• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations

    2018-06-07 02:19:38FeiFangGuanghuiXiaJianguoWang
    Acta Mechanica Sinica 2018年3期

    Fei Fang·Guanghui Xia·Jianguo Wang

    1 Introduction

    Harvesting energy from ambient vibrations by using the direct piezoelectric effect has received significant attention over the last two decades[1–3].This focus is due to the need for low-power consumption devices,such as microelectro mechanical systems and sensors[4].Many review papers have summarized the literature of piezoelectric energy harvesting[5–8].The most common configuration for piezoelectric energy harvesting has been either a unimorph or a bimorph piezoelectric cantilever beam.Many researchers have focused on the mathematical modeling of this harvester.A reliable mathematical model may allow studying different aspects of energy harvesting,predicting the electrical outputs,moreover,optimizing the harvester in order to obtain the maximum electrical output for a given input.The linear models of piezoelectric energy harvesters are available in many papers.For example,Erturk and Inman[3]presented a distributed parameter electromechanical model of cantilevered piezoelectric energy harvester with the Euler–Bernoullibeam assumptions.Closed-form expressions of the voltage,current,and power outputs,as well as the mechanical response were obtained under the base excitation.Some linear models have been validated experimentally and show good agreement between theory and experiment[9–11].The study of Tang and Wang[12]presented a modified model of cantilevered piezoelectric energy harvester with tip mass offset and a dynamic magnifier by using the generalized Hamilton’s principle. The modified model was demonstrated by parametric studies.The results show that the harvesting power can be dramatically enhanced with proper selection of the design parameters of the dynamic magnifier and tip mass offset.However,these validations are very low levels of excitation and not necessarily valid in all applications.In practical application,it is likely that linear models of the energy harvester will be unable to predict accurately the resonance frequency,leading to inaccurate prediction for the performance of the harvester due to frequency shift.It is advisable to take into account the nonlinear behavior of energy harvesters in the design,particularly if the energy harvester is subjected to high levels of excitation.The paper by Daqaq et al.[13]identified the primary limitations associated with linear vibration harvesters and presented a critical review of recent research focused on the use of nonlinearity to improve the performance of vibration harvesters.

    A work by Mahmoodi et al.[14–16]presented an analytical model of nonlinear vibration response for cantilevered piezoelectric beams.The Galerkin decomposition method was used to derive the equations of motion.The multiple scales method was utilized to obtain analytical solutions of the system.Also,Stanton et al.[17]studied the influence of piezoelectric material nonlinearities on the dynamic response of a geometrically linear piezoelectric energy harvester using a theoretical model and experimental validation.Work by Abdelkefi et al.[18]presented a nonlinear distributed-parameter model of cantilevered piezoelectric beam energy harvesters with tip mass under direct excitation.The presented model included geometric,inertia,and piezoelectric nonlinearities.The Galerkin decomposition method and the multiple scales method were used to determine analytical expressions of the harvester.In their study,Triplett and Quinn[19]investigated the effect of nonlinear piezoelectric coupling on avibration energy harvester,which included mechanical damping,stiffness nonlinearities,and the nonlinear piezoelectric constitutive relationship.The response of the harvesting system was approximated using Poincare–Lindstedt perturbation analysis.Work by Neiss et al.[20]provided analytical solutions of the output power and bandwidth of nonlinear energy harvester based on a lumped-parameter model of cantilevered piezoelectric beam.The results were verified by numerical simulations.The stability of the simply supported piezoelectric laminated rectangular plate under simultaneous transverse and in plane excitations was studied by Mousa et al.[21].The multiple scales method was used to achieve the second-order approximation.The work by Mahmoudi et al.[22]investigated the performance of a novel hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions.Furthermore,Friswell et al.[23]derived the electromechanical equations of nonlinear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass.The presented equations were investigated using the method of numerical simulation and experimental validation.The bistable piezoelectric inertial generators,which can produce large-amplitude motions under ambient excitations,have attracted moreattention of researchers[24–29].Thus,Karami and Inman[26]presented a unified approximation method to study the performance of linear,softly nonlinear,and bi-stable nonlinear energy harvesters.Then Stanton et al.[27]used the harmonic balance method to investigate analytically the influence of parameter variations on the intrawell and interwell oscillations of bistable piezoelectric inertial generator.A mathematical model of the multi-stable magnetic attraction energy harvester,which was composed of a bimorph cantilever beam with soft magnetic tip and two external permanent magnets,was developed based on the nonlinear Euler–Bernoulli beam theory and linear piezoelectricity[28].Based on arrays of coupled levitated magnets,Abed et al.[29]proposed a multi-modal vibration energy harvesting method.The presented differential equations of motion were solved using the harmonic balance method combined with the asymptotic numerical method.

    The parametric resonance theory predicts that the vibrationenergy harvesters using parametric resonance will obtain significant performance enhancement.One of the key problems of parametric resonance is the presence of a certain initiation threshold,which must be overcome prior to reaching parametric resonance.Therefore,Daqaq et al.[30]studied the energy harvester of parametric excitation.In their approach,a lumped-parameter nonlinear model was presented to study the nonlinear dynamics of a parametrically excited cantilever-type harvester.Then Jia et al.[31–34]used a novel design and working mechanism in order to overcome the limitation of initiation threshold amplitude and reduce the shortcomings of a parametrically excited vibration energy harvester.The study by Abdelkefi et al.[35]presented a global nonlinear distributed-parameter model for a piezoelectric energy harvester under parametric excitation.Also,Bitar et al.[36]presented a discrete model for the collective dynamics of periodic nonlinear oscillators under simultaneous parametric and external excitations,which was suitable for several physical applications.The study by Chiba et al.[37]investigated the dynamic stability of a vertically standing cantilever beam under simultaneous horizontal and vertical excitations.To the best know ledge of the authors,few research has been reported for the nonlinear vibration response of a cantilevered piezoelectric beam under parametric and external excitations.In their work,Kacem et al.[38,39]and Jallouli et al.[40]investigated the benefits and applications of the nonlinear resonator simultaneously subjected to external and parametric excitations.

    Fig.1 Configuration of the cantilevered piezoelectric beam for an energy harvester

    In this paper,the nonlinear dynamics of a cantilevered piezoelectric beam is investigated under simultaneous parametric and external excitations.The beam is composed of a substrate and two piezoelectric layers and assumed as the Euler–Bernoulli model with inextensible deformation.A nonlinear distributed-parameter model of the cantilevered piezoelectric beam is developed by use of the generalized Hamilton principle.The derived model accounts for geometric nonlinearities,but neglects the material nonlinearities by assuming linear constitutive equations.The Galerkin decomposition method is employed to transform nonlinear partial differential equations of motion into a set of nonlinear ordinary differential equations in the time domain.We focus on the first mode of the beam.The harmonic balance method is used to obtain analytical solutions for the vertical displacement,output voltage,and power output amplitude.The influences of the damping,load resistance,and electromechanical coupling coefficient on the frequency–response curves are investigated.

    2 Mathematical model o f energy harvester system

    We consider a uniform bimorph cantilever beam with lengthLunder its base horizontal and vertical excitations as shown in Fig.1.

