• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Operational Solution to the Nonlinear Klein-Gordon Equation?

    2018-06-11 12:21:00BengocheaVerdeStarandOrtigueira
    Communications in Theoretical Physics 2018年5期

    G.Bengochea,L.Verde-Star,and M.Ortigueira

    1Departamento de Matem′aticas,Universidad Aut′onoma Metropolitana,Iztapalapa,Apartado 55–534,Ciudad de M′exico,M′exico

    2CTS–UNINOVA/Department of Electrical Engineering,Faculdade de Ci′encias e Tecnologia da Universidade Nova de Lisboa,Campus da FCT da UNL,Quinta da Torre 2825–149 Monte da Caparica,Portugal

    1 Introduction

    The nonlinear Klein-Gordon equation plays an important role in several fields of physics,such as quantum mechanics,general relativity,and nonlinear optics,[1?2]In the literature,there are numerous papers dealing with diverse methods to solve nonlinear Klein-Gordon equations such as the collocation method,[3]the decomposition method,[4]the homotopy method[5]and other methods.[6?7]The nonlinear Klein-Gordon equation that we will study in this paper has the form

    with t≥0,and initial conditions

    where

    x=(x1,x2,...,xm)∈Rm,t∈(0,T],b is a real number,g is a given nonlinear function,assumed to be analytic at zero,and f is a known function.We study the one-dimensional case(m=1),but it is not difficult to see that the method can be applied in the general case.

    The operational calculus that we will use in this paper is a particular instance of a general algebraic operational calculus introduced in Ref.[8].Our operational calculus uses basic linear algebra tools to solve equations involving operators that generalize differential and difference operators.The algebraic setting is a field of generalized Laurent series with a multiplication,called algebraic convolution,and a modified shift operator that can be considered as a generalization of differentiation.Taking suitable concrete realizations of our operational calculus we can solve several kinds of differential and difference equations using the same procedure for all kinds of equations.

    In this paper,we will use an algebraic convolution product that extends the multiplication formula(tn/n!)×(tm/m!)=tn+m/(n+m)!and coincides with the usual convolution defined by means of integrals.The concrete realization of the operational calculus that we will use allows us to solve linear and nonlinear differential equations,without using integral transforms or computing integrals.Since our operational methods are based on simple linear algebra they are simpler than those based on the Mikusi′nski operational calculus,[9]and can be used to provide a rigorous foundation of the main results of Heaviside’s operational calculus.Several applications of our methods can be found in Refs.[10–13],and some variations in Refs.[14–15].

    The nonlinear term in Eq.(1)will be handled by means of the Adomian polynomials,[16]which we calculate using expansions in Taylor series.Combining our methods with the Adomian polynomial expansions we solve Eq.(1)with a purely operational approach.

    The paper is organized as follows.Section 2 contains an introduction to the operational calculus introduced in Ref.[8],and the procedure to calculate the Adomian polynomials.In Sec.3 we solve Eq.(1)using the tools introduced in Sec.2.In Sec.4 we show how the method is applied to several equations that have been considered in research papers related with the subject.Finally,some conclusions are presented in Sec.5.

    2 Algebraic Setting and Preliminary Results

    2.1 Operational Calculus

    In this section we present a brief description of the algebraic setting and the basic properties of the general operational calculus introduced in Ref.[8],where the reader can find a detailed presentation and the proofs of the statements that we summarize next.

    Let{pk:k∈Z}be a group with the multiplication defined by pkpn=pk+n,for k,n∈Z.Let F be the set of all the formal series of the form

    where akis a complex number for each k∈Z and,either,all the akare equal to zero,or there exists an integer v(a)such that ak=0 whenever k

    This multiplication in F is associative and commutative and p0is its unit element.With this multiplication F is a field.We define the series

    These elements of F are called generalized geometric series and satisfy ex,k(p?k(p0?xp1)k+1)=p0.In particular,when k=0 we have

    If xy then

    In particular,if m=n=0 then we have

    The linear operator L on F is defined by Lpk=pk?1for k0,and Lp0=0,and it is called the modified left shift.As an example,if a=∑i≥0yipi,then La= ∑

    i≥0yi+1pi.

    One important property of the operator L is

    where I is the identity operator and Pnis the projection on the subspace generated by pn,that is Pna=ynpn.See Ref.[8]page 333.

