• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enriched reproducing kernelparticle method for fractional advection–diffusion equation

    2018-06-07 02:19:30YupingYingYanpingLianShaoqiangTangWingKamLiu
    Acta Mechanica Sinica 2018年3期

    Yuping Ying·Yanping Lian·Shaoqiang Tang·Wing Kam Liu

    1 Introduction

    Mesh free methods are proposed as an alternative or enhancement to commonly used mesh-based numerical methods such as the finite element method,which exhibits shortcomings in handling problems with large deformations,high gradients or systems with wide range of response spectra.By the elimination of a mesh,meshfree methods avoid the difficulty of maintaining connectivity through an entire simulation where severe mesh distortion may occur.Meshfree methods have been successfully applied to problems such as metal forming[1],large deformation analysis[2–4],fracture modeling[5,6]and fragment-impact problems[7,8].Among the existing meshfree methods,the reproducing kernel particle method(RKPM)is characterized by its capability in regard to multi-resolution analysis[9,10].Multi-resolution analysis makes use of a window function which can be translated and dilated simultaneously.By this operation,a desired and width-selected portion of the spectrum of a signal can be isolated or focused on.In addition to large deformation problems,RKPM has been used in structural acoustics,computational fluid dynamics and micro-mechanics[11–14],among many other fields.In this paper,RKPM is enriched and extended to study a nonlocal problem modeled by a fractional differential equation(FDE).

    Fractional calculus is concerned with integrals and derivatives of fractional or non-integer order[15].In recent years,FDEs based on fractional calculus have attracted increasing attention due to their success in modeling time-history related and space-correlated problems[16].For instance,several kinds of physical phenomena,such as transfer of particles in porous media,turbulent flow,optical lattices,are found to be well described by FDEs[17–22].Differential equations of fractional order are more complicated for mathematical analysis than those of integer order.The fractional operators are nonlocal and contain weakly singular convolution kernels,which leads to non-smoothness or low regularity of the solutions to FDEs[23].Accordingly,the applicable numerical methods are also more challenging[24].

    Many numerical methods have been proposed for solving FDEs[25,26].However,they are mainly based on the assumption of smoothness and high regularity of the solutions.Recently,Ding et al.[27]proposed a high-order finite difference scheme for the Riesz fractional derivative.We[28]proposed a high-order central difference scheme for the Caputo fractional derivative and used it to solve a fractional advection–diffusion equation(FADE)with fractional derivatives in space.Both need high regularity of the solutions to guarantee numerical accuracy.FDEs were solved with the Galerkin finite element method by Ervin et al.[29–31],who also analyzed the existence and uniqueness of the numerical solution.It is noted that the accuracy and stability of the traditionally well developed finite element method may be challenged by small fractional order of the concerned spatial derivative.The Galkerin finite element method was used by Lian et al.[32]to solve an FADE and to prove that spurious oscillations may occur at the ending points and on the boundaries,where the exact solution has singularity in its first-order derivative.

    In order to resolve the singularity and non-smoothness of the solutions to FDEs,several numerical approaches have been proposed.An FADE was solved using a Petrov–Galerkin finite element method by Lian et al.[32];the method utilized an upwind property,which suppressed numerical oscillations near the boundaries.The integer-order shape function in the Galerkin finite element method,in the work of Luan et al.[33],was replaced by one of fractional order,which is identical to the order of the solved FDE.A series of spectral collocation methods was developed by Karniadakis et al.to solve FDEs with non-smooth solutions.They studied several kinds of Sturm–Liouville problems,obtained the eigen-solutions in the form of Jacobi polynomials and proved orthogonality of the eigen-solutions[34].Then they used the eigen-solutions as basis of spectral methods to solve fractional ordinary differential equations,fractional partial differential equations and FDEs with variable fractional order[35–37].

    Mesh free methods are famous for not only their high accuracy in large deformation problems but also for the convenience they provide for adding base functions for specific problems,like the simulation of crack tip fields with low regularity[38].In this paper,we generalize the polynomial reproducing property of RKPM to power functions of noninteger orders,and apply the enriched RKPM to solve an FADE.An RKPM withnth-order monomial basis exhibitsnth-order consistent property[39].In other words,anynthorder polynomials can be exactly reproduced by the RKPM interpolation.When RKPM is utilized to solve an FADE,it should be noted that the fractional power property of the solution can not be resolved.Instead,numerical oscillations occur.To ensure the reproducing condition for the fractional power functions,the monomial bases are enriched by related power functions of fractional order.For convenience,the enriched RKPM is formulated on a moving least-square approach.Compared with the enriched finite element method by Luan et al.[33],the enriched RKPM provides more freedom to add bases and is easier to operate.