    The beam is composed of a substrate and two piezoelectric layers.The piezoelectric layers are bounded by two in-plane electrodes of negligible thickness connected to the load resistanceRL.The beam is treated as the Euler–Bernoulli beam with lengthL,widthb,and heighthb=ts+2tp,and shearing deformation and rotatory motion are neglected.tsis the thickness of the substrate layer andtpis the thickness of each piezoelectric layer.Setting theoxyas the inertia coordinate system,the clamped end displacements of the beam arewx(t)andwy(t)in the horizontal and vertical direction,respectively.Theis the base- fixed coordinate system(moving with the base).sis the coordinate along the middle plane of the beam.u(s,t)andv(s,t)are the displacements of the beam relative to thecoordinate system.u(s,t)is in thedirection andv(s,t)in thedirection.We assume that the beam is inextensible[35]

    where primeindicates the derivative with respect to the arc length,s.Using Taylor’s expansion,there are

    The constitutive relations of the substrate and piezoelectric layers of the beam can be expressed as

    whereYis Young’s modulus,S1is the strain,T1is the stress,d31is the piezoelectric strain constant,D3is the electric displacement andis the permittivity and superscript T represents constant stress,subscript/superscript p and s stand for the piezoelectric and substrate layers,respectively;the 1 and 3 directions are coincident with thexandydirections,respectively(where 1 is the direction of axial strain and 3 is the direction of polarization).E3(t)=?V(t)/(2tp)is the electric field for series connection of piezoelectric layers.V(t)=RLdq/dtis the electric voltage.qis the electric charge.

    In what follows,a nonlinear distributed parameter mathematical model of cantilevered piezoelectric vibration energy harvesting system will be derived by using the generalized Hamilton variational principle.Considering the inextensible beam condition in Eq.(1)and the Lagrange’s multiplierλ,the modified energy functional can be expressed as

    Substituting Eqs.(3)and(10)into Eq.(9),the following expression is obtained

    The generalized Hamilton variational principle of the electro mechanical coupling beam can be expressed as

    whereWis the electrically extracted work and the work done by the damping force.δWis given by

    wherecis linear viscous air damping coefficient.

    The variations of the kinetic energy,the potential energy,and the electrical energy can be expressed as

    In Eqs.(15)and(16),H(s)is the Heaviside step function which is related to the Dirac delta function.They have the following relation

    Applying Eq.(10)and the generalized Hamilton principle of Eq.(12),performing a series of variational manipulations and taking up to the cubic order ofv,the governing differential equations of motion can be obtained as follows

    wherethe electromechanical coupling coefficient.Cpis the capacitance of the piezoelectric layers.The above equations are a mathematical model of nonlinear distributed-parameter cantilevered piezoelectric energy harvesting system under simultaneous parametric and external excitations.The horizontal external excitation is transformed into parametric excitation.By removing the nonlinear terms and the base horizontal excitation,the direct excited linear model is recovered[3].Without considering electromechanical coupling,Eq.(18)is similar to the governing equation of motion of the slender beam presented by Chiba et al.[37].

    For the purpose of generality,the following dimensionless quantities are introduced into Eqs.(18)and(19)

    whereΩhandΩvare the horizontal and vertical excited frequencies,respectively.

    Equations(18)and(19)can be represented in nondimensional form as

    whereindicates the derivative with respect to the time variable,τ.

    3 Reduced-order model

    To develop a reduced-order model of cantilevered piezoelectric energy harvesting system,the modal Galerkin decomposition method is used to transform the nonlinear partial differential equations(21)and(22)into a set of coupled second order nonlinear ordinary differential equations.The transverse deflectionis decomposed into a summation ofNgeneralized displacement amplitudeand orthogonal basis functionas follows

    The orthogonal basis functions utilized in this analysis are the linear mode shape functions for the Euler–Bernoulli beam with fixed-free boundary conditions.The normalized mode shape function is given as follows:

    whereis themth eigenfrequency of a cantilever beam,satisfies the following frequency equation

    Inserting Eq.(23)into Eqs.(21)and(22),multiplying Eq.(21)by,considering the orthogonality conditions of the mode shape functions and subsequently integrating over the length of the beam,we yield a set of nonlinear ordinary differential equations of motion(form=1,2,...,N).

    Assuming the excitation frequency is very close to thenth modal frequency,we focus on thenth vibration mode of the beam and neglect the interactions with any of the other modes.Considering only thenth term of the orthogonal basis functions andm=k=?=n,there are

    The termis used to describe cubic geometric nonlinearity,represents inertia nonlinearity.are parametric and external excitations,respectively.Equation(31)is the Mathieu equation with nonlinear stiffness and inertia terms as well as with the external force term and voltage.It describes the nonlinear dynamics of cantilevered piezoelectric beams of a single mode approximation under simultaneous parametric and external excitations.Equations(31)and(32)are similar to the nonlinear lumped parameter model presented by Daqaq et al.[30].But the electromechanical coupling terms include nonlinearity,which is different from the nonlinear lumped-parameter model.

    4 Harmonic balance analysis

    The harmonic balance method has been extensively used to analyze periodic solutions of nonlinear differential equations.Using Fourier series,the nonlinear differential equations in the time variables are transformed into a set of nonlinear algebraic equations in the frequency variables.The number of Fourier series terms dictates the accuracy of the intended solution.The resulting algebraic equations are solved iteratively.When nonlinearities are complicated,the derivation of the algebraic system becomes very cumbersome.Works by Souayeh and Kacem[41],Kacem et al.[42],and Jallouli et al.[43]used the harmonic balance combined with the asymptotic numerical method to analyze the nonlinear problem of resonant sensors at large amplitudes.For a low level of nonlinearity,a single-term harmonic balance solution is sufficient to approximate the steady state response to harmonic excitation.Stantonet al.[27]applied the harmonic balance method to analyze the existence,stability,and influence of parameter variations of bistable piezoelectric inertial generator.

    For an analytical solution of the presented problem,harmonic excitations are considered

    whereεandδare the non-dimensional amplitudes,respectively.

    In the present analysis,assuming that the first bending mode of the beam should be the dominant mode of the system,only one mode(n=1)is retained and the other modes are neglected.A single-term harmonic balance solution is sufficient to approximate the steady state response to harmonic excitation for a low level of nonlinearity.

    In what follows,the subscripts on the different variables will be omitted for the sake of simplicity.Using Eq.(33),Eqs.(31)and(32)can be rewritten as follows

    In order to achieve parametric resonance,it has been shown that the first-order(principal)parametric resonance can be attained when the parametric excited frequency is twice the natural frequency[30,31,37].Introducing the non-dimensional excitation frequencyω,ωh,andωvare presented as

    Substituting Eqs.(37)and(38)into Eqs.(34)and(35),and applying the harmonic balance method,the resulting algebraic equations can be written as

    The nonlinear algebraic equation of the frequency–response curves can be expressed in terms of the displacement amplitude and excitation frequency as

    The frequency–response curves can be determined by numerically finding the positive real roots of the above equation in a range of excitation frequencies.The dimensionless response voltage can be written in terms of the mechanical amplitude as follows

    Substituting the solution of Eq.(46)into Eqs.(47)and(48),the frequency–response curve of the voltage and power amplitude can be obtained.

    5 Results and discussion

    In the previous section,the theoretical model and analytical method have been described for determining the harmonic solutions of the cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations.In this section,the frequency–response curves of the energy harvesting system will be given and discussed in detail.

