区av精品| 9热在线视频观看99| 每晚都被弄得嗷嗷叫到高潮| 嫩草影视91久久| 一级a爱片免费观看的视频| 一区二区日韩欧美中文字幕| 99国产精品免费福利视频| 天天添夜夜摸| 男人的好看免费观看在线视频 | 中文字幕人妻丝袜一区二区| 少妇裸体淫交视频免费看高清 | 麻豆成人av在线观看| 精品电影一区二区在线| 久久国产精品男人的天堂亚洲| 亚洲成av片中文字幕在线观看| 俄罗斯特黄特色一大片| 一本久久中文字幕| 老司机福利观看| 欧美激情久久久久久爽电影 | 精品久久久久久久久久免费视频| 午夜两性在线视频| 老汉色av国产亚洲站长工具| 中文字幕人妻熟女乱码| 熟妇人妻久久中文字幕3abv| 亚洲国产看品久久| 99精品欧美一区二区三区四区| 国产真人三级小视频在线观看| 成人亚洲精品一区在线观看| 精品久久蜜臀av无| 成年版毛片免费区| 久久精品影院6| 在线观看日韩欧美| 丝袜美足系列| 国产不卡一卡二| 一个人观看的视频www高清免费观看 | 91国产中文字幕| 日韩大尺度精品在线看网址 | 精品午夜福利视频在线观看一区| 亚洲欧美激情在线| 视频区欧美日本亚洲| 18禁黄网站禁片午夜丰满| 夜夜看夜夜爽夜夜摸| 国产真人三级小视频在线观看| cao死你这个sao货| 午夜免费鲁丝| 亚洲国产精品999在线| 久久精品国产亚洲av高清一级| 色av中文字幕| 欧美日韩黄片免| 黄色视频不卡| 人妻久久中文字幕网| 777久久人妻少妇嫩草av网站| 国产精品久久久人人做人人爽| 18禁裸乳无遮挡免费网站照片 | 好看av亚洲va欧美ⅴa在| 无遮挡黄片免费观看| 51午夜福利影视在线观看| 成熟少妇高潮喷水视频| 亚洲精品中文字幕在线视频| 免费观看人在逋| 国产成人啪精品午夜网站| 亚洲成人免费电影在线观看| 亚洲精品美女久久久久99蜜臀| 久99久视频精品免费| 亚洲午夜理论影院| 国产xxxxx性猛交| 最近最新免费中文字幕在线| 免费一级毛片在线播放高清视频 | 午夜成年电影在线免费观看| 丝袜在线中文字幕| 午夜亚洲福利在线播放| 黄片播放在线免费| 村上凉子中文字幕在线| 日韩大码丰满熟妇| 国产精品野战在线观看| 在线观看www视频免费| 婷婷六月久久综合丁香| 两性夫妻黄色片| 日日摸夜夜添夜夜添小说| 最好的美女福利视频网| 又大又爽又粗| 99久久99久久久精品蜜桃| 国产精品久久久av美女十八| 国产亚洲av嫩草精品影院| 真人做人爱边吃奶动态| 国产真人三级小视频在线观看| 又大又爽又粗| 国产成+人综合+亚洲专区| 在线观看一区二区三区| 国产精品美女特级片免费视频播放器 | 久久天堂一区二区三区四区| 欧美乱妇无乱码| 国产aⅴ精品一区二区三区波| 欧美精品亚洲一区二区| 老熟妇乱子伦视频在线观看| 亚洲五月婷婷丁香| 少妇的丰满在线观看| av天堂久久9| 老熟妇乱子伦视频在线观看| 国产又爽黄色视频| 国产精品精品国产色婷婷| 后天国语完整版免费观看| 欧美国产日韩亚洲一区| 又黄又粗又硬又大视频| 999久久久国产精品视频| 啦啦啦 在线观看视频| 日韩高清综合在线| 大码成人一级视频| 久久精品国产综合久久久| 欧美亚洲日本最大视频资源| 国产一卡二卡三卡精品| 99国产精品一区二区蜜桃av| 精品欧美一区二区三区在线| 