    The rest of this paper is organized as follows.In Sect.2,analytical solution of an FADE is discussed.In Sect.3,the enriched RKPM interpolation formula is derived and its completeness property is proved.Then we discuss the error caused by the non-reproduced part of the solution to the FADE.In Sect.4,a Galerkin procedure for the FADE is formulated with the shape functions constructed by the enriched basis.In Sect.5,several numerical examples are presented to illustrate the effectiveness of the proposed method.

    2 Problem statement

    We consider the following FADE in one space dimension

    wherev≥ 0 is the advection speed,κ>0 is the diffusion coefficient,φrepresents the solution concentration,Lis the right boundary of the computing domain.The Caputo fractional derivative in Eq.(1)is defined as

    By re-scalingx=z/S,x0=L/S,whereS/=0 is the scaling length,the following non-dimensional problem is obtained

    with the dimensionless parameterPe=vSα/κ,which characterizes the relative strengths of the advection term and the diffusion term.Whenα=1 is taken,it reduces to the conventional Peclet numberPe=vS/κfor advection–diffusion equation of integer order.

    WhenPe>0,it can be checked that Eq.(3)is solved by

    3 Enriched RKPM interpolant

    RKPM constructs a series of shape functions and solves partial differential equations by the Galerkin procedure.Based on an integer order basis,regular RKPM shape functions can reproduce polynomials exactly,which leads to a globally conforming interpolation field of the desired order.As for the FADE Eq.(1),however,RKPM cannot reproduce the fractional power functions in the solution.Then numerical oscillations may occur.RKPM is enriched in this section to resolve the fractional power functions.

    3.1 Moving least-square reproducing formula with terms

    To include functions that appear in the asymptotic field near 0,fractional order monomials are used to enrich the basis of traditional RKPM,which makes the formulation slightly different from that proposed by Liu in Ref.[39].The enriched basis reads

    where p(x)=(1,x,...,xn)is the traditional basis of integer order with the highest order ofn,ris a global coordinate representing the distance to 0,pf(r)=(rα1,rα2,...,rαm)is the additional terms withmthe number of terms.Then a local approximation functionφl(x,ˉx)toφ(x)atˉxis constructed as

    Considering a process of moving the local approximation through the whole domain,we obtain a global approximationφg(x)by takingˉx→xin Eq.(12)

    After choosing a suitable particle distribution,we apply the rectangle quadrature rule to both Eqs.(13)and(14).A discrete approximation functionφh(x)then follows

    Fig.1 Comparison of shape functions.The left and right figures depict shape functions constructed based on traditional basis and the proposed enriched basis,respectively

    where NP is the number of particles,xI,I=1,2,...,NP denotes the position of each particle,ΔVIis the corresponding integration weighting of each particle,and

    The discrete formula(15)can be recast to a shape function expansion,which is especially convenient in the Galerkin procedure.That is,

    In Fig.1,shape functions constructed based on the traditional basis of integer order and the enriched basis are compared.For simplicity,we take particles on[0,1]with uniform spacingΔx=0.1.The left sub figure of Fig.1 depicts the shape functions when pT(x,r)=(1,x),h=0.1,ρ=1.The right sub figure depicts the shape functions constructed based on the enriched basis pT(x,r)=(1,x,r0.3)withh=0.1,ρ=1.5.It can be noted that the shape functions have infinite derivatives atx=0 if 0 is in their supports.

    3.2 Completeness of interpolants

    To meet the convergence requirement,Liu et al.[39]proved ann-consistency structure for RKPM.Here,a similar consistency structure is proved for the enriched RKPM.

    The enriched RKPM with basis Eq.(7)can reproduce any functionf(x)=f1(x)+f2(x)exactly by using the sampling values,wheref1(x)are polynomials,andcjare constants.That is,

    3.3 Approximation error for the enriched RKPM interpolant to FADE solution

    Monomials of fractional order can be exactly reproduced by the shape functions constructed based on the enriched basis Eq.(7).However,since Eq.(4)is a series of fractional monomials,fractional-order terms remain which can not be reproduced.The orders of these dropped terms may be less than 1 and lead to singular derivatives atx=0.The non-reproduced singular field will cause oscillation of the numerical solution to Eq.(3).