    Usingn=m=1,the influence of the model parameter variations on the performance of the energy harvester is investigated.These parameters are parametric and external excitation amplitudesεandδ,damping coefficientload resistance parameterRLand electro-mechanical coupling coefficient.The base excitations are considered as harmonic excitation.ψ=0 is assumed.In the absence of specified cases,the results presented in this paper are calculated with the geometric and material parameters given in Table 1.Using the geometric and material coefficients defined in Table 1,all parameters of Eqs.(34)and(35)are as follows

    Table1 Geometric and material properties of the energy harvester

    5.1 Only under parametric excitation

    In this section,using the presented analytical expression,the numerical results under parametric excitation are obtained.Figure 2 gives the frequency–response curves of the deflection and output power amplitude in the case of different parametric excited amplitudeεwhenandRL=500Ω.Figure2shows that whenδ=0(only parametric excitation), electrical energy can only be harvested within a certain range of excitation frequencies where the non-trivial solutions exist. Outside of this range, only the trivial solutionexists and no electrical energy can be harvested.

    Figure 2 shows the nonlinear hardening effect.The frequency–response peak curves are hysteretic and shifted to the high frequencies.The nonlinear hardening effect results in an enhancement of the bandwidth of the energy harvester.The bandwidth enhancement can be reachable when the energy harvester is excited beyond its critical amplitude[44–46].The critical electrical resistance characterizes the upper bound limit of the linear dynamic range of the harvester.

    Fig.2 Frequency–response curves of the deflection and output power for different parameters ε when R L=500 Ω,δ=0,and

    Fig.3 The steady-state resonant peak curves of the deflection and output voltage under parametric excitation at various excitation levels for different parameters and R L.a,b R L=500 Ω,and c,d R L=500 kΩ when δ=0

    Figure 3 gives the steady-state resonant peak curves of the deflection and output voltage under parametric excitation at various excitation levels for different parameterswhenRL=500Ω,RL=500 kΩ,andthe dimensionless peak deflection,is the dimensionless peak voltage.Figure 3 shows that only in the case of the parametric excitation,the energy harvesting system has an initiation threshold.When the excited amplitudeεexceeds the initiation threshold,a rapid grow th of the resonant peak deflection and peak output voltage is obtained.The mechan-ical damping and load resistance have significant influence on the initiation threshold,which must be overcome prior to accessing parametric resonance.

    Fig.4 The steady-state resonant peak curves of the deflection and output power at various parametric excitation levels for different external excited amplitude δ when

    A steep jump of the nonlinear peak response curves is observed at high parametric excited amplitudeεin Fig.3.For this behavior,a reasonable theoretical explanation can be obtained from the view of mechanics.When parametric excited amplitudeεis very small,the beam is in the state of axial deformation and the state of stable equilibrium,the beam deflection is equal to zero and no energy is harvested.When parametric excited amplitudeεreaches a certain critical value,the state of axial deformation of the beam is transformed to the bending deformation and the state of the beam buckling.The beam deflection increases rapidly and the harvested power is raised dramatically.Buckling of the beam results in significant stresses and produces large output power.However,if the beam’s buckling is not controlled,the beam will be damaged.To prevent the beam’s damage,the bending deformations of the beam must be constrained within a limited range in practical application.

    Parametric resonance converges to a zero steady-state response below the initiation threshold.With excitation amplitudes increasing beyond this threshold barrier,it is able ultimately to obtain higher response amplitude.Figure3 shows that this initiation threshold is relatively larger value,whereas the ambient vibration available for energy harvester is usually very small.Accordingly,this initiation threshold must be minimized in order to use the advantages of parametric resonance in practical application.

    5.2 Simultaneous parametric and external excitations

    Figure 4 gives the steady-state resonant peak curves of the deflection and output power at varying parametric excitation levels for different external excited amplitudeδwhenis the dimensionless resonant peak deflection,is the dimension less resonant peak output voltage.In the case that the excited amplitudeεis below the initiation threshold,Fig.4 shows that whenδequals constant,the frequency–response curves rapidly enlarge with the parametric excited acceleration level increasing.

    Figure 5 gives the frequency–response curves of the deflection and output power for different parameterεandRLwhenδ=0.22 and.Figures 4 and 5 also show that although parameterεis below the initiation threshold,the peak deflection and peak output voltage increase with the parameterεincreasing.This is because the external excitation(δ/=0)pushes the system out of axial stable equilibrium and an initial non-zero displacement is obtained.When parameterεexceeds the initiation threshold,a rapid grow th of the peak deflection and peak output voltage is obtained.

    In the case of simultaneous parametric and external excitations,the external excitation pushes the system out of axial stable equilibrium,the initial non-zero deflection is obtained.Accordingly,the deflection,the harvested power and frequency bandwidth increase dramatically along with parametric excited amplitude increasing when the excited amplitudeεis below the initiation threshold.

    Figure 6 gives the effect of damping coefficient on the amplitude of the steady-state deflection,output voltage.When damping coefficient is relatively small,the response curves bend to a higher frequency direction corresponding to the hardening behavior.The larger damping will weaken the effect of nonlinearity.

    Fig.5 Frequency–response curves of the deflection and output voltage for different parameters ε and R L.a,b R L=500 Ω and c,d R L=500 kΩ when δ=0.0055 and

    In what follows,we will investigate the effect of the electro-mechanical coupling coefficient change on energy harvesting performance.Electro-mechanical coupling coefficient is related to the piezoelectric strain constantd31,the width of the piezo-layer,the thickness of the piezolayer and the Young’s modulus of the piezo-layer.Different piezoelectric materials have different piezoelectric strain constants.Assuming that the piezoelectric strain constant is changed and the other parameters remain the constant,electro-mechanical coupling coefficientˉαwill be changed.

    Figure 7 gives the frequency–response curves for different electro-mechanical couplingˉαwhenε=δ=0.0165,RL=500Ω,RL=500 kΩ,andˉc=0.01.The peak value of the deflection amplitudes,with increasing electro-mechanical couplingˉα,decreases because some of the harvesting energy suppresses the deformation of the beam.The peak values of the output power amplitude do not increase as one would expect.This can be explained by examining Eq.(48).For a given load resistance,the output power is affected by three major parameters which are the electromechanical coupling,the excited frequency and the deflection amplitude.If the electromechanical coupling increases and the deflection amplitude holds constant,then the output power will increase.However,Fig.7a,c clearly indicate that when the electromechanical coupling increases,the deflection amplitude reduces.Obviously,there is an optimal electromechanical coupling which makes the harvested energy maximization.This result agrees with the previous findings of Daqaq et al.[30].Figure 7 describes that the output power increases initially as electromechanical coupling increases,exhibits a maximum at an optimal electromechanical coupling and drops again beyond the optimal value.In the short-circuit resonance,Fig.7a,b shows that the shift of the resonance frequency is relatively small.In the open-circuit resonance,Fig.7c,d shows that the resonance frequency has as lightly larger shift to the right side along with the electric–mechanical couplingαˉ increasing.

