• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized Lagrange Jacobi Gauss-Lobatto(GLJGL)Collocation Method for Solving Linear and Nonlinear Fokker-Planck Equations

    2018-06-11 12:21:02ParandLatifiMoayeriandDelkhosh
    Communications in Theoretical Physics 2018年5期

    K.Parand, S.Lati fi, M.M.Moayeri, and M.Delkhosh

    1Department of Computer Sciences,Shahid Beheshti University,G.C.Tehran,Iran

    2Department of Cognitive Modeling,Institute for Cognitive and Brain Sciences,Shahid Beheshti University,G.C.Tehran,Iran

    1 Introduction

    In order to present the partial differential equation that is solved numerically, firstly,we give an introduction to the linear and nonlinear Fokker-Planck equations(FPEs)and provide a brief review and history of these equations in the following subsection.

    1.1 The Governing Equations

    The solution of the FPEs is important in various fields of natural science,including astrophysics problems,biological applications,chemical physics,polymer,circuit theory,dielectric relaxation,economics,electron relaxation in gases,nucleation,optical bistability,dynamics,quantum optics,reactive systems,solid-state physics,and numerous other applications.[1]The origin and history of FPEs go back to the time when Fokker-Planck described the Brownian motion of particles.[1?2]The theory of Brownian motion exists in many areas of physics and chemistry,and particularly in those that deal with the nature of metastable states and the rates at which these states decay.[3]Kramers equation is a special form of the FPEs utilized to describe the Brownian motion of a potential.[4]

    The general form of the FPEs,for the variable x and t,is

    where A(x)and B(x)are referred to as the drift and diffusion coefficients and in case the drift and diffusion coefficients depended on time we can show it as:

    The above equation is considered as the equation of motion for the distribution function y(x,t),and is also called the forward Kolmogorov equation.

    In addition to the forward Kolmogorov equation,there is another form of the equation called backward Kolmogorov equation.

    The more general forms of FPEs are its nonlinear form of the equation.The nonlinear FPEs may be derived from the principles of linear nonequilibrium thermodynamics.[5]Nonlinear FPEs have important applications and advantages in miscellaneous fields of sciences:biophysics,neurosciences,engineering,laser physics,nonlinear hydrodynamics,plasma physics,pattern formation,poly-mer physics,population dynamics,psychology,surface physics.[1,6]

    In the nonlinear FPEs,the equation also depends on y where this dependency happens in the drift and di ff usion coefficients.The general form of this equation is

    by which

    Although there can be analytical solutions for the FPEs,it is difficult to result in solutions when the number of variables are large and no separation of variables methods are demanded.

    1.2 The Literature Review on the FPEs

    In the early 1990s,Palleschi et al.[7?8]investigated FPEs. They discussed a fast and accurate algorithm for the numerical solution of Fokker-Planck-like equation.Vanaja[9]presented an iterative solution method for solving FPEs.Zorzano et al.[10]used the finite difference to investigate two-dimensional of this equation.Dehghan et al.[11]employed the He’s variational iteration method(VIM)to give a solution for this equation.Tatari et al.[12]applied the Adomian decomposition method for solving the FPEs.Using the cubic B-spline scaling functions,Lakestani et al.[2]obtained the numerical solution of FPEs.Kazem et al.[6]utilized RBF to solve the equation.

    Other insights for solving FPEs are numerical techniques.Among them,Wehner[13]applied path integrals to solve the nonlinear FPEs.Fourier transformations were employed by Brey et al.[14]Zhang et al.[15]applied distributed approximating functionals to solve the nonlinear FPEs.Further to these,for solving the one-dimensional nonlinear FPEs,the finite difference schemes[16]are also applied.

    In recent years,dozens of scientists are attracted to Spectral and pseudo spectral methods.[17?18]Spectral methods are providing the solution of the problem with the aid of truncated series of smooth global functions;[19?20]They provide such an accurate approximation for a smooth solution with relatively few degrees of freedom.They are widely employed in the approximation of the solution of differential equations,variational problems,and function approximation.The reason existed beyond this accuracy is that the spectral coefficients tend to zero faster than any algebraic power of their index n.[21]As said in such papers,spectral methods can fall into 3 categories:Collocation,Galerkin,and Tau methods[22]Collocation method provides highly accurate solutions to nonlinear differential equations.[23?26]There are only two main steps to approximate a problem in collocation methods:First,as a common approach,appropriate nodes(Gauss/Gauss-Radau/Gauss-Lobatto)are chosen to represent a finite or discrete form of the differential equations.

    Second,a system of algebraic equations from the discretization of the original equation is obtained.[27?29]The Tau spectral method is one of the most important methods used to approximate numerical solutions of various differential equations.This method approximates the solution as an expansion of certain orthogonal polynomials/functions and the coefficients,in the expansion,are considered so as to satisfy the differential equation as accurately as possible.[30]Spectral Tau method is,somehow,similar to Galerkin methods in the way that the differential equation is enforced.[21]In Galerkin Spectral method,a finite dimensional subspace of the Hilbert space(trial function space)are selected and trail and test functions are regarded the same.[31]

    Moreover,some numerical methods like Finite difference method(FDM)and Finite element method(FEM)that are implemented locally and require a network of data.Such methods like Meshfree methods do not require to build a network of data.[32?33]Comparing to these mentioned numerical methods,spectral methods are globally performing and they are continuous and do not need network construction.

    In addition to spectral methods,pseudospectral methods have been of high interest to authors presently.[34?37]

    Actually,in standard pseudospectral methods,interpolation operators are used to reduce the cost of computation of the inner product,in some spectral methods.For this purpose,a set of distinct interpolation pointsis defined,where the corresponding Lagrange interpolants are achieved.In addition to this,in collocation points,the residual function is set to vanish on the same set of points.Generally speaking,these collocation points do not need to be the same as the interpolation points;however,to have the Kronecker property,they are considered to be the same:therefore,by this trick,they reduce computational cost remarkably.[38?39]

    1.3 The Main Aim of This Paper

    In this study,we develop an exponentially accurate generalized pseudospectral method for solving the linear and nonlinear FPEs:This method is a generalization of the classical Lagrange interpolation method.To reach this goal,in Sec.2 some preliminaries of Jacobi polynomials are brought.In this section,we introduce the GL Functions and develop the GLJGL collocation scheme.Section 3 describes the numerical method;it explains the methodology and estimation of the error.We carry out numerical experiments to validate the presented collocation scheme.Subsequently,the analysis will be implemented to linear and nonlinear FPEs.Finally,some concluding remarks are given in Sec.5.