一本综合久久免费| 成人国产一区最新在线观看| 国产精品,欧美在线| 亚洲精华国产精华精| 美女扒开内裤让男人捅视频| 亚洲专区字幕在线| 日韩成人在线观看一区二区三区| 欧美乱妇无乱码| 好看av亚洲va欧美ⅴa在| 少妇被粗大的猛进出69影院| 97超级碰碰碰精品色视频在线观看| 777久久人妻少妇嫩草av网站| 在线天堂中文资源库| 欧美色欧美亚洲另类二区 | 亚洲av第一区精品v没综合| 久久午夜综合久久蜜桃| 日本五十路高清| 久久久久久久久久久久大奶| 麻豆一二三区av精品| 午夜a级毛片| 午夜精品在线福利| 欧美不卡视频在线免费观看 | 免费av毛片视频| 午夜老司机福利片| 国产午夜福利久久久久久| av在线天堂中文字幕| 欧美国产日韩亚洲一区| 在线视频色国产色| 别揉我奶头~嗯~啊~动态视频| 日韩国内少妇激情av| 美女高潮喷水抽搐中文字幕| 国产精品久久电影中文字幕| 亚洲成人久久性| а√天堂www在线а√下载| 欧美久久黑人一区二区| 国产真人三级小视频在线观看| 国产av又大| 成人永久免费在线观看视频| 亚洲熟妇熟女久久| 国产精品永久免费网站| 亚洲自拍偷在线| 国产色视频综合| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美午夜高清在线| bbb黄色大片| 777久久人妻少妇嫩草av网站| 琪琪午夜伦伦电影理论片6080| 可以免费在线观看a视频的电影网站| 黄网站色视频无遮挡免费观看| 成在线人永久免费视频| 黄色a级毛片大全视频| 亚洲欧美日韩无卡精品| 日韩有码中文字幕| 国产亚洲精品久久久久久毛片| 99在线人妻在线中文字幕| 精品午夜福利视频在线观看一区| 精品人妻1区二区| 又大又爽又粗| 9热在线视频观看99| 久久久久久久午夜电影| 我的亚洲天堂| 99re在线观看精品视频| 国产97色在线日韩免费| 亚洲专区中文字幕在线| 18美女黄网站色大片免费观看| 色综合婷婷激情| 一进一出好大好爽视频| 亚洲欧美精品综合久久99| ponron亚洲| 国产精品久久视频播放| 美女国产高潮福利片在线看| 叶爱在线成人免费视频播放| 真人做人爱边吃奶动态| 亚洲av成人av| 九色国产91popny在线| 国产又爽黄色视频| 国产区一区二久久| 自线自在国产av| av网站免费在线观看视频| 男男h啪啪无遮挡| 精品乱码久久久久久99久播| 精品久久久久久成人av| 国产精品久久久av美女十八| av片东京热男人的天堂| 少妇粗大呻吟视频| 午夜精品在线福利| 亚洲成人免费电影在线观看| 久久天躁狠狠躁夜夜2o2o| 好看av亚洲va欧美ⅴa在| 亚洲av成人av| 久久久久久久久免费视频了| 国产91精品成人一区二区三区| 亚洲一区高清亚洲精品| 精品人妻1区二区| 后天国语完整版免费观看| 777久久人妻少妇嫩草av网站| 俄罗斯特黄特色一大片| 精品卡一卡二卡四卡免费| 亚洲av美国av| av天堂久久9| 中文字幕人成人乱码亚洲影| 老司机午夜十八禁免费视频| 亚洲中文字幕一区二区三区有码在线看 | 欧美久久黑人一区二区| 少妇被粗大的猛进出69影院| 亚洲国产中文字幕在线视频| 亚洲第一av免费看| 少妇的丰满在线观看| 天天躁夜夜躁狠狠躁躁| 精品熟女少妇八av免费久了| 