    Fig.6 Frequency–response curves of the deflection and output voltage for different parametersδ=ε=0.022

    The effect of the load resistanceRLon the displacement and power frequency–response curves,withε=δ=0.0165 andcˉ=0.01,is shown in Fig.8.The load resistance affects the performance of the energy harvester when the base excitation,the damping and the electromechanical coupling remain constant.Figure 8a shows that the frequency–response curves have the two resonant ranges which are the open-circuit resonance and the short-circuit resonance.WhenRLis between 100 and 10 kΩ,the electrical net work approaches the short-circuit resonance.ForRLis greater than 50 kΩ,the electrical net work approaches the open-circuit resonance.The change of the load resistance is similar to the change of the damping and the frequency of the given system.The electro-mechanical coupled damping and resonance frequency can be shown as a function of the load resistance.In the case of near the short-circuit resonance,the peak of the deflection frequency–response curves decreases with the increasing load resistance.In the case near the open-circuit resonance,the peak of the deflection frequency–response curves increases with increasing load resistance.In these two cases, Fig. 8b demonstrates that the power increases initially as the load resistance increases, exhibits a maximumat an optimal load resistance and drops again beyond the optimalvalue.It can be inferred that there exists an optimal load resistance to extract maximum power for a certain set of excitation,damping and electro-mechanical parameter.

    5.3 Comparison of distributed-parameter and lumped-parameter models

    In this section,we study the difference between the distributed-parameter and lumped-parameter models.Equations(31)and(32)of nonlinear distributed-parameter model of cantilevered piezoelectric energy harvesting system are similar to the nonlinear lumped parameter model presented by Daqaq et al.[30].But the electromechanical coupling terms include nonlinearity,which is different from the nonlinear lumped-parameter model.The electromechanical terms of Eq.(31)are proportional to the voltage,as well as the square of the generalized displacement amplitude.The electromechanical terms of Eq.(32)are proportional to the rate of the generalized displacement amplitude and the square of the generalized displacement amplitude.γ=0 corresponds to the nonlinear lumped-parameter model[30].γ/=0 indicates the nonlinear distributed-parametric model.Figure 9 shows the effect of nonlinear electro-mechanical coupling term on the frequency–response curves.ForRL=500Ω(the short-circuit resonance),Fig.9a,b shows that for these two models,the hardening characteristics of the frequency–response curves are not changed.ForRL=500 kΩ(the open-circuit resonance),Fig.9c,d illustrates that for the nonlinear distributed-parametric model,the frequency–response curves bend to the higher frequency direction,which reflects the effect of the nonlinear electro-mechanical coupling term on the hardening behavior.Compared with the nonlinear lumped parameter model,the nonlinear distributed-parametric model reduces slightly the amplitude of the deflection and the output power of energy harvester,but enhances the frequency bandwidth of the energy harvester.

    Fig.7 Frequency–response curves of the deflection and output power for different

    Fig.8 Frequency–response curves of the deflection and output power for different load resistance R L when

    Fig.9 Comparison of frequency–response curves of the deflection and output power between distributed-parameter and lumped-parameter models for different load resistance R L.a,b R L=500 Ω and c,d R L=500 kΩ when δ=ε=0.022 andˉc=0.01

    Figures 9 and 10 compare with the resonant peak curves of the deflection and output voltage between the lumped parameter model presented by Daqaq et al.[30]and the proposed distributed-parameter model.For varying excited acceleration levelε,Fig.10shows that in the short-circuit resonance(RL=500Ω),there are small differences between the resonant peak curves of two models.In the open-circuit resonance(RL= 500 kΩ),there are larger differences between the resonant peak curves of the two models.This physical phenomenon can be explained as the damping of the electro-mechanical coupling system increases with the load resistance increasing.The initiation thresholds of the two models are not changed.This phenomenon can be explained as when the energy harvester is the state of axial stable equilibrium there is no bending deformation and geometric nonlinearity.

    6 Conclusions

    In this study,a nonlinear distributed parameter model of piezoelectric cantilevered beam harvesters under external and parametric excitations has been developed by the generalized Hamilton principle.Analytical expressions of the frequency–response curves have been presented by use of the Galerkin method and harmonic balance method.Utilizing the resulting expressions,we have discussed the effects of the damping,load resistance,electromechanical coupling,and excitation amplitude on the frequency–response curves.We have also studied the difference between the nonlinear lumped-parameter and nonlinear distributed-parameter model for predicting the performance of the energy harvesting system.Several main conclusions are as follows:

    Fig.10 Comparison of resonant peak curves of the deflection and output voltage between distributed-parameter and lumped-parameter models for different load resistance R L.a,b R L=500 Ω and c,d R L=500 kΩ when δ=0 andˉc=0.01

    (1)The presented nonlinear distributed parameter model,which includes the nonlinear electro-mechanical coupling term,is different from the nonlinear lumped parameter model.In the case of the short-circuit resonance,the nonlinear electromechanical coupling term does not affect the hardening characteristics of the frequency–response curves.In the case of the opencircuit resonance,the frequency–response curves bend to the higher frequency direction,which reflects the effect of the nonline are lectro-mechanical coupling term on the hardening behavior.

    (2)The peak of the deflection frequency–response curves,in the case of the short-circuit resonance,decreases with the load resistance increasing.The peak of the deflection frequency–response curves,at the case of the open-circuit resonance,increases with the load resistance increasing.In these two cases,the output power increases initially as the load resistance increases,exhibiting a maximum at an optimal load resistance and dropping again beyond the optimal value.For a certain set of excitation and electro-mechanical coupling,there exists an optimal load impedance to extract maximum power.

    (3)The peak of the deflection frequency–response curves decreases with the electromechanical coupling coefficient increasing.The peak of power frequency–response curves increases initially with electromechanical coupling coefficient increasing,reaches a maximum at an optimal electromechanical coupling and drops again beyond the optimal value.

    (4)In the case of parametric resonance,the energy harvesting system has an initiation excitation threshold below this threshold no energy can be harvested.The mechanical damping and load resistance have significant influence on the initiation threshold.

    (5)In the case of simultaneous parametric and external excitations,the external excitation pushes the system out of axial stable equilibrium,the initial non-zero deflec-tion is obtained.Accordingly,the deflection,harvested power and frequency bandwidth increase dramatically along with parametric excitation amplitudes increasing although the parametric excitation amplitude is below the initiation threshold.

    AcknowledgementsThis research was supported by the National Natural Science Foundation of China(Grant 11172087).