    Fig.2 Zoom in near the left boundary of the right figure in Fig.1

    In this section,we discuss a function reproducing error of the enriched RKPM to Eq.(4),which is defined as the nonreproduced part of Eq.(4)by the enriched shape functions(Fig.2).

    By choosing the rescaling parameterS=L,we obtain

    WhenPe=0,Eq.(3)reduces to a fractional pure diffusion equation,which is solved by Eq.(6).According to the reproducing property Eq.(19),Eq.(6)can be exactly reproduced by utilizing an enriched basis p?T(x,r)=(1,rα).

    WhenPe>0,we rew rite Eq.(4)as

    It is obvious that Eq.(30)cannot be exactly reproduced by a basis enriched with a finite number of terms of fractional power.Moreenriched terms in the basis lead to more accurate approximation.However,more terms also make the moment matrix more ill-conditioned.Considering this trade off,we suggest using the leading fractional term.That is,

    whereφr(x)can be reproduced by the enriched basis Eq.(31)andφe(x)is the function reproducing error.Their expressions are

    Fig.3 The solid line denotes the exact solution of Eq.(3)when α=0.3,Pe=0.1,c1=0,c2=1.The dashed line and dash-dotted line show the supporting domain of the shape functions at x=0.1,0.6,respectively

    According to Eq.(18),enriched shape functions and their window functions are compactly supported in the same domain.In Fig.3,the solid line denotes the exact solution whenα=0.3,Pe=0.1,c1=0,c2=1.The dashed line and the dash-dotted line denote the window functions atx=0.1,0.6,respectively,withh=0.1 and a dilation parameterρ=1.5.The curves of the window functions show the support of the shape functions.It can be observed that the support of the shape function atx=0.1 includesx=0,so that all the area covered by this domain is associated with the function reproducing error.In contrast,the shape function atx=0.6 is free from function reproducing error becausex=0 is out of its support.

    Based on the above analysis,the region where the function reproducing error should be considered is the union of all the support of the shape functions affected by the boundary.With the window function Eq.(11),the region is the intervalx∈ [0,4ρh].

    We compare the function reproducing errorφe(x)and the leading term ofφr(x)in[0,4ρh]and obtain

    wherePe(4ρh)α<1 is assumed,Γ(xmin)is the minimum value of the gamma function on the positive real axis and takes a value between 0.8 and 0.9.WhenPe(4ρh)αis small enough,fractional diffusion dominates in Eq.(3).It is also observed from Eq.(35)thatφe(x)can be ignored inφ(x),so the solution to Eq.(3)is well approximated by the enriched shape functions.WhenPe(4ρh)αis large,e.g.Pe(4ρh)α=0.5,the advection effect in Eq.(3)cannot be ignored.In this case,the function reproducing errorφe(x)is not negligible inφ(x)and represents itself in the form of an oscillatory numerical solution.

    For a fixedPe,choosing smallerρ,hyields better approximation results.However,it should be noted that the mesh refinement is not efficient whenαis small.For example,whenα=0.1,a refinement of 1010times just makesPe(4ρh)α10 times smaller.

    4 A Galerkin procedure for the fractional advection–diffusion equation

    In this section,a Galerkin method is formulated based on the enriched RKPM interpol ant to solve the fractional advection–diffusion equation Eq.(3).

    4.1 Discretization of equation

    Taking a re-scaling parameterS=L,we rewrite equation Eq.(3)as

    An appropriate particle distribution is denoted asxI,I=1,2,...,NP,where NP is the number of particles andx1=0,xNP=1.We substitute the interpolation formula(17)into Eq.(36)as a trial function and take Eq.(18)as test functions.Then the following strong form of Eq.(36)is obtained

    We apply integration by parts to Eq.(37)and obtain its weak form

    A suitable dilation parameterρcan be chosen in specific cases to make the shape functions Eq.(18)perform strict interpolation on the boundaries.That isNI(x1)=δ1IandNI(xNP)=δI,NP,which is depicted in Fig.2.Then were cast Eq.(38)into matrix form as

    where K is a(NP?2)×(NP?2)matrix,u=(φ2,φ3,...,φNP?1)and f is a column vector with(NP?2)entries.More precisely,the entries of K and f are

    4.2 Fractional derivative of shape functions and Gauss–Jacobi quadrature

    In Eqs.(40)and(41),fractional derivatives of the enriched shape functions Eq.(18)are carried out numerically.