    2 Preliminaries and Notations

    2.1 Jacobi Polynomials

    The Jacobi polynomials are the eigenfunctions of a singular Sturm-Liouville equation. There are several particular cases of them,such as Legendre,the four kinds of Chebyshev,and Gegenbauer polynomials.Jacobi polynomials are defined on[?1,1]and are of interest recently.[36,40?43]The recursive formula for Jacobi polynomials is as follows:[44]

    with the properties as:

    and its weight function is wα,β(x)=(1 ? x)α(1+x)β.

    Moreover,the Jacobi polynomials are orthogonal on[?1,1]:

    where δm,nis the Kronecker delta function.

    The set of Jacobi polynomials makes a completeorthogonal system for any g(x) ∈there is an expansion as follows.

    where

    2.2 Generalized Lagrange(GL)functions

    In this section,generally,the GL functions are introduced and suitable formulas for the first-and second-order derivative matrices of these functions are presented.

    Definition 1 Considering the generalized Lagrange(GL)functions formula can be shown as:[38?39]

    where κj=u′j/?uw(xj), ?uw(x)=(1/u′)?xw(x),and u(x)is a continuous and sufficiently differentiable function which will be chosen to fit in the problem’s characteristics.For simplicity u=u(x)and ui=u(xi)are considered.The GL functions have the Kronecker property:

    Theorem 1 Considering the GL functions Luj(x)in Eq.(13),one can exhibit the first-order derivative matrices of GL functions as

    where

    Proof As the GL functions defined in Eq.(13),the first-order derivative formula for the case kj can be achieved as follows:

    But,when k=j,with L’H?opital’s rule:

    This completes the proof. ?

    2.3 Generalized Lagrange Jacobi Gauss-Lobatto(GLJGL)Collocation Method

    In case of GLJGL collocation method,w(x)in Eq.(13)can be restated as:

    where λ is a real constant and to simplify the notation,we write

    with the following important properties:

    Then,we have:

    Recalling thatand using formulas in Eq.(15)–(20),we find the entry of the first-order derivative matrix of GL functions as:

    Theorem 2 Let D(1)be the above matrix( first order derivative matrix of GL functions)and define matrix Q such thatthen,the second-order derivative matrix of GL functions can be formulated as:

    Proof See Ref.[38]. ?

    3 Numerical Method

    In this section, firstly,the time discretization method is recalled.Secondly,GLJGL collocation method is implemented to solve the FPEs.In a matrix form,the method has been presented and the error of this method is estimated.

    3.1 Discretization

    For solving the FPEs,we first discretize the time domain;to do this,we apply the Crank-Nicolson method.The main reason for choosing this method is its good convergence order and its unconditional stability.[45]To apply this method, firstly,we approximate and simplify the first-order derivative of y(x,t),with respect to the time variable,and deriving a formula from finite difference approximations as follows:

    The domain ? × [0,T)is decomposed as ? × [0,T)=and?t=T/s:The error of this approximation is of order O(?t).From now on,for simplicity yi(x)=y(x,Ti).

    Considering FPEs,one can read in which E0,k,E1,iand E2,iare the coefficient specified in the “Numerical Examples” section;in linear FPEs,E0,i=0.

    Implementing Crank-Nicolson on FPEs

    and can be simplified as

    By applying this method,the problem can be discretized in small time levels.As shown,time variable is discretized using Crank-Nicolson method.In each time level,we are to approximate the FPEs.Solving in sufficiently large time levels,brings in a good approximation for FPEs.

    3.2 Implementation of GLJGL Collocation Method for Solving FPEs

    As said in the previous subsection,in each time level,we approximate the solution of FPEs,and therefore,the time variable is omitted from the equation.In each time step,we approximate an equation like in Eq.(25).The unknown yi+1(x)is approximated as

    where

    As y(x,0)=y0(x)=f(x)we can calculate f(x)=LA0,and by collocating n+1 nodes we can result in:

    By the aid of these,we can write Eq.(25)as

    The boundary conditions,by considering Guass-Lobatto scheme and Eq.(26),are specified as:

    therefore,by collocating n+1 points and de fi ning

    then,the matrix form of Eqs.(28)and(29)will be

    The first and last row of matrices H0,H1,H2,and first and last elements of vector R are defined as if they satisfy the boundary condition of FPEs.

    Hence,we can achieve the numerical solution of y(x,t)at each time level.Notice that,at time level 0 the solution is computed from the initial condition;This is shown in Eq.(27).From the solution of the system in Eq.(30),at each time level,for the next time levels,we will achieve the unknown values.In other words,it means that by solving this system,in each step of i+1,the unknown coefficients Ai+1will be found.

    This system of equations is solved by applying a proper method like Newton methods.To show the accuracy of this method,some examples in the next section,are illustrated.

    3.3 Error Estimation

    Theorem 3 Let x0=a,xn=b andbe the rootsshifting Jacobi polynomialfrom[?1,1]to[a,b].Then,there exists a unique set of quadrature weights if ned by Jie Shen[46](Jacobi Gauss-Lobatto quadratures),such that for all functions p(x)of degree 2n?1

    where w(x)is the weight function and here this weight function is wα,β(u(x)).This is worth noticing that

    {ti,are Jacobi Gauss-Lobatto quadratures nodes and weights.

    Proof See Ref.[46]. ?

    In FPEs[a,b]=[0,1],u(x)=2x?1,then∫

    based in the last theorem,when p(x)∈Pm,m>2n?1,the above relation between integral and summation is not exact;it produces an error term as

    where ξ∈(a,b).Hence,

    For two arbitrary functions g1(x)and g2(x)we define

    then forwe have

    In the same fashion,for

    Now,by multiplying Eq.(25)with(x)wα,β(x)and integration in both sides:

    With Eqs.(26)and(33)the following relations in xkwill be obtained:(j=i,i+1)

    in which D[k,:]means that the k-th row of matrix D is taken.Now,by taking xkinto account.k=0,...,n

    Comparing with the system in Eq.(30)we solved,V is the error term vector:V is defined as:

    for k=1,...,n?1,and v0=0,vn=0.