    1.Cook-Chennault,K.A.,Thambi,N.,Sastry,A.M.:Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems.Smart Mater.Struct.17,043001(2008)

    2.Anton,S.R.,Sodano,H.A.:A review of power harvesting using piezoelectric materials(2003–2006).Smart Mater.Struct.16,R1–R21(2007)

    3.Erturk,A.,Inman,D.J.:A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters.ASME J.Vib.Acoust.130,041002(2008)

    4.Muralt,P.:Ferroelectric thin films for micro-sensors and actuators:a review.J.Micromech.Microeng.10,136–146(2000)

    5.Caliò,R.,Rongala,U.B.,Camboni,D.,et al.:Piezoelectric energy harvesting solutions.Sensors 14,4755–90(2014)

    6.Beeby,S.P.,Tudor,M.J.,White,N.M.:Energy harvesting vibration sources for microsystems applications.Meas.Sci.Technol.17,R175–R195(2006)

    7.Priya,S.:Advances in energy harvesting using low profile piezoelectric transducers.J.Electroceram.19,167–184(2007)

    8.Sodano,H.A.,Inman,D.J.,Park,G.:A review of power harvesting from vibration using piezoelectric materials.Shock Vib.Dig.36,197–205(2004)

    9.Kim,M.,Hoegen,M.,Dugundji,J.,et al.:Modeling and experimental verification of proof mass effects on vibration energy harvester performance.Smart Mater.Struct.19,045023(2010)

    10.Sodano,H.A.,Park,G.,Inman,D.J.:Estimation of electric charge output for piezoelectric energy harvesting.Strain 40,49–58(2004)

    11.Rafique,S.,Bonello,P.:Experimental validation of a distributed parameter piezoelectric bimorph cantilever energy harvester.Smart Mater.Struct.19,094008(2010)

    12.Tang,L.P.,Wang,J.G.:Size effect of tip mass on performance of cantilevered piezoelectric energy harvester with a dynamic magnifier.Acta Mech.228,3997–4015(2017)

    13.Daqaq,M.F.,Masana,R.,Erturk,A.,et al.:On the role of nonlinearities in vibratory energy harvesting:acritical review and discussion.ASME Appl.Mech.Rev.66,040801(2014)

    14.Mahmoodi,S.N.,Daqaq,M.F.,Jalili,N.:On the nonlinear- flexural response of piezoelectrically driven microcantilever sensors.Sens.Actuators A Phys.153,171–179(2009)

    15.Mahmoodi,S.N.,Jalili,N.:Non-linear vibrations and frequency response analysis of piezoelectrically driven microcantilevers.Int.J.Non-Linear Mech.42,577–587(2007)

    16.Mahmoodi,S.N.,Jalili,N.,Ahmadian,M.:Subharmonics analysis of nonlinear flexural vibrations of piezoelectrically actuated microcantilevers.Nonlinear Dyn.59,397–409(2010)

    17.Stanton,S.C.,Erturk,A.,Mann,B.P.,et al.:Nonlinear piezoelectricity in electroelastic energy harvesters:modeling and experimental identification.J.Appl.Phys.108,074903(2010)

    18.Abdelkefi,A.,Nayfeh,A.H.,Hajj,M.R.:Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation.Nonlinear Dyn.67,1221–1232(2012)

    19.Triplett,A.,Quinn,D.D.:The effect of non-linear piezoelectric coupling on vibration-based energy harvesting.J.Intell.Mater.Syst.Struct.20,1959–1967(2009)

    20.Neiss,S.,Goldschmidtboeing,F.,Kroener,M.,et al.:Analytical model for nonlinear piezoelectric energy harvesting devices.Smart Mater.Struct.23,105031(2014)

    21.Mousa,A.A.,Sayed,M.,Eldesoky,I.M.,et al.:Nonlinear stability analysis of a composite laminated piezoelectric rectangular plate with multi-parametric and external excitations.Int.J.Dyn.Control 2,494–508(2014)

    22.Mahmoudi,S.,Kacem,N.,Bouhaddi,N.:Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions.Smart Mater.Struct.23,075024(2014)

    23.Friswell,M.I.,Ali,S.F.,Bilgen,O.,et al.:Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass.J.Intell.Mater.Syst.Struct.23,1505–1521(2012)

    24.Chen,L.Q.,Jiang,W.A.:A piezoelectric energy harvester based on internal resonance.Acta.Mech.Sin.31,223–228(2015)

    25.Sun,S.,Cao,S.Q.:Analysis of chaos behaviors of abistable piezoelectric cantilever power generation system by the second-order Melnikov function.Acta Mech.Sin.33,200–207(2017)

    26.Karami,M.A.,Inman,D.J.:Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems.J.Sound Vib.330,5583–5597(2011)

    27.Stanton,S.C.,Owens,B.,Mann,B.P.:Harmonic balance analysis of the bistable piezoelectric inertial generator.J.Sound Vib.331,3617–3627(2012)

    28.Kim,P.,Seok,J.:Amulti-stableenergy harvester:dynamic modeling and bifurcation analysis.J.Sound Vib.333,5525–5547(2014)

    29.Abed,I.,Kacen,N.,Bouhaddi,N.,et al.:Multi-modal vibration energy harvesting approach based on nonlinear oscillator arrays under magnetic levitation.Smart Mater.Struct.25,025018(2016)

    30.Daqaq,M.F.,Stabler,C.,Qaroush,Y.,et al.:Investigation of power harvesting via parametric excitations.J.Intell.Mater.Syst.Struct.20,545–557(2009)

    31.Jia,Y.,Yan,J.,Soga,K.,et al.:Parametrically excited MEMS vibration energy harvesters with design approaches to overcome the initiation threshold amplitude.J.Micromech.Microeng.23,114007(2013)

    32.Jia,Y.,Seshia,A.A.:An auto-parametrically excited vibration energy harvester.Sens.Actuators A 220,69–75(2014)

    33.Jia,Y.,Yan,J.,Soga,K.,et al.:Parametric resonance for vibration energy harvesting with design techniques to passively reduce the initiation threshold amplitude.Smart Mater.Struct.23,065011(2014)

    34.Jia,Y.,Yan,J.,Soga,K.,et al.:A parametrically excited vibration energy harvester.J.Intell.Mater.Syst.Struct.25,278–289(2014)

    35.Abdelkefi,A.,Nayfeh,A.H.,Hajj,M.R.:Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters.Nonlinear Dyn.67,1147–1160(2012)

    36.Bitar,D.,Kacem,N.,Bouhaddi,N.,et al.:Collective dynamics of periodic nonlinear oscillators under simultaneous parametric and external excitations.Nonlinear Dyn.82,749–766(2015)

    37.Chiba,M.,Shimazaki,N.,Ichinohe,K.:Dynamic stability of a slender beam under horizontal–vertical excitations.J.Sound Vib.333,1442–1472(2014)

    38.Kacem,N.,Baguet,S.,Dufour,R.,et al.:Stability control of nonlinear micromechanical resonators under simultaneous primary and superharmonic resonances.Appl.Phys.Lett.98,193507(2011)

    39.Kacem,N.,Baguet,S.,Duraffourg,L.,et al.:Overcoming limitations of nanomechanical resonators with simultaneous resonances.Appl.Phys.Lett.107,073105(2015)

    40.Jallouli,A.,Kacem,N.,Bouhaddi,N.:Stabilization of solitons in coupled nonlinear pendulums with simultaneous external and parametric excitations.Commun.Nonlinear Sci.Numer.Simul.42,1–11(2017)

    41.Souayeh,S.,Kacem,N.:Computational models for large amplitude nonlinear vibrations of electrostatically actuated carbon nanotubebased mass sensors.Sens.Actuators A Phys.208,10–20(2014)

    42.Kacem,N.,Baguet,S.,Hentz,S.,et al.:Computational and quasianalytical models for non-linear vibrations of resonant MEMS and NEMS sensors.Int.J.Non-Linear Mech.46,532–542(2011)

    43.Jallouli,A.,Kacem,N.,Bourbon,G.,et al.:Pull-in instability tuning in imperfect nonlinear circular microplates under electrostatic actuation.Phys.Lett.A 380,3886–3890(2016)