    In order to apply our operational method to nonlinear Klein-Gordon differential equations we will use the concrete realization of the field F that has pk=tk/k!,for k∈Z,where t is a real or complex variable and k!is defined for negative values of k by

    The modified left shift in this concrete realization is L=?/?t=Dt,and the generalized geometric series become the basic exponential polynomials

    Let us note that the generalized geometric series are convergent for all x and t in C.

    If instead of taking pk=tk/k!we take pkas a normalized Hermite polynomial of degree k we obtain another concrete realization of the operational calculus that can be used to solve differential equations of the kind that we consider in this paper.

    2.2 Adomian Polynomials

    The Adomian polynomials and decomposition methods[16]are a very important tool for the solution of many kinds of equations,including nonlinear differential equations.The general theory and convergence properties of the Adomian decomposition methods have been studied in Refs.[17–19],but,in many applications the convergence properties depend on the particular functions involved in the equations.In the examples that we consider in this paper the domain of convergence of the series that represent the solutions is easily determined.

    Using the Adomian polynomials we can write a nonlinear term g(y)as a power series.In this paper,we calculate the Adomian polynomials by expanding the nonlinear term g(y)in a Taylor series about the point y0,that is

    where y=∑yktk/k!.After some algebraic manipulation and grouping terms that correspond to the same monomial we obtain a series

    where the Akare the Adomian polynomials.

    3 Operational Solution of Nonlinear Klein-Gordon Equations

    In this section we will solve Eq.(1)using the theory introduced in Sec.2.We will take? = ?2/?x2and suppose that f(x,t)is of the form

    where the functions f1,kand f2,khave a convergent Taylor series representation in a neighborhood of zero and

    Suppose that the solution of Eq.(1)can be expressed in the formfor some sequence of functions yk(x).Using the concrete realization of the operational method with pk=tk/k!and L= ?/?t=Dtwe can rewrite Eq.(1)as

    From Eq.(4)we have that

    and therefore the previous equation becomes

    From Eq.(5)we write g(y)in terms of the Adomian polynomials asAlso observe that we have the factorizationand that,by Eq.(2),the multiplicative inverse of(p?2+bp0)in the fieldTherefore

    Performing the operations in the right-hand side of Eq.(6)we obtain a series in terms of the pkwhich begins with p0.Consider that y0(x)and y1(x)are the initial conditions a0(x)and a1(x),respectively.Then we equate the coefficients of pkin both sides of the equation and obtain recursively the solution yk(x).Finally,we replace pkby tk/k!and obtain the solution as a function of t and x.In the next section we will solve in detail several examples.Remark 1 It is worth mentioning that the operations in Eq.(6)can be simplified using the multiplication formula(3).

    4 Implementation of the Operational Method

    Our first example is a linear non-homogeneous equation.

    Example2 Consider the non-homogeneous Klein-Gordon equation of the form

    with initial conditions

    Equation(7)can be written as

    where Dtand Dxdenote the derivatives with respect to t and x,respectively,and I is the identity operator.Suppose that the solution can be written in the form

    for some sequence of functions yk(x).Observe that

    and using the Taylor series expansion at zero of sin(t)we obtain

    Let pk=tk/k!,for k∈ Z,and L=Dt.Since,by Eq.(4),we have L2=p?2(p0I?P0?P1),Eq.(8)can be expressed in the form

    After some algebraic manipulations and using the fact that Pky(x,t)=yk(x)pk,we get

    From Eq.(2)we see that eis the multiplicative inverse ofin F.Hence

    From Eq.(3)it is clear that

    In order to simplify the notation we will write ykinstead of yk(x)and y instead of y(x,t).Therefore we have

    Equating corresponding coefficients of pkin both sides of the last equation we get

    The initial conditions give us y0=e?axand y1=0.Then the previous equations become y2=(a2? 2)e?ax,y3= ?(31?1)sinx,y4=(a2?2)2e?ax,y5=(32?1)sinx,...Therefore the solution is given by

    and then,writing the pkin terms of t we obtain

    If we define A2=a2?2 and compute the sums we get

    Remark 3 If we change the initial conditions in Example 2 and consider instead y(x,0)=0,(?y/?t)(x,0)=sin(x).We obtain y0=0 and y1=sin(x),and recursively y2=0,y3=?sin(x),y4=0,y5=sin(x),...The solution in terms of the concrete realization is given by

    Our solution coincides with the solution obtained in Ref.[4].The series t?t3/3!+t5/5!?···is convergent for all real values of t since it is the expansion in Taylor series of sin(t).Therefore our solution converges for all real values of t.Table 1 shows the absolute error between our truncated series solution(15 terms)and the closed form solution.