    As er[q(x)]=0,as long as q(x)∈Pm,m≤2n?1.Obviously,if any of the above terms’degree is less and equal than 2n?1,the error of that term will be zero.In numerical examples,this error is shown and discussed.

    4 Numerical Examples

    In this section,in order to illustrate the performance of the GLJGL collocation method,we give some computations based on preceding sections,to support our theoretical discussion.By the aid of the presented method,linear and nonlinear forms of FPEs are solved.To illustrate the good accuracy of these methods,we apply different error criteria:The root-mean-square(RMS),Ne,and L2errors.

    where y(xj)and yn(xj)are exact and approximate value of FPEs on equidistant xj,j=1,...,r.

    As FPEs are defined over[0,1],the shifting function u(x),considered in Subsecs.2.2 and 2.3,is u(x)=2x?1.

    The CPU time for calculation of matrices D(1)and D(2),defined in Subsec.2.3,is brought in Table 1.

    Table 1 CPU time(sec)for calculation of derivative matrices for different values of n.

    The CPU time is performed on a DELL laptop with the configuration:Intel(R)Core(TM)i7-2670QM CPU,2.20 GHz;and 6 GB RAM.

    Example 1 Consider Refs.[2,6,11]Eq.(1)with:A(x)=?1,B(x)=1,f(x)=x,x∈[0,1].

    The exact solution of this test problem is y(x,t)=x+t.In this example E0,k=0,E1,k=?A(xk)=1,and E2,k=B(xk)=1 for k=1,...,n?1.

    As stated earlier,if the order of terms in Eq.(35)is less than 2n,the error terms vanish;so,the error vector for Ex.1,V in Eq.(35),can be simplified as

    In Table 2,the numerical absolute errors of Example 1,and their comparison with B-Spline method are displayed.Table 3,by representing the values of RMS and Neerrors,reveals the difference between the presented method and both HRBF and Kansa’s approaches.[6]

    In Fig.1,RMS,L2and Neerrors,for different values of n and?t,have been illustrated.Figure 2 shows the plot of error for Ex.1.

    Table 2 Numerical absolute errors of the method for Ex.1,in comparison with B-Spline method.[2]n=20,?t=0.01,α=0,β=1.

    Fig.1 Plot of results for Ex.1,α=0,β=1,r=20.(a)Value of error measurements for different values of?t.n=20 is fixed;(b)Value of error measurements for different values of n.?t=0.01 is fixed.

    Fig.2 Plot of absolute error of Ex.1,α=0,β=1,r=20,?t=0.01,n=20.

    Example 2 Consider Refs.[2,6,11]the backward Kolmogorov Eq.(4)with:A(x,t)=?(x+1),B(x,t)=x2et,f(x)=x+1,x∈[0,1].

    The exact solution of this test problem is y(x,t)=(x+1)et.In this example E0,k=0,E1,k=?A(xk,t)=

    Table 4 depicts the numerical absolute errors of Ex.2 and draws a distinction with the presented method and BSpline method.For showing the accuracy,the differences between the presented method and HRBF and Kansa’s approaches[6]are shown by calculating RMS and Nein Table 5.In Fig.3,the error measurements RMS,L2and Neare shown for different n and?t.In this figure,CPU times have been depicted for different n and?t.It explicitly says that when n increases or?t decreases,the time of solving the system of Eq.(30)increases.As it shows,when?t tends to a smaller value,it affects and decreases all RMS,Ne,L2and absolute errors.The plot of absolute error for Ex.2 is also shown in Fig.4.

    Table 3 Values of RMS and Nefor Ex.1 in comparison with HRBF and Kansa’s approaches.r=20,?t=0.01.

    Table 4 Numerical absolute errors of the method for Ex.2,in comparison with B-Spline method.[2]n=20,?t=0.01,α=0,β=1.

    Fig.3 Plot illustration results of Ex.2,α=0,β=1,r=20.(a)CPU times for solving Eq.(30)for different values of?t and n.(b)Value of error measurements for different values of?t.n=20 is fixed.(c)Plot of absolute error for different values of?t.n=20 is fixed.(d)Value of error measurements for different values of n.?t=0.01 is fixed.

    Fig.4 Plot of absolute error of Ex.2 for 15 collocation points.α=0,β=1,?t=0.01.

    Example 3 Consider Refs.[2,6,11]the nonlinear Eq.(5)with:A(x,t,y)=(7/2)y,B(x,t,y)=xy,f(x)=x,x∈[0,1].

    The exact solution of this test problem is y(x,t)=x/(1+t).By this consideration,Eq.(5)can be rewritten as

    By Eqs.(23)and(36)one can set:

    The error vector,V in Eq.(35),for Ex.2 and 3 is

    By the aid of Table 6.the numerical absolute errors for Ex.3 demonstrated and a comparison with the B-Spline method is made.For this example,also,RMS and Neare compared with the ones provided by HRBF[6]in Table 7.

    Table 5 Values of RMS and Nefor Ex.2 in comparison with HRBF and Kansa’s approaches.r=50,?t=0.01.

    Table 6 Numerical absolute errors of the method for Ex.3,in comparison with B-Spline method.[2]n=10,?t=0.001,α=1,β=1.

    Table 7 Values of RMS and Nefor Ex.3 in comparison with HRBF approach.r=50,?t=0.001.

    Fig.5 Plot illustration results of Ex.3,α=1,β=1,r=50.(a)CPU times for solving Eq.(30)for different values of?t and n.(b)Value of error measurements for different values of?t.n=10 is fixed.(c)Plot of absolute error for different values of?t.n=10 is fixed.(d)Value of error measurements for different values of n.?t=0.001 is fixed.

    Fig.6 Plot of absolute error of Ex.3 for 7 collocation points.α=1,β=1,?t=0.001.