    44.Juillard,J.,Bonnoit,A.,Avignon,E.,et al.:From MEMS to NEMS:closed-loop actuation of resonant beams beyond the critical duffing amplitude.In:Proceedings of IEEE Sensors Conference,Lecce,Italy,510–513(2008).https://doi.org/10.1109/ICSENS.2008.4716489

    45.Kacem,N.,Baguet,S.,Hentz,S.,et al.:Nonlinear phenomena in nanomechanical resonators:mechanical behaviors and physical limitations.Mécan.Ind.11,521–529(2010)

    46.Kacem,N.,Baguet,S.,Hentz,S.,et al.:Pull-in retarding in nonlinear nanoelectromechanical resonators under superharmonic excitation.J.Comput.Nonlinear Dyn.7,021011(2012)

    十八禁高潮呻吟视频| 在线观看www视频免费| 老汉色∧v一级毛片| 国产av一区二区精品久久| 国产成人精品在线电影| 久久精品久久久久久噜噜老黄| 制服人妻中文乱码| 精品福利观看| 国产xxxxx性猛交| 人妻一区二区av| 久久人妻熟女aⅴ| 男人操女人黄网站| 免费不卡黄色视频| 午夜老司机福利片| 精品一区二区三区av网在线观看 | 日本91视频免费播放| 久久精品亚洲av国产电影网| 99国产精品免费福利视频| 国产一卡二卡三卡精品| 这个男人来自地球电影免费观看| 成人国产av品久久久| 交换朋友夫妻互换小说| 欧美中文综合在线视频| 黄色视频在线播放观看不卡| 亚洲图色成人| 成年动漫av网址| 欧美在线黄色| 亚洲专区国产一区二区| 国产片特级美女逼逼视频| 女性被躁到高潮视频| 亚洲av片天天在线观看| 精品高清国产在线一区| 在线观看免费高清a一片| 一级毛片我不卡| 黄色视频在线播放观看不卡| 老汉色∧v一级毛片| 国产在线一区二区三区精| kizo精华| 色网站视频免费| 人成视频在线观看免费观看| 欧美精品人与动牲交sv欧美| 久久99精品国语久久久| 又大又爽又粗| 波多野结衣一区麻豆| 久久久久久亚洲精品国产蜜桃av| 欧美国产精品一级二级三级| 高清不卡的av网站| 老司机影院成人| 久久人人爽人人片av| 999久久久国产精品视频| 女人高潮潮喷娇喘18禁视频| 久久亚洲精品不卡| 亚洲精品av麻豆狂野| 一区在线观看完整版| 各种免费的搞黄视频| 国产男女内射视频| 日日夜夜操网爽| 亚洲欧美中文字幕日韩二区| 999久久久国产精品视频| 男女无遮挡免费网站观看| 99久久人妻综合| 天堂俺去俺来也www色官网| 下体分泌物呈黄色| 精品少妇一区二区三区视频日本电影| av在线app专区| 国产伦理片在线播放av一区| 免费观看人在逋| 中文欧美无线码| 精品熟女少妇八av免费久了| 日本午夜av视频| 日韩一卡2卡3卡4卡2021年| 大码成人一级视频| 国产精品人妻久久久影院| 免费在线观看日本一区| 亚洲自偷自拍图片 自拍| 最近手机中文字幕大全| a 毛片基地| 999久久久国产精品视频| 欧美精品高潮呻吟av久久| 国产91精品成人一区二区三区 | 视频区欧美日本亚洲| 亚洲精品自拍成人| 在线观看免费午夜福利视频| 亚洲精品久久午夜乱码| 夜夜骑夜夜射夜夜干| 99热全是精品| 18禁观看日本| 日韩电影二区| 99re6热这里在线精品视频| 性色av乱码一区二区三区2| 成人黄色视频免费在线看| 国产成人欧美在线观看 | 国产麻豆69| 91老司机精品| 中文字幕精品免费在线观看视频| 下体分泌物呈黄色| 无遮挡黄片免费观看| 1024香蕉在线观看| 高清视频免费观看一区二区| 亚洲九九香蕉| 永久免费av网站大全| 嫁个100分男人电影在线观看 | 大话2 男鬼变身卡| 国产三级黄色录像| 成在线人永久免费视频| 操出白浆在线播放| 脱女人内裤的视频| 一级黄色大片毛片| 涩涩av久久男人的天堂| 中文乱码字字幕精品一区二区三区| 亚洲国产精品成人久久小说| 侵犯人妻中文字幕一二三四区| 狠狠精品人妻久久久久久综合| 考比视频在线观看| 久久中文字幕一级| 国产精品秋霞免费鲁丝片| 中文字幕最新亚洲高清| 我要看黄色一级片免费的| 三上悠亚av全集在线观看| 精品视频人人做人人爽| 亚洲,欧美,日韩| 精品福利永久在线观看| e午夜精品久久久久久久| 青青草视频在线视频观看| 国产1区2区3区精品| www日本在线高清视频| 欧美 日韩 精品 国产| 赤兔流量卡办理| 岛国毛片在线播放| 色94色欧美一区二区| 久久精品国产亚洲av高清一级| 视频在线观看一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 亚洲欧洲国产日韩| 校园人妻丝袜中文字幕| 老司机在亚洲福利影院| 好男人电影高清在线观看| 尾随美女入室| 成人亚洲欧美一区二区av| 成人手机av| 人人妻人人添人人爽欧美一区卜| a级毛片黄视频| 久久精品国产a三级三级三级| avwww免费| 久久精品人人爽人人爽视色| 操出白浆在线播放| 精品少妇久久久久久888优播| www日本在线高清视频| 嫩草影视91久久| 亚洲成av片中文字幕在线观看| 欧美亚洲 丝袜 人妻 在线| 首页视频小说图片口味搜索 | 成年动漫av网址| 国产亚洲欧美在线一区二区| 亚洲一区二区三区欧美精品| 可以免费在线观看a视频的电影网站| av在线播放精品| av国产久精品久网站免费入址| 又紧又爽又黄一区二区| 日韩 欧美 亚洲 中文字幕| 夫妻性生交免费视频一级片| 国产一区二区三区av在线| 精品久久蜜臀av无| 国产成人免费无遮挡视频| 日韩中文字幕欧美一区二区 | 国产黄频视频在线观看| av又黄又爽大尺度在线免费看| 真人做人爱边吃奶动态| 欧美av亚洲av综合av国产av| 亚洲欧美日韩另类电影网站| 侵犯人妻中文字幕一二三四区| 亚洲av成人不卡在线观看播放网 | 亚洲国产毛片av蜜桃av| 久久久久精品人妻al黑| 亚洲国产欧美一区二区综合| 操美女的视频在线观看| 丁香六月欧美| 亚洲欧美日韩另类电影网站| 精品视频人人做人人爽| 黑丝袜美女国产一区| 操出白浆在线播放| 中文字幕av电影在线播放| 超碰97精品在线观看| 亚洲精品一二三| 亚洲天堂av无毛| 亚洲欧美清纯卡通| a级片在线免费高清观看视频| 99香蕉大伊视频| 超碰成人久久| 性高湖久久久久久久久免费观看| av又黄又爽大尺度在线免费看| 国语对白做爰xxxⅹ性视频网站| 国产黄色视频一区二区在线观看| 精品久久久久久电影网| 日本vs欧美在线观看视频| www.