    Example 4 Now,consider the nonlinear Klein-Gordon equation of the form

    Equation(9)can be written as

    with initial conditions

    Let us suppose that the solution has the form

    where the ykare functions of x.Then we have

    The nonlinear term y2can be expanded as a Taylor series about the point y0as follows

    and the function?xcos(t)+x2cos2(t)is expressed as the convergent series

    Following the same procedure used in Example 2,we write Eq.(9)in terms of the pk’s as

    Multiplying both sides of the equation by p2,which is the multiplicative inverse of p?2,we obtain

    Equating corresponding coefficients of the pkin both side of the equation we get

    The initial conditions give us y0=x and y1=0,and by forward substitutions we obtain y2=?x,y3=0,y4=x,y5=0,...Therefore the solution is given by∑k≥0(?1)kxp2k,and this is equivalent to

    Our solution coincides with the solution presented in Ref.[20].The series 1 ? t2/2!+t4/4!? ···is convergent for all real values of t since it is the expansion in Taylor series of cos(t).Therefore our solution converges for all real values of t.Table 2 shows the absolute error between our approximation to the solution by a truncated series and the closed form solution.

    Example 5 Consider now the nonlinear Klein-Gordon equation

    with initial conditions

    where L0≤ x≤ L1,t0≤ t,and c,α,β,γ are constants,andEquation(10)can be written as

    As in the previous examples we suppose that

    Expanding the nonlinear term y3as a Taylor series about the point y0,we get

    Following the same procedure that we used in Examples 2 and 3,we write Eq.(10)in terms of the pk’s as

    where d=Since the product e?di,0edi,0is the multiplicative inverse of(p0+dip1)(p0? dip1)in the field F,we have

    Equating coefficients we get

    The given initial conditions yield y0=B tan(Kx)and y1=BcKsec2(Kx),and from the previous equations we obtain

    Our series∑yktk/k!with the coefficients described in Eq.(11)is the Taylor series,around t=0,of y=B tan(K(x+ct)),which is the exact solution of Eq.(10),see Ref.[21].The series obtained by our method is convergent for all real values of t between ?π/2 and π/2 since it is the expansion in Taylor series of y=B tan(K(x+ct)).Table 3 shows the absolute error between our solution and the exact solution when we take B=0.816 497,K=0.426 401 and c=0.5.

    5 Conclusions

    In the examples presented in the previous section we have shown how our operational method is applied to obtain solutions of Klein-Gordon equations.In all the examples our solutions coincide with the ones obtained by other authors using diverse methods.The main difference between our method and the usual ones is that we do not require the computation of integrals,and we do not use any integral transforms.In addition,since the computational parts of our method are mainly operations with power series and differentiation,they can be easily done using symbolic computational software packages,such as Maple and Mathematica.The numerical results presented in the solved examples show that the values computed by evaluation of truncations of the series representations produce good approximations of the exact solutions.This fact indicates that we can expect to obtain good approximations to the solutions of problems for which the exact solution is not known.

    Our operational methods can also be used to solve other kinds of differential and difference equations,including fractional differential equations,with several different definitions of the fractional differentiation operators.The procedures used for all kinds of equations are essentially the same and do not depend on particular properties of the elements pkand the operator L of the concrete realization used in each case.

    [1]E.Zauderer,Partial differential Equations of Applied Mathematics,John Wiley&Sons,New Jersey(2006).

    [2]Roger K.Dodd,J.Chris Eilbeck,John D.Gibbon,and Hedley C.Morris,Solitons and Nonlinear Wave Equations,Academic Press,Inc.Harcourt Brace Jovanovich,Publishers,London,New York(1982).

    [3]R.Mittal and R.Bhatia,Int.J.Comput.Math.92(2015)2139.

    [4]E.Deeba and S.Khuri,J.Comput.Phys.124(1996)442.[5]D.Kumar,J.Singh,S.Kumar,et al.,Alexandria Eng.J.53(2014)469.

    [6]H.Dong-mei,Z.Guo-liang,and L.Zhang,Math.Probl.Eng.2015(2015)1.

    [7]Nakao Hayashi and Pavel I.Naumkin,Zeitschrift für Angewandte Mathematik und Physik(ZAMP)59(2008)1002.

    [8]G.Bengochea and L.Verde-Star,Adv.Appl.Math.47(2011)330.

    [9]J.Mikusi′nski,Operational Calculus,Pergamon Press,Oxford(1959).