    Figure 5 shows the values of RMS,L2and Neerrors for different n and?t.This Figure,illustrates the CPU times for solving the system of Eq.(30)for different n and?t.It shows that when n increases or?t decreases,the time of obtaining solution will increase.The fact is,as?t becomes smaller,RMS,Ne,L2and absolute errors decrease.The plot of absolute error for Ex.3 is also shown in Fig.6.

    Example 4 Consider Refs.[2,6,11]the nonlinear Eq.(5)with:A(x,t,y)=4(y/x)?x/3,B(x,t,y)=y,f(x)=x2,x∈[0,1].

    The exact solution of this test problem is y(x,t)=x2et.This nonlinear FPEs can be restated as

    It must be noted that:the way this relation is factorized is playing a central role in the exactness of solution.By Eqs.(23)and(37):

    For Ex.4,the error vector specified in Eq.(35)is

    for k=1,...,n?1 and v0=0,vn=0.

    In Table 8,the numerical absolute errors for Ex.4 demonstrated and a comparison with the B-Spline method is given.The error measurements RMS and Neare calculated by the presented method and HRBF[6]method and the results depicted in Table 9.Figure 7 illustrates the values of RMS,L2and Neerrors for different n and?t.This Figure,also,illustrates the CPU times for solving the system of Eq.(30)for different n and?t.It implies that when n increases or?t decreases,the time of obtaining solution increases.In fact,when?t becomes smaller,RMS,Ne,L2and absolute errors will decrease.The plot of absolute error for Ex.4 is also shown in Fig.8.

    Fig.7 Plot illustration results of Ex.4,α=1,β=1,r=50.(a)CPU times for solving Eq.(30)for different values of?t and n.(b)Value of error measurements for different values of?t.n=7 is fixed.(c)Plot of absolute error for different values of?t.n=7 is fixed.(d)Value of error measurements for different values of n.?t=0.001 is fixed.

    Table 8 Numerical absolute errors of the method for Ex.4,in comparison with B-Spline method.[2]n=7,?t=0.001,α=1,β=1.

    Table 9 Values of RMS and Nefor Ex.4 in comparison with HRBF approach.r=50,?t=0.001.

    Fig.8 Plot of absolute error of Ex.4,α=1,β=1,?t=0.001,n=7.

    5 Conclusion

    The(linear and nonlinear)FPEs have many applications in science and engineering.So,in this work,a numerical method based on GLJGL collocation method is discussed and developed to investigate FPEs.Firstly,we introduced GL functions with the Kronecker property.The advantages of using GL functions can be:

    (i)These functions are the generalization of the classical Lagrange polynomials and corresponding differentiation matrices of D(1)and D(2),as shown,can be reached by specific formulas;this helps create and introduce a derivative-free method.

    (ii)With different consideration of u(x),different basis of GL functions are provided;therefore,different problems defined on various intervals can be solved.

    (iii) The accuracy of the presented method by GL function has exponential convergence rate.

    Moreover,the time derivative of the FPEs is discretized using Crank-Nicolson method.The main reason for using Crank-Nicolson method is its unconditional stability.[3,45]

    By the aid of Crank-Nicolson technique,we solved the linear and nonlinear types of FPEs with GLJGL collocation method.We apply the pseudospectral method in a matrix based manner where the matrix based structure of the present method makes it easy to implement.Also,to show the accuracy and ability of the proposed method,several examples are solved.

    Several examples are given and the results obtained using the method introduced in this article show that the new proposed numerical procedure is efficient

    The results showed that the approximate solutions of the GLJGL collocation method can be acceptable and provides very accurate results even with using a small number of collocation points.To illustrate the suitable accuracy of the proposed method,we used three different error criteria,namely,RMS,L2and Ne.Additionally,the obtained results have been compared with B-Spline,HRBF and Kansa methods,showing the accuracy and reliability of the presented method.

    This method can also be used as a powerful tool for investigation of other problems.

    [1]H.Risken,The Fokker-Planck Equation:Method of Solution and Applications,Springer Verlag,Belin,Heidelberg(1989).

    [2]M.Lakestani and M.Dehghan,Numer.Method.Part.D.E 25(2009)418.

    [3]M.Dehghan and V.Mohammadi,Eng.Anal.Bound.Elem.47(2014)38.

    [4]S.Jenks,Introduction to Kramers Equation,Drexel University,Philadelphia(2006).

    [5]A Compte and D Jou,J.Phys.A-Math.Gen.29(1996)4321.

    [6]S.Kazem,J.A.Rad,and K.Parand,Eng.Anal.Bound.Elem.36(2012)181.

    [7]V.Palleschi,F.Sarri,G.Marcozzi,and M.R.Torquati,Phys.Lett.A 146(1990)378.

    [8]V.Palleschi and N.de Rosa,Phys.Lett.A 163(1992)381.

    [9]V.Vanaja,Appl.Numer.Math.9(1992)533.

    [10]M.P.Zorzano,H.Mais,and L.Vazquez,Appl.Math.Comput.98(1999)109.

    [11]M.Dehghan and M.Tatari,Physica Scripta 74(2006)310.

    [12]M.Tatari,M.Dehghan,and M.Razzaghi,Math.Comput.Model.45(2007)639.

    [13]M.F.Wehner and W.G.Wolfer,Phys.Rev.A 35(1987)1795.

    [14]J.J.Brey,J.M.Casado,and M.Morillo,Phys.A 128(1984)497.

    [15]D.S.Zhang,G.W.Wei,D.J.Kouri,and D.K.Ho ff man,Phys.Rev.E 56(1997)1197.

    [16]A.N.Drozdov and M.Morillo,Phys.Rev.E 54(1996)931.

    [17]A.H.Bhrawy,M.A.Abdelkawy,J.T.Machado,and A.Z.M.Amin,Comput.Math.Appl.2016:doi.org/10.1016/j.camwa.2016.04.011.

    [18]A.H.Bhrawy,Numer.Algorithm.73(2016)91.

    [19]K.Parand and M.Delkhosh,J.Comput.Appl.Math.317(2017)624.

    [20]K.Parand and M.Delkhosh,Boletim da Sociedade Paranaense de Matem′atica 36(2018)33.