色哟哟哟哟哟哟| a级毛片在线看网站| 国产亚洲精品一区二区www| 长腿黑丝高跟| 9色porny在线观看| 欧美激情 高清一区二区三区| 成人三级做爰电影| 欧美av亚洲av综合av国产av| 成人国语在线视频| 亚洲美女黄片视频| 久久这里只有精品19| 国产一区二区三区视频了| 欧美成人性av电影在线观看| 国产免费男女视频| 日本免费a在线| 国产1区2区3区精品| 国产精品,欧美在线| 亚洲国产中文字幕在线视频| 亚洲av成人不卡在线观看播放网| 午夜亚洲福利在线播放| 日本vs欧美在线观看视频| 免费人成视频x8x8入口观看| 操美女的视频在线观看| 好看av亚洲va欧美ⅴa在| av在线播放免费不卡| 久久亚洲真实| 我的亚洲天堂| 精品高清国产在线一区| 每晚都被弄得嗷嗷叫到高潮| 国产免费av片在线观看野外av| 69av精品久久久久久| av片东京热男人的天堂| 亚洲精品av麻豆狂野| 韩国精品一区二区三区| 少妇裸体淫交视频免费看高清 | 国产精品98久久久久久宅男小说| 亚洲精品美女久久久久99蜜臀| 精品无人区乱码1区二区| 麻豆一二三区av精品| 亚洲国产精品sss在线观看| 电影成人av| 91老司机精品| 黑人巨大精品欧美一区二区蜜桃| av视频在线观看入口| 国产片内射在线| 天天躁夜夜躁狠狠躁躁| 久久精品国产亚洲av高清一级| xxx96com| 亚洲国产看品久久| av福利片在线| 激情在线观看视频在线高清| 成人亚洲精品一区在线观看| 正在播放国产对白刺激| 午夜精品国产一区二区电影| 欧美在线一区亚洲| 免费无遮挡裸体视频| 亚洲av第一区精品v没综合| 亚洲一区二区三区不卡视频| 久久人妻熟女aⅴ| 国产亚洲精品av在线| 成人免费观看视频高清| 一级毛片高清免费大全| 亚洲熟妇熟女久久| 波多野结衣巨乳人妻| 美女高潮到喷水免费观看| 怎么达到女性高潮| 女生性感内裤真人,穿戴方法视频| 免费观看精品视频网站| 美女高潮到喷水免费观看| 窝窝影院91人妻| 国产精品二区激情视频| 亚洲欧美日韩高清在线视频| 亚洲精品粉嫩美女一区| 真人做人爱边吃奶动态| 天天添夜夜摸| 午夜福利影视在线免费观看| 午夜亚洲福利在线播放| 激情在线观看视频在线高清| 99国产精品一区二区蜜桃av| 国产精品免费视频内射| 亚洲精品久久国产高清桃花| 精品少妇一区二区三区视频日本电影| 在线观看午夜福利视频| 999久久久精品免费观看国产| 给我免费播放毛片高清在线观看| 身体一侧抽搐| 99久久国产精品久久久| 亚洲精品在线观看二区| 中文字幕色久视频| 一a级毛片在线观看| 欧美另类亚洲清纯唯美| 亚洲视频免费观看视频| 久久热在线av| 国产欧美日韩精品亚洲av| 啦啦啦观看免费观看视频高清 | 欧美乱码精品一区二区三区| 一夜夜www| 岛国在线观看网站| 电影成人av| 少妇 在线观看| www.www免费av| 亚洲欧美精品综合一区二区三区| 亚洲欧美一区二区三区黑人| 日韩精品中文字幕看吧| 一级,二级,三级黄色视频| 亚洲精品一卡2卡三卡4卡5卡| 中亚洲国语对白在线视频| 欧美日韩精品网址| 一边摸一边抽搐一进一小说| 妹子高潮喷水视频| 国产精品美女特级片免费视频播放器 | а√天堂www在线а√下载| 在线十欧美十亚洲十日本专区| 欧美成人性av电影在线观看| 变态另类成人亚洲欧美熟女 | www.