    [10]G.Bengochea,Appl.Math.Lett.32(2014)48.

    [11]G.Bengochea and L.Verde-Star,Math.Meth.Appl.Sci.38(2015)4630.

    [12]G.Bengochea,Appl.Math.Comput.232(2014)424.

    [13]G.Bengochea,Fractional Calculus and Applied Analysis 18(2015)1201.

    [14]G.Bengochea and M.Ortigueira,J.Appl.Analysis 22(2016)131.

    [15]G.Bengochea and M.D.Ortigueira,Int.J.Dyn.Control 5(2017)61.

    [16]G.Adomian,Math.Comput.Model.13(1990)17.

    [17]Y.Cherruault and G.Adomian,Math.Comput.Model.18(1993)103.

    [18]G.Guellal and Y.Cherruault,Int.J.Bio-Medical Comput.36(1994)223.

    [19]M.M.Hosseini and H.Nasabzadeh,Appl.Math.Comput.182(2006)536.

    [20]P.Guo,K.Liew,and P.Zhu,Appl.Math.Model.39(2015)2917.

    [21]D.Kaya and Salah El-Sayed,Appl.Math.Comput.156(2004)341.

    男人舔奶头视频| 亚洲精品自拍成人| 久久久久久国产a免费观看| 午夜免费激情av| 免费看日本二区| 欧美97在线视频| 女人久久www免费人成看片| 91aial.com中文字幕在线观看| 国产精品一区二区三区四区久久| 大片免费播放器 马上看| 国产精品久久视频播放| 在线免费观看不下载黄p国产| 欧美高清性xxxxhd video| 尤物成人国产欧美一区二区三区| 精品一区二区三卡| 国产毛片a区久久久久| 国产精品福利在线免费观看| 国产精品女同一区二区软件| 简卡轻食公司| 亚洲不卡免费看| 国产成人freesex在线| 汤姆久久久久久久影院中文字幕 | 亚洲精品456在线播放app| 日韩视频在线欧美| 三级国产精品欧美在线观看| 亚洲国产欧美在线一区| 亚洲四区av| 乱码一卡2卡4卡精品| 三级经典国产精品| 精品一区二区免费观看| 春色校园在线视频观看| 亚洲三级黄色毛片| 亚洲激情五月婷婷啪啪| 男女边吃奶边做爰视频| 五月天丁香电影| 久久久久久久亚洲中文字幕| ponron亚洲| 亚洲av免费在线观看| 免费观看性生交大片5| 国产麻豆成人av免费视频| 久久久久久久久久久丰满| 国产成人午夜福利电影在线观看| 国产精品久久久久久久电影| 一级片'在线观看视频| 日韩亚洲欧美综合| 老师上课跳d突然被开到最大视频| 国产激情偷乱视频一区二区| 国产熟女欧美一区二区| 中文天堂在线官网| 国产 一区精品| 91aial.com中文字幕在线观看| 国产不卡一卡二| 日韩av在线大香蕉| ponron亚洲| 亚洲成人av在线免费| 日韩欧美精品v在线| 你懂的网址亚洲精品在线观看| av天堂中文字幕网| 看十八女毛片水多多多| 欧美激情久久久久久爽电影| 97超碰精品成人国产| 看十八女毛片水多多多| 日本熟妇午夜| 国内精品一区二区在线观看| 亚洲欧美成人精品一区二区| 啦啦啦韩国在线观看视频| 麻豆av噜噜一区二区三区| 日韩 亚洲 欧美在线| 中文字幕制服av| 久久久欧美国产精品| 国产一区二区三区综合在线观看 | videossex国产| 