    [21]A.H.Bhrawy and M.M.Al-Shomrani,Adv.Di ff er.E 2012(2012)8.

    [22]E.H.Doha and A.H.Bhrawy,Appl.Numer.Math.58(2008)1224.

    [23]A.H.Bhrawy and M.M.Alghamdi,Boundary Value Prob.2012(2012)62.

    [24]H.Tal-Ezer,J.Numer.Anal.23(1986)11.

    [25]H.Tal-Ezer,J.Numer.Anal.26(1989)1.

    [26]A.H.Bhrawy and M.M.Al-Shomrani,Abstr.Appl.Anal.(2012).

    [27]A.H.Bhrawy,E.H.Doha,M.A.Abdelkawy,and R.A.Van Gorder,Appl.Math.Model.40(2016)1703.

    [28]K.Parand,M.Delkhosh,and M.Nikarya,Tbilisi Math.J.10(2017)31.

    [29]F.Baharifard,S.Kazem,and K.Parand,Inter.J.Appl.Comput.Math.2(2016)679.

    [30]E.H.Doha,A.H.Bhrawy,D.Baleanu,and S.S.Ezz-Eldien,Adv.Di ff er.E 2014(2014)231.

    [31]J.P.Boyd,Chebyshev and Fourier Spectral Methods,Second Edition,Dover,New York(2000).

    [32]K.Parand and M.Hemami,Int.J.Appl.Comput.Math.3(2016)1053.

    [33]K.Parand and M.Hemami,Iranian J.Sci.Technol.T.A.Science 41(2015)677.

    [34]M.A.Saker,Romanian J.Phys.2017(2017)105.

    [35]A.H.Bhrawy,M.A.Abdelkawy,and F.Mallawi,Boundary Value Prob.2015(2015)103.

    [36]E.H.Doha,A.H.Bhrawy,and M.A.Abdelkawy,J.Comput.Nonlin.Dyn.10(2015)021016.

    [37]K.Parand,S.Lati fi,and M.M.Moayeri,SeMA J.(2017).

    [38]M.Delkhosh and K.Parand,Generalized Pseudospectral Method:Theory and Application,Submitted.

    [39]K.Parand,S.Lati fi,M.Delkhosh,and M.M.Moayeri,Eur.Phys.J.Plus.133(2018)28.

    [40]A.H.Bhrawy and M.Zaky,Math.Method Appl.Sci.39(2015)1765.

    [41]A.H.Bhrawy,J.F.Alzaidy,M.A.Abdelkawy,and A.Biswas,Nonlin.Dyn.84(2016)1553.

    [42]A.H.Bhrawy,E.H.Doha,S.S.Ezz-Eldien,and M.A.Abdelkawy,Comput.Model.Eng.Sci.104(2015)185.

    [43]A.H.Bhrawy,E.H.Doha,D.Baleanu,and R.M.Hafez,Math.Method Appl.Sci.38(2015)3022.

    [44]E.H.Doha,A.H.Bhrawy,and S.S.Ezz-Eldien,Appl.Math.Model.36(2012)4931.

    [45]A.R.Mitchell and D.F.Griffiths,The Finite Di ff erence Methods in Partial differential Equations,John Wiley,Chichester(1980).

    [46]J.Shen,T.Tang,and L.L.Wang,Spectral Methods:Algorithms,Analysis and Applications,Springer Sci.Bus.Media.41(2011).