自偷自拍.com| 性欧美人与动物交配| 久久国产精品男人的天堂亚洲| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久久久久精品电影 | 亚洲精品中文字幕在线视频| 黄色片一级片一级黄色片| 伊人久久大香线蕉亚洲五| 操出白浆在线播放| 午夜福利18| 精品午夜福利视频在线观看一区| 在线永久观看黄色视频| 久久人人爽av亚洲精品天堂| 日韩三级视频一区二区三区| 色播在线永久视频| 国产精品日韩av在线免费观看 | 亚洲视频免费观看视频| 成人三级做爰电影| 麻豆成人av在线观看| 国产视频一区二区在线看| 99国产综合亚洲精品| 国产99久久九九免费精品| 日韩 欧美 亚洲 中文字幕| 99久久国产精品久久久| 国产99白浆流出| 最近最新免费中文字幕在线| 在线国产一区二区在线| 少妇被粗大的猛进出69影院| 99久久精品国产亚洲精品| 午夜久久久久精精品| 中文字幕av电影在线播放| 19禁男女啪啪无遮挡网站| 人妻丰满熟妇av一区二区三区| 午夜免费成人在线视频| www.www免费av| 国产精品免费视频内射| 啪啪无遮挡十八禁网站| 热re99久久国产66热| 宅男免费午夜| 国产精品亚洲av一区麻豆| 久久香蕉精品热| 久久精品91无色码中文字幕| 亚洲欧洲精品一区二区精品久久久| 国产免费男女视频| av有码第一页| 免费一级毛片在线播放高清视频 | 极品人妻少妇av视频| 自线自在国产av| 美女 人体艺术 gogo| 91字幕亚洲| 在线观看免费午夜福利视频| 国产精品免费视频内射| 久久人妻熟女aⅴ| 亚洲va日本ⅴa欧美va伊人久久| 日本免费a在线| 成人永久免费在线观看视频| 久久人妻福利社区极品人妻图片| 美国免费a级毛片| 久久香蕉国产精品| 国产激情欧美一区二区| 国产一区二区三区综合在线观看| 日韩欧美国产在线观看| 搡老岳熟女国产| 国产国语露脸激情在线看| 欧美亚洲日本最大视频资源| 后天国语完整版免费观看| 国产一级毛片七仙女欲春2 | 精品一区二区三区四区五区乱码| www.自偷自拍.com| 国产精品秋霞免费鲁丝片| 黑人巨大精品欧美一区二区蜜桃| 国产国语露脸激情在线看| 午夜福利高清视频| bbb黄色大片| 男人舔女人的私密视频| 在线观看日韩欧美| 亚洲 国产 在线| 久久这里只有精品19| 此物有八面人人有两片| 非洲黑人性xxxx精品又粗又长| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩一级在线毛片| 国产一级毛片七仙女欲春2 | 老司机午夜福利在线观看视频| 在线视频色国产色| 最新在线观看一区二区三区| 亚洲国产精品999在线| 亚洲avbb在线观看| 午夜福利一区二区在线看| www.