    For precision of the numerical integration,the shape functions are decomposed as

    whereIt can be observed thatis singular atξ=1 whenis singular atξ= ?1 whenhas singular derivatives atξ= ?1 whena=0.Gauss–Jacobi quadrature can deal with the above situations(see “Appendix A”).

    Figure 4 depicts fractional derivatives of the enriched shape functionsNI(x)in Fig.1,which are obtained by the 30th-order Gauss–Jacobi quadrature applied to Eq.(54)whenα=0.3.The left figure of Fig.4 shows the derivatives corresponding toxI=0,0.1,0.2 and the right figure shows the cases forxI=0.3,0.7,1.It is noted that fractional derivatives ofNI(x)are no longer compactly supported.They take non-vanishing values on the right side of the supporting domains ofNI(x),which makes Kloseits compact property.

    Fig.4computed by Gauss–Jacobi quadrature

    Via the variable transformation and Gauss–Jacobi quadrature above,Eqs.(40)and(41)can also be carried out for K and f.For numerical efficiency,the integrations are also suggested to be computed on the supporting domain of the integrants.

    5 Numerical examples

    Since the solution of a fractional diffusion–advection equation has a singular derivative on the boundary,numerical solutions of traditional meshfree methods based on basis of integer order,like RKPM,may give rise to oscillations near the boundary.In this section,several examples are given to illustrate the problem of RKPM and the effectiveness of the proposed enriched RKPM in suppressing the oscillations.For steady state problems,RKPM and the enriched RKPM are compared in a fractional pure diffusion equation and a fractional advection–diffusion equation.Moreover,the results of the two methods for a time-dependent fractional advection–diffusion equation are presented.

    5.1 Steady state fractional pure diffusion equation

    A fractional pure diffusion equation is considered as follows

    whereis fractional integration of the forcing term andccan be determined by the boundary conditions.

    5.1.1 Pure fractional diffusion with out a forcing term

    Whenf(x)=0andα=0.3,Eq.(56)reduces to a fractional power function

    RKPM and the enriched RKPM are applied to solve the case with a uniform spacingh=0.2 and the window function Eq.(11).The shape functions of RKPM and the enriched RKPM are constructed based on(1,x)and(1,x,r0.3),respectively.RKPM takesρ=1 and the enriched RKPM takesρ=1.5.Both methods use Gauss–Jacobi quadrature of 30th order.

    Figure 5 presents the results of RKPM and the enriched RKPM whenα=0.1,0.3,0.7 from the left figure to the right one.For RKPM,spurious oscillation is observed,with the worst situation happening near the left boundary.As for the enriched RKPM,due to the vanishing function reproducing error,the numerical results agree very well with the analytical solution in all cases.

    5.1.2 Pure fractional diffusion with a forcing term

    We consider a non-zero forcing termf(x)=xand setα=0.3.The exact solution of Eq.(55)then becomes

    A ll discretization parameters adopt the same values as in the previous section.

    Figure 6 compares the results whenα=0.2(left figure)andα=0.7(right figure).The results of the enriched RKPM are in good agreement with the exact solutions,whereas RKPM still presents spurious oscillations.

    Fig.5 Numerical results for steady state fractional pure diffusion equation,f(x)=0

    Fig.6 Numerical results for steady state fractional pure diffusion equation,f(x)=x

    Fig.7 Numerical results for steady state fractional advection–diffusion equation,f(x)=0,Pe=0.03

    5.2 Steady state fractional advection–diffusion equation

    The following steady state fractional advection–diffusion example is considered

    The exact solution is given by

    whereis the Mittag-Leffler function,cis a constant determined by the boundary conditions and?denotes convolutionξ)g(ξ)dξ.

    Fig.8 Numerical results for steady state fractional advection–diffusion equation,f(x)=0,Pe=0.2

    Fig.9 Numerical results for steady state fractional advection–diffusion equation,f(x)=x,Pe=0.03

    We apply RKPM and the enriched RKPM to solve Eq.(59)and set the same numerical parameters as those for Eq.(55).Figure 7 depicts the results whenf(x)=0 andPe=0.03.The two sub- figures correspond toα=0.2(left)andα=0.7(right),respectively.Spurious oscillations of RKPM are observed in both cases,while the results of the enriched RKPM show good agreement with the exact solutions.For the enriched RKPM,it is easy to computePe(4ρh)α=0.03?(4?1.5?0.1)0.2≈0.027 andwhich indicate a small function reproducing error and a good approximation of the enriched RKPM to the exact solutions.