    午夜福利在线免费观看网站| 90打野战视频偷拍视频| 久久精品国产a三级三级三级| 久久久久网色| 国产1区2区3区精品| av一本久久久久| 99久久精品国产亚洲精品| 久久精品亚洲av国产电影网| 黑丝袜美女国产一区| 国产精品久久久人人做人人爽| 国产深夜福利视频在线观看| 欧美日韩av久久| av不卡在线播放| netflix在线观看网站| 一区二区三区四区激情视频| av天堂久久9| 一级片'在线观看视频| 在线观看免费午夜福利视频| 日韩一本色道免费dvd| 纵有疾风起免费观看全集完整版| 欧美最新免费一区二区三区| 精品人妻熟女毛片av久久网站| 1024香蕉在线观看| 美女中出高潮动态图| av在线app专区| 高清在线视频一区二区三区| 久久精品久久久久久久性| 国产老妇伦熟女老妇高清| 不卡av一区二区三区| 99久久综合免费| 高清不卡的av网站| 国产片内射在线| 国产精品免费大片| 精品一区在线观看国产| 一本色道久久久久久精品综合| 精品国产乱码久久久久久小说| 91国产中文字幕| 18在线观看网站| 久久99精品国语久久久| 国产精品 国内视频| 男女免费视频国产| 成人毛片60女人毛片免费| 亚洲av日韩在线播放| 天天操日日干夜夜撸| av.在线天堂| 男女床上黄色一级片免费看| 国产精品香港三级国产av潘金莲 | 97精品久久久久久久久久精品| 超碰成人久久| 一区二区三区乱码不卡18| 在线观看免费高清a一片| 精品一区二区三区av网在线观看 | 国产精品无大码| 制服诱惑二区| 免费观看a级毛片全部| 日本色播在线视频| 免费观看a级毛片全部| 两性夫妻黄色片| 婷婷色综合大香蕉| 久久精品久久久久久噜噜老黄| 日韩精品有码人妻一区| 欧美日韩一级在线毛片| 欧美日韩视频精品一区| 国产黄色免费在线视频| 纵有疾风起免费观看全集完整版| 人成视频在线观看免费观看| 肉色欧美久久久久久久蜜桃| 精品免费久久久久久久清纯 | 黄色 视频免费看| 婷婷色av中文字幕| 麻豆乱淫一区二区| 丰满饥渴人妻一区二区三| 久久久久国产精品人妻一区二区| 中文乱码字字幕精品一区二区三区| 最近手机中文字幕大全| 欧美成人午夜精品| 亚洲成人手机| 国产精品人妻久久久影院| 中文欧美无线码| 美女大奶头黄色视频| 亚洲一区二区三区欧美精品| 男女边摸边吃奶| 这个男人来自地球电影免费观看 | 老司机在亚洲福利影院| 侵犯人妻中文字幕一二三四区| 另类精品久久| 亚洲av综合色区一区| 丝袜在线中文字幕| 成年av动漫网址| 精品人妻一区二区三区麻豆| 一级爰片在线观看| 精品视频人人做人人爽| 成人午夜精彩视频在线观看| 亚洲,欧美精品.| 欧美老熟妇乱子伦牲交| 熟女av电影| 在线天堂中文资源库| 亚洲成色77777| 你懂的网址亚洲精品在线观看| av网站免费在线观看视频| 亚洲人成电影观看| 如日韩欧美国产精品一区二区三区| 这个男人来自地球电影免费观看 | 亚洲精品第二区| 热re99久久精品国产66热6| 国产在线一区二区三区精| 日本91视频免费播放| 国产xxxxx性猛交| 国产日韩欧美在线精品| 两个人免费观看高清视频| 久久亚洲国产成人精品v| 黄色视频不卡| 99国产综合亚洲精品| 国产成人精品久久二区二区91 | 在线观看三级黄色| 欧美另类一区| 啦啦啦在线免费观看视频4| 亚洲自偷自拍图片 自拍| a 毛片基地| 国产精品久久久久久精品古装| 亚洲国产欧美日韩在线播放| 精品亚洲乱码少妇综合久久| 一级爰片在线观看| 成人午夜精彩视频在线观看| 精品少妇黑人巨大在线播放| 五月开心婷婷网| 一级毛片黄色毛片免费观看视频| av网站免费在线观看视频| 亚洲精品视频女| 如日韩欧美国产精品一区二区三区| 日韩不卡一区二区三区视频在线| 日韩大片免费观看网站| 男女国产视频网站| 国产免费视频播放在线视频| 国产在视频线精品| 欧美日韩精品网址| 超碰97精品在线观看| 极品少妇高潮喷水抽搐| 国产亚洲精品第一综合不卡| 在线 av 中文字幕| 777久久人妻少妇嫩草av网站| 精品国产超薄肉色丝袜足j| 丝瓜视频免费看黄片| 精品国产一区二区三区四区第35| 国产午夜精品一二区理论片| 国产不卡av网站在线观看| 欧美激情极品国产一区二区三区| 男女免费视频国产| 又大又爽又粗| 操美女的视频在线观看| 黑人猛操日本美女一级片| 国产精品女同一区二区软件| 亚洲精品av麻豆狂野| www日本在线高清视频| 麻豆乱淫一区二区| 国产爽快片一区二区三区| 人人妻,人人澡人人爽秒播 | 国产免费视频播放在线视频| 不卡av一区二区三区| 一级a爱视频在线免费观看| 黄色 视频免费看| videos熟女内射| 亚洲精品一二三| 久久久国产精品麻豆| 永久免费av网站大全| 日本午夜av视频| 最新在线观看一区二区三区 | 天天躁夜夜躁狠狠久久av| 中文欧美无线码| 成年女人毛片免费观看观看9 | 国产野战对白在线观看| 午夜福利一区二区在线看| 国产成人精品在线电影| 亚洲激情五月婷婷啪啪| 一本—道久久a久久精品蜜桃钙片| 欧美亚洲 丝袜 人妻 在线| 永久免费av网站大全| 免费观看av网站的网址| 最近最新中文字幕大全免费视频 | 在线观看免费日韩欧美大片| 午夜av观看不卡| 最近最新中文字幕免费大全7| 久久午夜综合久久蜜桃| 精品少妇内射三级| 黄色视频在线播放观看不卡| www.