精华液| 少妇被粗大的猛进出69影院| 后天国语完整版免费观看| 纯流量卡能插随身wifi吗| 亚洲国产欧美一区二区综合| 国产精品98久久久久久宅男小说| 99riav亚洲国产免费| 亚洲欧美日韩高清在线视频| 日韩欧美三级三区| 波多野结衣一区麻豆| 亚洲国产欧美日韩在线播放| 真人一进一出gif抽搐免费| 九色亚洲精品在线播放| 国产一区二区激情短视频| 日日爽夜夜爽网站| avwww免费| 高清在线国产一区| 久热这里只有精品99| 免费在线观看亚洲国产| 黄色 视频免费看| 18禁美女被吸乳视频| 又黄又爽又免费观看的视频| 久久亚洲真实| 欧美日韩精品网址| 一本久久中文字幕| 女性被躁到高潮视频| 久久人妻熟女aⅴ| 欧美乱色亚洲激情| 色综合站精品国产| 国产亚洲精品综合一区在线观看 | 久久精品亚洲熟妇少妇任你| 国产高清有码在线观看视频 | 久久精品国产清高在天天线| 精品日产1卡2卡| 日本欧美视频一区| 国产精品久久电影中文字幕| 久久精品国产清高在天天线| 国产人伦9x9x在线观看| 国产私拍福利视频在线观看| 久久国产精品人妻蜜桃| 国产精品一区二区三区四区久久 | 中出人妻视频一区二区| 熟女少妇亚洲综合色aaa.| 女人高潮潮喷娇喘18禁视频| 中文字幕色久视频| 啦啦啦免费观看视频1| 国产精品永久免费网站| 十八禁网站免费在线| 日韩欧美国产一区二区入口| 久99久视频精品免费| 亚洲少妇的诱惑av| 中文字幕色久视频| 国产av一区二区精品久久| 黑人欧美特级aaaaaa片| АⅤ资源中文在线天堂| 亚洲中文日韩欧美视频| 免费看美女性在线毛片视频| 香蕉久久夜色| 国产精品精品国产色婷婷| 欧美性长视频在线观看| 国产成人精品久久二区二区91| 97人妻天天添夜夜摸| 男人操女人黄网站| 成人国产一区最新在线观看| 夜夜夜夜夜久久久久| 亚洲国产精品999在线| 中出人妻视频一区二区| 一区二区日韩欧美中文字幕| 熟女少妇亚洲综合色aaa.| 美女免费视频网站| 亚洲精品国产一区二区精华液| 一进一出好大好爽视频| 人人澡人人妻人| 欧美日本中文国产一区发布| 久久青草综合色| 亚洲狠狠婷婷综合久久图片| 亚洲一区二区三区不卡视频| 男女之事视频高清在线观看| 岛国在线观看网站| www.www免费av| 老汉色∧v一级毛片| 国产av又大| 嫩草影视91久久| 国产精品亚洲av一区麻豆| 日韩欧美一区视频在线观看| 精品久久久久久久久久免费视频| 亚洲中文av在线| 搞女人的毛片| 亚洲国产欧美一区二区综合| 色哟哟哟哟哟哟| 国产亚洲欧美98| 精品人妻在线不人妻| 两个人看的免费小视频| 国产一区二区三区综合在线观看| 丰满人妻熟妇乱又伦精品不卡| 午夜免费观看网址| 脱女人内裤的视频| 国产一区二区三区在线臀色熟女| 一本大道久久a久久精品| 男女下面插进去视频免费观看| 一级黄色大片毛片| 国产欧美日韩一区二区精品| 伊人久久大香线蕉亚洲五| 黄色片一级片一级黄色片| 亚洲精品一区av在线观看| 国产精品亚洲av一区麻豆| 国产主播在线观看一区二区| 国产欧美日韩综合在线一区二区| 国产精品影院久久| 色av中文字幕| 精品国产美女av久久久久小说| 91大片在线观看| 欧美激情极品国产一区二区三区| 性欧美人与动物交配| 国产精品久久久人人做人人爽| 黄片播放在线免费| 国产一区二区三区在线臀色熟女| 亚洲av五月六月丁香网| 色精品久久人妻99蜜桃| 久久久久久人人人人人| 精品一区二区三区四区五区乱码| 久久国产乱子伦精品免费另类| 国产精品 欧美亚洲| 亚洲第一青青草原| 国产精品电影一区二区三区| 久久久久久国产a免费观看| 国产亚洲精品一区二区www| 亚洲七黄色美女视频| 欧美日韩精品网址|