亚洲精品456在线播放app| 精品久久久久久久人妻蜜臀av| 精品国产露脸久久av麻豆 | 亚洲最大成人手机在线| 尤物成人国产欧美一区二区三区| 国产女主播在线喷水免费视频网站 | 亚洲精品亚洲一区二区| 国产男人的电影天堂91| 激情 狠狠 欧美| 观看美女的网站| 青春草亚洲视频在线观看| 日韩欧美三级三区| 欧美日韩在线观看h| 亚洲欧美成人精品一区二区| 国产 一区精品| av天堂中文字幕网| 国产精品蜜桃在线观看| av女优亚洲男人天堂| 欧美精品国产亚洲| 亚洲一级一片aⅴ在线观看| eeuss影院久久| 久久精品人妻少妇| 中文字幕av成人在线电影| 免费高清在线观看视频在线观看| 自拍偷自拍亚洲精品老妇| 亚洲av中文av极速乱| 一级毛片黄色毛片免费观看视频| av.在线天堂| 国产女主播在线喷水免费视频网站 | 免费观看精品视频网站| 美女cb高潮喷水在线观看| 国产黄色小视频在线观看| 嫩草影院精品99| 亚州av有码| 国产成年人精品一区二区| 热99在线观看视频| 18+在线观看网站| 中国美白少妇内射xxxbb| 日韩一区二区视频免费看| 久久久久久久亚洲中文字幕| 黄色欧美视频在线观看| 国产在线一区二区三区精| 国产日韩欧美在线精品| 免费少妇av软件| 国产伦在线观看视频一区| 欧美不卡视频在线免费观看| 国产白丝娇喘喷水9色精品| 国产精品一区二区性色av| 国产一区二区三区av在线| 亚洲国产欧美人成| 韩国高清视频一区二区三区| 成人午夜精彩视频在线观看| 成年女人看的毛片在线观看| 国产乱人视频| 欧美三级亚洲精品| 欧美xxⅹ黑人| 欧美区成人在线视频| 午夜福利网站1000一区二区三区| 日韩欧美 国产精品| av福利片在线观看| 中国美白少妇内射xxxbb| 乱码一卡2卡4卡精品| 欧美日韩亚洲高清精品| 国产中年淑女户外野战色| 午夜激情欧美在线| 国产精品伦人一区二区| 国产单亲对白刺激| 国产亚洲一区二区精品| 成年人午夜在线观看视频 | 国产在视频线精品| 韩国高清视频一区二区三区| 日日啪夜夜爽| 一个人看视频在线观看www免费| 不卡视频在线观看欧美| 国产一区二区三区综合在线观看 | 欧美高清性xxxxhd video| 伊人久久国产一区二区| 亚洲av在线观看美女高潮| 免费观看精品视频网站| 日韩在线高清观看一区二区三区| 中文资源天堂在线| 黄色日韩在线| 成年女人看的毛片在线观看| 永久免费av网站大全| 看非洲黑人一级黄片| 国产精品一及| 麻豆精品久久久久久蜜桃| 亚洲精华国产精华液的使用体验| 2022亚洲国产成人精品| 免费大片18禁| 日韩视频在线欧美| 国产午夜精品久久久久久一区二区三区| 亚洲欧美日韩卡通动漫| 免费人成在线观看视频色| 街头女战士在线观看网站| 黑人高潮一二区| 人妻系列 视频| 波多野结衣巨乳人妻| 午夜福利高清视频| 欧美成人a在线观看| 丝瓜视频免费看黄片| 特级一级黄色大片| 亚洲精品乱久久久久久| 一区二区三区乱码不卡18| 国产91av在线免费观看| 精品熟女少妇av免费看| 日韩三级伦理在线观看| 麻豆av噜噜一区二区三区| 亚洲欧美日韩东京热| av免费观看日本| 欧美日韩视频高清一区二区三区二| 免费看av在线观看网站| 精品国产一区二区三区久久久樱花 | 亚洲成人一二三区av| 午夜视频国产福利| 在线天堂最新版资源| 国产精品福利在线免费观看| 99久久中文字幕三级久久日本| 人人妻人人澡人人爽人人夜夜 | 国产成人91sexporn| 淫秽高清视频在线观看| 国产精品久久久久久精品电影小说 | 日本黄大片高清| 日韩制服骚丝袜av| 一二三四中文在线观看免费高清| 欧美丝袜亚洲另类| 国产午夜精品一二区理论片| 人妻夜夜爽99麻豆av| 日韩av不卡免费在线播放| 国产不卡一卡二| 嫩草影院新地址| 精品人妻熟女av久视频| 久久久久久久久久人人人人人人| 免费av毛片视频| 精品一区二区三区视频在线| 