自偷自拍.com| 日韩 欧美 亚洲 中文字幕| 欧美人与善性xxx| 亚洲七黄色美女视频| 如日韩欧美国产精品一区二区三区| 国产一区二区在线观看av| av一本久久久久| 免费日韩欧美在线观看| 亚洲成人一二三区av| 国产色婷婷99| 秋霞伦理黄片| 男女床上黄色一级片免费看| 51午夜福利影视在线观看| 只有这里有精品99| 各种免费的搞黄视频| 久久久久久久精品精品| 热99国产精品久久久久久7| 18禁观看日本| 欧美黑人精品巨大| 色94色欧美一区二区| 只有这里有精品99| 日韩大片免费观看网站| 精品一区二区三区av网在线观看 | 国产1区2区3区精品| 国产精品99久久99久久久不卡 | 国产麻豆69| 日韩成人av中文字幕在线观看| 丝袜脚勾引网站| 免费黄网站久久成人精品| 久久亚洲国产成人精品v| 亚洲欧美一区二区三区黑人| 少妇被粗大猛烈的视频| 一级毛片电影观看| 99久久99久久久精品蜜桃| 水蜜桃什么品种好| 午夜福利视频在线观看免费| 不卡视频在线观看欧美| 纵有疾风起免费观看全集完整版| 69精品国产乱码久久久| av一本久久久久| 亚洲一区中文字幕在线| 国产欧美日韩一区二区三区在线| 国产不卡av网站在线观看| 高清黄色对白视频在线免费看| 成人国产麻豆网| 最近中文字幕高清免费大全6| 麻豆乱淫一区二区| 美女中出高潮动态图| 亚洲av日韩精品久久久久久密 | 18禁国产床啪视频网站| 国产伦人伦偷精品视频| 亚洲欧洲国产日韩| 丰满迷人的少妇在线观看| 97人妻天天添夜夜摸| 国产乱人偷精品视频| 日韩,欧美,国产一区二区三区| 日韩人妻精品一区2区三区| 亚洲国产欧美网| 婷婷色av中文字幕| 亚洲精华国产精华液的使用体验| 国产女主播在线喷水免费视频网站| 亚洲欧洲国产日韩| 欧美日韩视频高清一区二区三区二| 一级黄片播放器| 两个人免费观看高清视频| 亚洲七黄色美女视频| 十分钟在线观看高清视频www| 91精品伊人久久大香线蕉| 国产精品久久久久久久久免| 国产xxxxx性猛交| 一级毛片黄色毛片免费观看视频| 操出白浆在线播放| 精品第一国产精品| 国产精品免费视频内射| 日本欧美视频一区| 午夜福利在线免费观看网站| 99热国产这里只有精品6| 两个人看的免费小视频| 男人爽女人下面视频在线观看| 欧美av亚洲av综合av国产av | 人人妻人人添人人爽欧美一区卜| 亚洲国产精品成人久久小说| tube8黄色片| 欧美日韩亚洲综合一区二区三区_| 一区二区av电影网| 国产成人免费无遮挡视频| 免费看av在线观看网站| 青春草视频在线免费观看| 叶爱在线成人免费视频播放| 日韩制服骚丝袜av| 久久韩国三级中文字幕| 乱人伦中国视频| 波野结衣二区三区在线| 免费在线观看黄色视频的| 看免费av毛片| 老司机靠b影院| 男女床上黄色一级片免费看| 亚洲精品日韩在线中文字幕| 久久久久精品国产欧美久久久 | 久久久久精品人妻al黑| 九草在线视频观看| 叶爱在线成人免费视频播放| 日韩大码丰满熟妇| 欧美日韩福利视频一区二区| 一二三四中文在线观看免费高清| 日韩中文字幕欧美一区二区 | 亚洲人成网站在线观看播放| 交换朋友夫妻互换小说| 亚洲国产欧美在线一区| 一本久久精品| 欧美精品高潮呻吟av久久| 精品免费久久久久久久清纯 | 国产在线视频一区二区| 国产精品成人在线| 黄色毛片三级朝国网站| 女人被躁到高潮嗷嗷叫费观| www.av在线官网国产| 美女主播在线视频| 精品少妇久久久久久888优播| 伊人久久大香线蕉亚洲五| 国产成人精品福利久久| 欧美日韩一级在线毛片| 少妇猛男粗大的猛烈进出视频| 黑人巨大精品欧美一区二区蜜桃| 不卡视频在线观看欧美| 观看av在线不卡| 久久影院123| 亚洲五月色婷婷综合| 久久久精品免费免费高清| 国产黄色免费在线视频| 亚洲国产精品一区三区| 久久久精品区二区三区| 亚洲久久久国产精品| 国产黄频视频在线观看| 久久人人爽av亚洲精品天堂| 性色av一级| videosex国产| 最新在线观看一区二区三区 | 国产精品免费大片| 水蜜桃什么品种好| 午夜免费男女啪啪视频观看| 91国产中文字幕| 看免费av毛片| 999久久久国产精品视频| 亚洲av日韩精品久久久久久密 | 免费观看人在逋| 久久久久视频综合| 欧美日韩精品网址| 宅男免费午夜| 街头女战士在线观看网站| 人人妻人人添人人爽欧美一区卜| 狠狠精品人妻久久久久久综合| 色94色欧美一区二区| 爱豆传媒免费全集在线观看| 水蜜桃什么品种好| 人人妻人人爽人人添夜夜欢视频| 中文字幕人妻熟女乱码| 一二三四中文在线观看免费高清| 丝瓜视频免费看黄片| 香蕉丝袜av| 熟女少妇亚洲综合色aaa.| a级毛片黄视频| 亚洲欧美成人精品一区二区| 一区二区三区精品91| 综合色丁香网| 18禁动态无遮挡网站| 大陆偷拍与自拍| 日韩中文字幕视频在线看片| 777久久人妻少妇嫩草av网站| 久久亚洲国产成人精品v| 国产一区二区在线观看av| www日本在线高清视频| 欧美黄色片欧美黄色片| 免费观看a级毛片全部| 美女福利国产在线| 日本91视频免费播放| 久久久久久久久久久久大奶| www.自偷自拍.com| 久久久国产精品麻豆| 啦啦啦在线观看免费高清www| 国产精品一区二区精品视频观看| 欧美黑人欧美精品刺激| 日本一区二区免费在线视频| 老司机深夜福利视频在线观看 | 激情五月婷婷亚洲| 一边摸一边做爽爽视频免费| 成年人免费黄色播放视频| 亚洲av成人精品一二三区| 欧美国产精品va在线观看不卡| 国产不卡av网站在线观看| 亚洲天堂av无毛| 国语对白做爰xxxⅹ性视频网站| 日韩精品免费视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 男男h啪啪无遮挡| 国产xxxxx性猛交| av在线观看视频网站免费| 久久97久久精品| 少妇精品久久久久久久| 午夜日本视频在线| 好男人视频免费观看在线| 在线观看人妻少妇| 国产高清不卡午夜福利| 久久久久久久久久久久大奶| 亚洲精品视频女| 婷婷色综合大香蕉| 日本vs欧美在线观看视频| 狂野欧美激情性xxxx| 国产男人的电影天堂91| 啦啦啦在线观看免费高清www| 亚洲成人手机| av在线老鸭窝| 日韩一本色道免费dvd| 亚洲色图综合在线观看| 国产亚洲精品第一综合不卡| 老鸭窝网址在线观看| 丁香六月欧美| 精品视频人人做人人爽| 欧美精品一区二区免费开放| 亚洲国产最新在线播放| 午夜免费观看性视频| 免费观看a级毛片全部| 亚洲欧美一区二区三区久久| h视频一区二区三区| 久久性视频一级片| av国产久精品久网站免费入址| 精品人妻在线不人妻| 国产一区二区三区av在线| 久久97久久精品| 国产亚洲av片在线观看秒播厂| videosex国产| 亚洲天堂av无毛| 亚洲四区av| 纯流量卡能插随身wifi吗| 伦理电影大哥的女人| 亚洲综合色网址| 亚洲美女搞黄在线观看| 国产女主播在线喷水免费视频网站| 日本爱情动作片www.