    Figure 8 presents the results forf(x)=0 andPe=0.2.The parameterPeis chosen in such a way that the function reproducing error cannot be ignored.For the case ofα=0.2 in the leftsub- figure,the enriched RKPM starts to show some oscillations near the exact solution.Whenα=0.7,the function reproducing error does not cause spurious oscillations for the enriched RKPM,as shown in the right sub- figure.

    For a non-vanishing forcing term,we setf(x)=x,Pe=0.03.As shown in Fig.9,the enriched RKPM gives numerical solutions in good agreement with the exact solutions whenα=0.2(left)andα=0.7(right),whereas the result from RKPM still contains spurious oscillations.

    5.3 Time-dependent fractional advection–diffusion equation

    The time-dependent example for fractional advection–diffusion equations is given in the physical domainz∈[0,1]as

    Fig.10 Numerical results for time-dependent fractional advection–diffusion equation

    In this example,we setα=0.1,u=0.01,κ=1.A uniform spacingΔz=0.01 is chosen.RKPM takes the basis(1,z)and the enriched RKPM uses(1,z,r0.1).The window function is supported on a domain with ratio of 2h=2Δz=0.02.The dilation parameter is set asρ=1 for RKPM andρ=1.5 for the enriched RKPM.After spatial discretization,we integrate the equation by the Crank–Nicolson method in time with a time-step sizeΔt=0.001.Figure 10 compares the numerical results for RKPM and the enriched RKPM att=0,0.167,0.334,0.5(top left,top right,bottom left,bottom right).It is observed that spurious oscillations are not present in the results from the enriched RKPM.For the results from RKPM,severe oscillations occur when the profile reaches the left boundary.

    6 Conclusion

    The reproducing kernel particle method is enriched to solve a fractional advection–diffusion equation.The method expands the integer-order basis of regular RKPM to include power functions of fractional orders.In this way,an enriched RKPM interpolation formula is obtained and proven to be able to exactly reproduce the involved fractional power functions.A FADE is solved by the enriched RKPM method.One enriched term is applied and its order is identical to that of the FADE.Numerical examples show the significant accuracy improvement by the basis enrichment.

    It should be noted that Gauss–Jacobi quadrature is used for the computation of fractional derivative of shape functions and entries of the stiffness matrix,which causes heavy computational load.According to the analysis in Sect.3.3,the enrichment is only necessary near the boundary.A combination of the enriched RKPM with other approaches such as finite element method or RKPM can improve computational efficiency.We will report further results along this line in a future publication.

    AcknowledgementsThe project was supported partly by the National Natural Science Foundation of China(Grant11521202).Ying is grateful for the support from the Chinese Scholarship Council.Lian and Liu are partially support by an Army Research Office(Grant W 911NF-15-1-0569).

    Appendix A.Gauss–Jacobi quadrature

    Gauss–Jacobi quadrature can be used to approximate integrals in the form

    wheref(x)is a smooth function on[?1,1],α,β>?1.More precisely,

    wherexi,i=1,2,...,nare the roots of the Jacobi polynomial of degreen.The weightsλiare given by

    whereis the Jacobi polynomial of degreenanddenotes first order derivative.Whenα=β=0,Eq.(A2)reduces to Gauss quadrature.

    1.Chen,J.S.,Pan,C.,Roque,C.M.O.L.,et al.:A Lagrangian reproducing kernel particle method for metal forming analysis.Comput.Mech.22,289–307(1998)

    2.Chen,J.S.,Pan,C.,Wu,C.,et al.:Reproducing kernel particle methods for large deformation analysis of non-linear structures.Comput.Methods Appl.Mech.139,195–227(1996)

    3.Chen,J.S.,Pan,C.,Wu,C.:Large deformation analysis of rubber based ona reproducing kernel particle method.Comput.Mech.19,211–227(1997)

    4.Lian,Y.,Zhang,X.,Liu,Y.:An adaptive finite element material point method and its application in extreme deformation problems.Comput.Methods Appl.Mech.241,275–285(2012)

    5.Belytschko,T.,Lu,Y.,Gu,L.:Crack propagation by element-free Galerkin methods.Eng.Fract.Mech.51,295–315(1995)