联通29元200g的流量卡| 国产精品综合久久久久久久免费| 国产精品女同一区二区软件| 国产欧美日韩精品一区二区| 国产一区二区在线观看日韩| 国产视频内射| 三级男女做爰猛烈吃奶摸视频| 国产视频首页在线观看| 18禁动态无遮挡网站| 国产免费福利视频在线观看| 日韩成人av中文字幕在线观看| 天堂网av新在线| 久久久久久九九精品二区国产| 最近中文字幕高清免费大全6| 日本三级黄在线观看| 亚洲精品日韩在线中文字幕| 卡戴珊不雅视频在线播放| 成人午夜精彩视频在线观看| 搡女人真爽免费视频火全软件| 狂野欧美白嫩少妇大欣赏| 国产成人一区二区在线| xxx大片免费视频| 狂野欧美白嫩少妇大欣赏| 老司机影院毛片| av又黄又爽大尺度在线免费看| 在线 av 中文字幕| 日本熟妇午夜| av国产免费在线观看| av卡一久久| 国产午夜精品一二区理论片| 久久久成人免费电影| 国产亚洲一区二区精品| 一级毛片黄色毛片免费观看视频| 男女视频在线观看网站免费| 久久久精品免费免费高清| 热99在线观看视频| 水蜜桃什么品种好| 亚洲欧美一区二区三区黑人 | 在线天堂最新版资源| 国产午夜福利久久久久久| 2022亚洲国产成人精品| 18禁在线播放成人免费| 两个人视频免费观看高清| 一本一本综合久久| 亚洲国产精品国产精品| 国产成人一区二区在线| 日韩av在线免费看完整版不卡| 久久97久久精品| 人妻系列 视频| 精品久久久噜噜| 国产精品综合久久久久久久免费| 我的女老师完整版在线观看| 天美传媒精品一区二区| 亚洲精品国产av蜜桃| 可以在线观看毛片的网站| 伦理电影大哥的女人| 欧美bdsm另类| 一级毛片久久久久久久久女| 91精品伊人久久大香线蕉| 水蜜桃什么品种好| 黄色欧美视频在线观看| 午夜福利高清视频| 国产精品av视频在线免费观看| 啦啦啦中文免费视频观看日本| 国产成人精品一,二区| 亚洲真实伦在线观看| 欧美一区二区亚洲| 波多野结衣巨乳人妻| 久久精品夜夜夜夜夜久久蜜豆| 亚洲va在线va天堂va国产| 国产成人freesex在线| 亚洲成人精品中文字幕电影| 国产亚洲精品久久久com| 久久久久国产网址| 国产精品三级大全| 丝袜喷水一区| 少妇被粗大猛烈的视频| 建设人人有责人人尽责人人享有的 | 日韩av不卡免费在线播放| 亚洲精品久久午夜乱码| 高清视频免费观看一区二区 | 高清在线视频一区二区三区| av在线观看视频网站免费| 最近中文字幕高清免费大全6| 国产成人午夜福利电影在线观看| 日韩欧美三级三区| 亚洲av在线观看美女高潮| 国产精品一区二区性色av| 我要看日韩黄色一级片| 国产成人精品一,二区| 亚洲精品亚洲一区二区| 日韩 亚洲 欧美在线| 网址你懂的国产日韩在线| 搡老妇女老女人老熟妇| 别揉我奶头 嗯啊视频| 深夜a级毛片| 亚洲国产精品成人久久小说| 黄色一级大片看看| 激情 狠狠 欧美| 美女被艹到高潮喷水动态| 国产乱人视频| 国产片特级美女逼逼视频| 三级经典国产精品| 久久97久久精品| 91精品一卡2卡3卡4卡| 一边亲一边摸免费视频| 高清毛片免费看| 国产精品久久久久久久电影| 久久久成人免费电影| 亚洲成人久久爱视频| 午夜免费观看性视频| 精品一区二区免费观看| 亚洲美女搞黄在线观看| 色综合色国产| 毛片一级片免费看久久久久| 大香蕉久久网| 久久热精品热| 免费观看性生交大片5| 久久草成人影院| 黄片无遮挡物在线观看| 国产成人a∨麻豆精品| 看免费成人av毛片| 国产精品精品国产色婷婷| 久久精品久久久久久久性| 成年女人在线观看亚洲视频 | 欧美最新免费一区二区三区| 最近中文字幕高清免费大全6| 中文资源天堂在线| 国产亚洲91精品色在线| 天堂网av新在线| 日韩伦理黄色片| 18禁动态无遮挡网站| 国产老妇女一区| 一区二区三区四区激情视频| 99热全是精品| 国产黄色免费在线视频| 