在线观看| 在线观看人妻少妇| 一级,二级,三级黄色视频| 少妇猛男粗大的猛烈进出视频| 日韩精品免费视频一区二区三区| 国产黄频视频在线观看| 亚洲精品国产av成人精品| 亚洲欧美成人精品一区二区| 日韩一卡2卡3卡4卡2021年| 最近的中文字幕免费完整| 国产在线免费精品| 熟女少妇亚洲综合色aaa.| 18禁观看日本| 1024视频免费在线观看| 男男h啪啪无遮挡| 两个人免费观看高清视频| 国产极品粉嫩免费观看在线| 男人爽女人下面视频在线观看| 日本午夜av视频| 亚洲国产中文字幕在线视频| 18禁观看日本| 日韩av在线免费看完整版不卡| 久久精品国产综合久久久| 两个人免费观看高清视频| 极品人妻少妇av视频| 一级黄片播放器| 免费高清在线观看日韩| 亚洲欧洲精品一区二区精品久久久 | 9191精品国产免费久久| 成人午夜精彩视频在线观看| 国产国语露脸激情在线看| 久久久久精品性色| 国产在线免费精品| 丰满乱子伦码专区| 丝袜喷水一区| 一区在线观看完整版| 一边摸一边抽搐一进一出视频| 大香蕉久久网| 制服人妻中文乱码| 亚洲第一av免费看| 美女主播在线视频| 欧美精品亚洲一区二区| 99精国产麻豆久久婷婷| 亚洲精品久久午夜乱码| 久热这里只有精品99| 99热国产这里只有精品6| 精品少妇一区二区三区视频日本电影 | 亚洲,欧美精品.| 一级片'在线观看视频| 人人妻,人人澡人人爽秒播 | 午夜福利一区二区在线看| 国产精品秋霞免费鲁丝片| 日韩一区二区三区影片| 一级毛片黄色毛片免费观看视频| 久久热在线av| 80岁老熟妇乱子伦牲交| 成年女人毛片免费观看观看9 | 大香蕉久久成人网| 中文字幕精品免费在线观看视频| 欧美激情极品国产一区二区三区| 亚洲国产精品一区三区| 日本欧美视频一区| av福利片在线| 妹子高潮喷水视频| 黄频高清免费视频| 91精品国产国语对白视频| 免费在线观看完整版高清| 黑人欧美特级aaaaaa片| 精品亚洲成国产av| 欧美日韩福利视频一区二区| a级毛片黄视频| 久久人妻熟女aⅴ| 男男h啪啪无遮挡| 精品少妇黑人巨大在线播放| av一本久久久久| 日韩欧美一区视频在线观看| 少妇的丰满在线观看| 丝瓜视频免费看黄片| 99精品久久久久人妻精品| 最近的中文字幕免费完整| 国产免费福利视频在线观看| 亚洲成人手机| 伦理电影大哥的女人| 久久人人爽av亚洲精品天堂| 亚洲人成网站在线观看播放| 久久久久国产一级毛片高清牌| 亚洲国产精品国产精品| 欧美日韩视频精品一区| 国产亚洲av高清不卡| 国产精品久久久久久人妻精品电影 | 日日撸夜夜添| 国产深夜福利视频在线观看| 成人黄色视频免费在线看| 一边摸一边做爽爽视频免费| 欧美精品人与动牲交sv欧美| 亚洲四区av| 人体艺术视频欧美日本| av卡一久久| 日本黄色日本黄色录像| 校园人妻丝袜中文字幕| 一本一本久久a久久精品综合妖精| 免费av中文字幕在线| 国产xxxxx性猛交| 可以免费在线观看a视频的电影网站 | 久热这里只有精品99| 免费久久久久久久精品成人欧美视频| 欧美精品高潮呻吟av久久| 日韩一卡2卡3卡4卡2021年| 亚洲专区中文字幕在线 | 热re99久久精品国产66热6| 免费人妻精品一区二区三区视频| 97精品久久久久久久久久精品| 一级片免费观看大全| 久久久久网色| 国产成人精品久久二区二区91 | 日韩视频在线欧美| 可以免费在线观看a视频的电影网站 | 亚洲成av片中文字幕在线观看| av一本久久久久| 国产又色又爽无遮挡免| www.熟女人妻精品国产| 80岁老熟妇乱子伦牲交| 亚洲欧洲日产国产| 久久精品熟女亚洲av麻豆精品| av网站在线播放免费| 两个人免费观看高清视频| 成人国产av品久久久| 一边摸一边做爽爽视频免费| 日韩人妻精品一区2区三区| 亚洲一区中文字幕在线| 男女下面插进去视频免费观看| 美女国产高潮福利片在线看| 51午夜福利影视在线观看| 老司机深夜福利视频在线观看 | 欧美精品亚洲一区二区| 久久精品国产亚洲av高清一级| 日韩欧美精品免费久久| 香蕉丝袜av| av电影中文网址| 亚洲七黄色美女视频| 老司机亚洲免费影院| 亚洲一码二码三码区别大吗| 男人爽女人下面视频在线观看| 交换朋友夫妻互换小说| 日韩 亚洲 欧美在线| 麻豆av在线久日| 一边摸一边做爽爽视频免费| av在线观看视频网站免费| 亚洲三区欧美一区| 青草久久国产| 黄色 视频免费看| av福利片在线| 伊人久久大香线蕉亚洲五| 精品一区二区免费观看| 亚洲成人免费av在线播放| 一本—道久久a久久精品蜜桃钙片| 新久久久久国产一级毛片| 成年女人毛片免费观看观看9 | 国产成人免费观看mmmm| 99久久人妻综合| 日日撸夜夜添| 青春草视频在线免费观看| svipshipincom国产片| 亚洲精品一二三| 91老司机精品| 日韩,欧美,国产一区二区三区| 看免费av毛片| 性高湖久久久久久久久免费观看| 9191精品国产免费久久| 男女之事视频高清在线观看 | av一本久久久久| kizo精华| 黑人欧美特级aaaaaa片| 国产欧美亚洲国产| 欧美乱码精品一区二区三区| 亚洲国产精品一区二区三区在线| 美女国产高潮福利片在线看| 男女边摸边吃奶| 超碰97精品在线观看| 久久久久精品久久久久真实原创| 男女午夜视频在线观看| 大片电影免费在线观看免费| 日韩欧美一区视频在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲久久久国产精品| 久久韩国三级中文字幕| 叶爱在线成人免费视频播放| 亚洲自偷自拍图片 自拍| 天天躁夜夜躁狠狠久久av| 秋霞在线观看毛片| 亚洲色图 男人天堂 中文字幕| 国产爽快片一区二区三区|