熟女人妻精品国产| 午夜福利影视在线免费观看| 女人高潮潮喷娇喘18禁视频| 亚洲av日韩精品久久久久久密 | 久久99精品国语久久久| 国产一区亚洲一区在线观看| 99久久99久久久精品蜜桃| 老汉色∧v一级毛片| 18禁国产床啪视频网站| 国产福利在线免费观看视频| 欧美黄色淫秽网站| 久久精品国产综合久久久| 亚洲 国产 在线| www.999成人在线观看| 麻豆国产av国片精品| 9色porny在线观看| 在线观看www视频免费| 80岁老熟妇乱子伦牲交| 大型av网站在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 日韩免费高清中文字幕av| 亚洲少妇的诱惑av| 一二三四社区在线视频社区8| 肉色欧美久久久久久久蜜桃| 亚洲精品国产av蜜桃| 国产精品久久久久久精品古装| 久久精品国产亚洲av涩爱| 亚洲熟女精品中文字幕| 黄色怎么调成土黄色| 黄网站色视频无遮挡免费观看| 热99久久久久精品小说推荐| 亚洲激情五月婷婷啪啪| 日韩中文字幕视频在线看片| 女性被躁到高潮视频| 免费少妇av软件| 国产成人精品无人区| 亚洲成国产人片在线观看| 高清欧美精品videossex| 巨乳人妻的诱惑在线观看| 亚洲av欧美aⅴ国产| 国产精品三级大全| 美女福利国产在线| 黑人巨大精品欧美一区二区蜜桃| 中文字幕人妻丝袜一区二区| 国产精品 国内视频| 老司机午夜十八禁免费视频| 久久国产精品人妻蜜桃| 亚洲一区中文字幕在线| 国产亚洲精品第一综合不卡| 波野结衣二区三区在线| 一级毛片 在线播放| 日韩免费高清中文字幕av| 中文字幕制服av| 捣出白浆h1v1| av福利片在线| 啦啦啦视频在线资源免费观看| 国产欧美日韩一区二区三区在线| videosex国产| 性少妇av在线| 男人爽女人下面视频在线观看| 久久狼人影院| 免费看十八禁软件| 久久 成人 亚洲| 欧美黑人精品巨大| 各种免费的搞黄视频| 欧美日韩亚洲高清精品| 大型av网站在线播放| 91精品国产国语对白视频| 亚洲视频免费观看视频| 久久久国产一区二区| 99久久人妻综合| 久久精品亚洲av国产电影网| 亚洲精品第二区| 免费女性裸体啪啪无遮挡网站| 黄色怎么调成土黄色| 久久精品aⅴ一区二区三区四区| 国产成人一区二区三区免费视频网站 | 可以免费在线观看a视频的电影网站| 晚上一个人看的免费电影| 精品福利永久在线观看| 在现免费观看毛片| 久久人妻福利社区极品人妻图片 | 肉色欧美久久久久久久蜜桃| 热re99久久国产66热| 亚洲精品日韩在线中文字幕| 少妇猛男粗大的猛烈进出视频| 1024香蕉在线观看| www.熟女人妻精品国产| 午夜免费观看性视频| 欧美黄色淫秽网站| 极品少妇高潮喷水抽搐| 欧美日韩成人在线一区二区| 中文乱码字字幕精品一区二区三区| 午夜福利在线免费观看网站| 我的亚洲天堂| 国产成人一区二区在线| 久久ye,这里只有精品| 亚洲国产毛片av蜜桃av| 国产成人av教育| 亚洲精品在线美女| 亚洲激情五月婷婷啪啪| 曰老女人黄片| 国产免费福利视频在线观看| 超碰成人久久| 久久人妻熟女aⅴ| 国产成人精品久久二区二区免费| 在线天堂中文资源库| 久久ye,这里只有精品| 青春草视频在线免费观看| 两人在一起打扑克的视频| 国产一级毛片在线| 一区二区三区精品91| 午夜激情av网站| 欧美日韩亚洲综合一区二区三区_| 国产99久久九九免费精品| 久久亚洲国产成人精品v| 成人三级做爰电影| 亚洲欧美色中文字幕在线| 精品久久久久久电影网| 乱人伦中国视频| av福利片在线| 国产欧美日韩一区二区三区在线| av福利片在线| 久久久久久久国产电影| 别揉我奶头~嗯~啊~动态视频 | 宅男免费午夜| 黑人猛操日本美女一级片| 亚洲第一av免费看| 啦啦啦在线观看免费高清www| 日本五十路高清| 国产熟女午夜一区二区三区| 欧美 日韩 精品 国产| 久久九九热精品免费| 亚洲精品第二区| 欧美精品人与动牲交sv欧美| 午夜激情av网站| 男女免费视频国产| 欧美性长视频在线观看| 肉色欧美久久久久久久蜜桃| 亚洲自偷自拍图片 自拍| 午夜福利免费观看在线| 美女福利国产在线| 成人亚洲精品一区在线观看| av在线播放精品| 99re6热这里在线精品视频| 青春草亚洲视频在线观看| 80岁老熟妇乱子伦牲交| 国产视频首页在线观看| 国产91精品成人一区二区三区 | 亚洲免费av在线视频| 91字幕亚洲| 亚洲人成电影免费在线| 自线自在国产av| 在线观看免费午夜福利视频| 天天躁夜夜躁狠狠躁躁| 日韩制服骚丝袜av| 亚洲精品一区蜜桃| 国产成人91sexporn| 嫩草影视91久久| 女警被强在线播放| 午夜视频精品福利| 亚洲av成人精品一二三区| 亚洲精品国产av蜜桃| 亚洲人成电影免费在线| 嫩草影视91久久| 国产国语露脸激情在线看| 美女视频免费永久观看网站| 欧美日韩福利视频一区二区| 成年av动漫网址| av福利片在线| av线在线观看网站| 亚洲伊人久久精品综合| 精品亚洲成a人片在线观看| 国产成人一区二区三区免费视频网站 | 国产成人一区二区在线| 久久99热这里只频精品6学生| 欧美黄色片欧美黄色片| 啦啦啦中文免费视频观看日本| 国产一区二区三区综合在线观看| 真人做人爱边吃奶动态| 国产av精品麻豆| 色播在线永久视频| 欧美日韩亚洲综合一区二区三区_| 欧美日韩国产mv在线观看视频| 黑丝袜美女国产一区| 久久精品国产综合久久久| 成人亚洲欧美一区二区av| 欧美乱码精品一区二区三区| 日本a在线网址| 中文字幕精品免费在线观看视频| 国产成人精品无人区| 亚洲国产精品成人久久小说| 久久精品成人免费网站| 国产无遮挡羞羞视频在线观看| 香蕉国产在线看| 天堂俺去俺来也www色官网| 中文欧美无线码| 国产一级毛片在线| 别揉我奶头~嗯~啊~动态视频 | 国产精品.