国精品久久久久久国模美| 伊人久久精品亚洲午夜| 我的女老师完整版在线观看| 日本三级黄在线观看| 亚洲欧美成人综合另类久久久| 午夜激情福利司机影院| 国产黄频视频在线观看| 女人被狂操c到高潮| 久久久午夜欧美精品| 日韩av在线大香蕉| 男女那种视频在线观看| 97人妻精品一区二区三区麻豆| 欧美日本视频| av在线亚洲专区| 菩萨蛮人人尽说江南好唐韦庄| 少妇人妻精品综合一区二区| 天天一区二区日本电影三级| 精品国产三级普通话版| 日韩av在线大香蕉| 国产精品麻豆人妻色哟哟久久 | 亚洲精品456在线播放app| 黄色配什么色好看| 男女啪啪激烈高潮av片| 国产成人免费观看mmmm| 日韩亚洲欧美综合| 久久久欧美国产精品| 国产成人精品久久久久久| 一级二级三级毛片免费看| 亚洲av不卡在线观看| av.在线天堂| 国产黄色小视频在线观看| 中国美白少妇内射xxxbb| 久久久成人免费电影| 国产乱来视频区| 两个人的视频大全免费| 高清欧美精品videossex| 在线a可以看的网站| 国产成人a∨麻豆精品| 天天一区二区日本电影三级| 久久久国产一区二区| 亚洲av在线观看美女高潮| 91狼人影院| 亚洲av电影在线观看一区二区三区 | 91精品国产九色| a级一级毛片免费在线观看| 国产亚洲av嫩草精品影院| 国产精品久久久久久精品电影小说 | 五月玫瑰六月丁香| 久久久久久久久久久丰满| 青春草国产在线视频| 在线a可以看的网站| 97超碰精品成人国产| 80岁老熟妇乱子伦牲交| 大又大粗又爽又黄少妇毛片口| 久久久久久久亚洲中文字幕| 成人欧美大片| 乱人视频在线观看| 国产亚洲精品久久久com| 一级毛片aaaaaa免费看小| 丝袜喷水一区| 亚洲成人av在线免费| 1000部很黄的大片| 搡女人真爽免费视频火全软件| 午夜免费激情av| 99热这里只有是精品在线观看| 天堂av国产一区二区熟女人妻| 欧美日韩综合久久久久久| 又大又黄又爽视频免费| 国产国拍精品亚洲av在线观看| 菩萨蛮人人尽说江南好唐韦庄| 草草在线视频免费看| 18禁裸乳无遮挡免费网站照片| 51国产日韩欧美| 亚洲高清免费不卡视频| 水蜜桃什么品种好| 五月天丁香电影| 免费黄网站久久成人精品| 亚洲av在线观看美女高潮| 国产精品人妻久久久久久| 美女大奶头视频| 中文字幕制服av| 国内揄拍国产精品人妻在线| 日韩一区二区三区影片| 中文欧美无线码| 能在线免费看毛片的网站| 黄色一级大片看看| 色吧在线观看| 免费观看精品视频网站| 亚洲欧洲国产日韩| 亚洲在线观看片| 国产 一区精品| 婷婷色综合www| 99re6热这里在线精品视频| 一个人免费在线观看电影| 日韩欧美一区视频在线观看 | 3wmmmm亚洲av在线观看| 一本久久精品| 国产伦一二天堂av在线观看| 欧美zozozo另类| 免费黄网站久久成人精品| 99久久中文字幕三级久久日本| 男人爽女人下面视频在线观看| 国产精品.久久久| 久久99热这里只频精品6学生| 午夜视频国产福利| 精品一区在线观看国产| 男女那种视频在线观看| 免费av毛片视频| 国产精品一二三区在线看| 国产午夜精品久久久久久一区二区三区| 国模一区二区三区四区视频| 日本黄大片高清| 女人十人毛片免费观看3o分钟| .国产精品久久| 又爽又黄无遮挡网站| a级一级毛片免费在线观看| 一区二区三区高清视频在线| 99九九线精品视频在线观看视频| 插阴视频在线观看视频| 欧美极品一区二区三区四区| 少妇的逼水好多| 精品久久久久久电影网| 久久久久久久亚洲中文字幕| 精品久久久久久电影网| av专区在线播放| 草草在线视频免费看| 国产日韩欧美在线精品| 久久久久久伊人网av| 亚洲在线自拍视频| 国内揄拍国产精品人妻在线| 国产日韩欧美在线精品| 美女国产视频在线观看| 如何舔出高潮| 国产精品福利在线免费观看| 高清毛片免费看| 亚洲真实伦在线观看| 中文字幕亚洲精品专区| 精品国产一区二区三区久久久樱花 | 日韩欧美三级三区| 可以在线观看毛片的网站| 国产 亚洲一区二区三区 | 亚洲最大成人av| 欧美人与善性xxx| 91精品伊人久久大香线蕉| 国产成人一区二区在线| 97热精品久久久久久| av在线亚洲专区| 午夜福利视频精品| 人人妻人人看人人澡| 日本爱情动作片www.在线观看| 少妇熟女aⅴ在线视频| 日韩大片免费观看网站| 亚洲欧美日韩卡通动漫| 高清av免费在线| 中文乱码字字幕精品一区二区三区 | 九草在线视频观看| 黄片无遮挡物在线观看| 精品久久久久久电影网| 一级二级三级毛片免费看| 欧美激情在线99| 色视频www国产| 国产午夜精品一二区理论片| 赤兔流量卡办理| .国产精品久久| 伦理电影大哥的女人| 色综合色国产| 一个人看的www免费观看视频| 美女主播在线视频| 欧美zozozo另类| 99热这里只有是精品在线观看| 久久亚洲国产成人精品v| 777米奇影视久久| 熟女人妻精品中文字幕| 久久久久国产网址| 国产高清国产精品国产三级 | 淫秽高清视频在线观看| h日本视频在线播放| 老司机影院成人| 亚洲精品日韩在线中文字幕| 熟妇人妻不卡中文字幕| 精品久久国产蜜桃| 三级经典国产精品| 国产人妻一区二区三区在| 国产av在哪里看| 99久国产av精品| 久久精品国产自在天天线| 亚洲图色成人| 日韩av不卡免费在线播放| 免费观看a级毛片全部| 建设人人有责人人尽责人人享有的 | 如何舔出高潮| 日韩国内少妇激情av| 日日啪夜夜撸| 亚洲高清免费不卡视频| 国产成人午夜福利电影在线观看| 国产高清不卡午夜福利| 欧美zozozo另类| 日韩一区二区三区影片| 国产伦理片在线播放av一区| 国产一区二区亚洲精品在线观看| 乱人视频在线观看| 日韩亚洲欧美综合| 非洲黑人性xxxx精品又粗又长| 久久久久国产网址| 成人国产麻豆网| 日韩av在线大香蕉| 日韩一区二区视频免费看| 永久免费av网站大全| 免费不卡的大黄色大毛片视频在线观看 | 91在线精品国自产拍蜜月| 18禁动态无遮挡网站| 欧美一级a爱片免费观看看| 国产精品.久久久| 99热网站在线观看| 高清欧美精品videossex| 亚洲精华国产精华液的使用体验| 国产乱人视频| 欧美成人一区二区免费高清观看| 亚洲av中文字字幕乱码综合| 在线观看免费高清a一片| 久久久久久久久久久免费av| 亚洲欧美一区二区三区国产| 边亲边吃奶的免费视频| 亚洲精品乱码久久久v下载方式| 亚洲精品aⅴ在线观看| 中文字幕制服av| 久久99蜜桃精品久久| 午夜精品一区二区三区免费看| 免费观看无遮挡的男女| 在线a可以看的网站| 麻豆av噜噜一区二区三区| 人人妻人人澡欧美一区二区| 伊人久久国产一区二区| 26uuu在线亚洲综合色| 在线观看人妻少妇| 啦啦啦中文免费视频观看日本| 80岁老熟妇乱子伦牲交| 国语对白做爰xxxⅹ性视频网站| 午夜视频国产福利| 国产在视频线精品| 免费黄频网站在线观看国产| 亚州av有码| 国产av不卡久久| 久久久久久久午夜电影| 色尼玛亚洲综合影院| 亚洲欧美日韩无卡精品| 久久韩国三级中文字幕| 成年女人在线观看亚洲视频 | 国产精品久久久久久av不卡| 九草在线视频观看| 美女内射精品一级片tv| 人妻制服诱惑在线中文字幕| 亚洲国产最新在线播放| 成年女人看的毛片在线观看| 性色avwww在线观看| 国产精品一区二区性色av| 伦精品一区二区三区| 久久精品久久精品一区二区三区| 高清在线视频一区二区三区| 在线免费观看的www视频| 国产又色又爽无遮挡免| 一个人免费在线观看电影| 女人久久www免费人成看片| 欧美日韩视频高清一区二区三区二| 三级经典国产精品| 秋霞在线观看毛片| 男女下面进入的视频免费午夜| 精品久久久噜噜| 亚洲精品国产成人久久av| 欧美人与善性xxx| 午夜亚洲福利在线播放| 可以在线观看毛片的网站|