久久久| 日日摸夜夜添夜夜爱| 久久精品人人爽人人爽视色| 一本综合久久免费| cao死你这个sao货| 欧美成人午夜精品| 亚洲天堂av无毛| 国产欧美日韩一区二区三区在线| 亚洲伊人久久精品综合| 亚洲第一av免费看| 欧美少妇被猛烈插入视频| 久久天堂一区二区三区四区| 高潮久久久久久久久久久不卡| 亚洲国产日韩一区二区| 国产成人精品久久二区二区免费| 中文字幕另类日韩欧美亚洲嫩草| 在线 av 中文字幕| 日韩av在线免费看完整版不卡| 亚洲专区国产一区二区| 国产精品一国产av| 亚洲 国产 在线| 少妇人妻久久综合中文| 亚洲第一av免费看| 亚洲精品国产色婷婷电影| 91麻豆精品激情在线观看国产 | 国产日韩欧美视频二区| 麻豆国产av国片精品| 91字幕亚洲| 国产成人免费观看mmmm| 精品一品国产午夜福利视频| 国产日韩一区二区三区精品不卡| 人妻一区二区av| 日本av手机在线免费观看| 亚洲国产日韩一区二区| 精品久久久精品久久久| 男的添女的下面高潮视频| 九色亚洲精品在线播放| 欧美日韩视频精品一区| 久久精品国产a三级三级三级| 成人国产av品久久久| 777久久人妻少妇嫩草av网站| 国产精品 国内视频| 国产日韩欧美视频二区| 精品国产乱码久久久久久小说| av天堂在线播放| 国产成人欧美在线观看 | 国产精品av久久久久免费| 90打野战视频偷拍视频| 老司机午夜十八禁免费视频| 亚洲专区国产一区二区| 美女脱内裤让男人舔精品视频| 欧美久久黑人一区二区| 成年动漫av网址| 国产亚洲欧美精品永久| 在线观看一区二区三区激情| 亚洲国产av影院在线观看| 侵犯人妻中文字幕一二三四区| 国产成人精品久久二区二区91| 国产1区2区3区精品| 亚洲精品一二三| 国产精品人妻久久久影院| 亚洲精品一区蜜桃| 国产麻豆69| 国产欧美日韩一区二区三区在线| 亚洲av综合色区一区| 亚洲中文字幕日韩| 成人亚洲精品一区在线观看| 日本av手机在线免费观看| 国产精品久久久人人做人人爽| 中文精品一卡2卡3卡4更新| 亚洲国产精品国产精品| bbb黄色大片| 美女视频免费永久观看网站| 久久九九热精品免费| 麻豆乱淫一区二区| 亚洲一区二区三区欧美精品| 97人妻天天添夜夜摸| 亚洲国产精品一区二区三区在线| 99久久综合免费| 亚洲成av片中文字幕在线观看| xxx大片免费视频| 午夜两性在线视频| 亚洲国产精品一区二区三区在线| 国产成人免费无遮挡视频| 亚洲精品一二三| 国产成人免费观看mmmm| 一边摸一边做爽爽视频免费| 国产av精品麻豆| 亚洲 欧美一区二区三区| 深夜精品福利| 国产高清国产精品国产三级| 午夜福利一区二区在线看| 2018国产大陆天天弄谢| 国产精品久久久av美女十八| 桃花免费在线播放| 好男人电影高清在线观看| 精品熟女少妇八av免费久了| 老汉色∧v一级毛片| 亚洲美女黄色视频免费看| 国产精品一二三区在线看| 日韩大码丰满熟妇| 日韩 亚洲 欧美在线| 伊人亚洲综合成人网| 2021少妇久久久久久久久久久| 久久中文字幕一级| 欧美乱码精品一区二区三区| 天天添夜夜摸| 国产成人免费无遮挡视频| 性高湖久久久久久久久免费观看| 我的亚洲天堂| 免费女性裸体啪啪无遮挡网站| 一边摸一边做爽爽视频免费| 国产一区二区在线观看av| 男女无遮挡免费网站观看| 国产成人av激情在线播放| 亚洲av电影在线进入| 免费日韩欧美在线观看| 欧美精品一区二区免费开放| 亚洲精品一区蜜桃| 国产高清videossex| 岛国毛片在线播放| 老司机亚洲免费影院| 91国产中文字幕| 人人妻,人人澡人人爽秒播 | 热99国产精品久久久久久7| 日韩一本色道免费dvd| 三上悠亚av全集在线观看| 成人三级做爰电影| 日本黄色日本黄色录像| 色婷婷久久久亚洲欧美| 久9热在线精品视频| 免费黄频网站在线观看国产| 亚洲情色 制服丝袜| 免费高清在线观看日韩| 久久人人爽人人片av| 国产国语露脸激情在线看| 男人添女人高潮全过程视频| 日日夜夜操网爽| 国产成人精品无人区| 老司机靠b影院| 自拍欧美九色日韩亚洲蝌蚪91| 99国产精品免费福利视频| 免费在线观看视频国产中文字幕亚洲 | 永久免费av网站大全| 欧美 日韩 精品 国产| 色综合欧美亚洲国产小说| 久久久久精品人妻al黑| 中文乱码字字幕精品一区二区三区| 国产熟女午夜一区二区三区| 美女中出高潮动态图| 亚洲色图综合在线观看| 欧美精品一区二区大全| 狠狠精品人妻久久久久久综合| 免费久久久久久久精品成人欧美视频| 在线天堂中文资源库| 国产精品久久久久久精品电影小说| 成人免费观看视频高清| 97人妻天天添夜夜摸| 午夜老司机福利片| 久久精品熟女亚洲av麻豆精品| 丁香六月欧美| 久久天躁狠狠躁夜夜2o2o | 色综合欧美亚洲国产小说| 亚洲精品美女久久av网站| 曰老女人黄片| 国产成人一区二区三区免费视频网站 | 久久精品国产亚洲av高清一级| 国产成人欧美| 中文精品一卡2卡3卡4更新| 国产欧美亚洲国产| 国产精品一区二区精品视频观看| 亚洲国产av影院在线观看| 宅男免费午夜| 超碰成人久久| av福利片在线| 午夜福利一区二区在线看| 午夜91福利影院| 日韩大码丰满熟妇| 国产精品麻豆人妻色哟哟久久| 亚洲精品久久午夜乱码| 亚洲一码二码三码区别大吗| 亚洲国产成人一精品久久久| svipshipincom国产片| 国产一区二区激情短视频 | kizo精华| 一本大道久久a久久精品| 欧美人与性动交α欧美精品济南到| 精品一品国产午夜福利视频| 国产免费一区二区三区四区乱码| 大香蕉久久成人网| 少妇精品久久久久久久| 午夜免费鲁丝| 大型av网站在线播放| 999久久久国产精品视频| 国产视频首页在线观看| 少妇裸体淫交视频免费看高清 | 国产成人精品久久二区二区免费| 亚洲av日韩精品久久久久久密 | 在线观看一区二区三区激情| 欧美另类一区| 岛国毛片在线播放| 日韩免费高清中文字幕av| 满18在线观看网站| 亚洲成人免费电影在线观看 | 亚洲精品国产av蜜桃| 国产成人av教育| 精品人妻一区二区三区麻豆| 亚洲综合色网址| 黄片小视频在线播放| 黄色怎么调成土黄色| 亚洲成色77777| 成年人午夜在线观看视频| 1024视频免费在线观看| 午夜视频精品福利| 欧美黄色淫秽网站| 久久久欧美国产精品| 亚洲,一卡二卡三卡| 国产av精品麻豆| 国产精品99久久99久久久不卡| 日本av免费视频播放| 人人妻,人人澡人人爽秒播 |