    6.Belytschko,T.,Tabbara,M.:Dynamic fracture using element-free Galerkin methods.Int.J.Numer.Mech.Eng.39,923–938(1996)

    7.Guan,P.C.,Chi,S.W.,Chen,J.S.,et al.:Semi-Lagrangian reproducing kernel particle method for fragment-impact problems.Int.J.Impact Eng.38,1033–1047(2011)

    8.Chi,S.,Lee,C.,Chen,J.S.,et al.:A level set enhanced natural kernel contact algorithm for impact and penetration modeling.Int.J.Numer.Mech.Eng.102,839–866(2015)

    9.Liu,W.K.,Chen,Y.:Wavelet and multiple scale reproducing kernel methods.Int.J.Numer.Methods Fluids 21,901–931(1995)

    10.Li,S.,Liu,W.K.:Moving least-square reproducing kernel method part II:Fourier analysis.Comput.Methods Appl.Mech.139,159–193(1996)

    11.Liu,W.K.,Jun,S.,Li,S.,et al.:Reproducing kernel particle methods for structural dynamics.Int.J.Numer.Mech.Eng.38,1655–1679(1995)

    12.Liu,W.K.,Jun,S.,Zhang,Y.:Reproducing kernel particle methods.Int.J.Numer.Methods Fluids 20,1081–1106(1995)

    13.Liu,W.K.,Chen,Y.,Jun,S.,et al.:Overview and applications of the reproducing kernel particle methods.Arch.Comput.Methods Eng.3,3–80(1996)

    14.Bessa,M.A.,Foster,J.T.,Belytschko,T.,et al.:A meshfree unification:reproducing kernel peridynamics.Comput.Mech.53,1251–1264(2014)

    15.Carpinteri,A.,Mainardi,F.:Fractals and Fractional Calculus in Continuum Mechanics.Springer,Vienna(1997)

    16.Metzler,R.,Klafter,J.:The random walk’s guide to anomalous diffusion:a fractional dynamics approach.Phys.Rep.339,1–77(2000)

    17.Benson,D.A.,Wheatcraft,S.W.,Meerschaert,M.M.:Application of a fractional advection–dispersion equation.Water Resour.Res.36,1403–1412(2000)

    18.Chen,W.,Sun,H.,Zhang,X.,et al.:Anomalous diffusion modeling by fractal and fractional derivatives.Comput.Math.Appl.59,1754–1758(2010)

    19.West,B.J.:Colloquium:fractional calculus view of complexity:a tutorial.Rev.Mod.Phys.86,1169(2014)

    20.Chen,W.,Liang,Y.,Hu,S.:Fractional derivative anomalous diffusion equation modeling prime number distribution.Fract.Calc.Appl.Anal.18,789–798(2015)

    21.Lei,D.,Liang,Y.,Xiao,R.:A fractional model with parallel fractional Maxwell elements for amorphous thermoplastics.Physica A 450,465–475(2018)

    22.Xiao,R.,Sun,H.,Chen,W.:A finite deformation fractional viscoplastic model for the glass transition behavior of amorphous polymers.Int.J.Nonlinear Mech.93,7–14(2017)

    23.Podlubny,I.:Fractional Differential Equations:An Introduction to Fractional Derivatives,Fractional Differential Equations,to Methods of Their Solution and Some of Their Applications.Academic press,New York(1998)

    24.Li,C.,Zeng,F.:Numerical Methods for Fractional Calculus.CRC Press,Boca Raton(2015)

    25.Chen,W.,Ye,L.,Sun,H.:Fractional diffusion equations by the Kansa method.Comput.Math.Appl.59,1614–1620(2010)

    26.Pang,G.,Chen,W.,Sze,K.Y.:A comparative study of finite element and finite difference methods for two-dimensional space fractional advection–dispersion equation.Adv.Appl.Math.Mech.8,166–186(2016)

    27.Ding,H.,Li,C.,Chen,Y.:High-order algorithms for Riesz derivative and their applications(II).J.Comput.Phys.293,218–237(2015)

    28.Ying,Y.,Lian,Y.,Tang,S.,et al.:High-order central difference scheme for Caputo fractional derivative.Comput.Methods Appl.Mech.317,42–54(2017)

    29.Ervin,V.J.,Roop,J.P.:Variational solution of fractional advection dispersion equations on bounded domains in Rd.Numer.Methods Parial Differ.Equ.23,256–281(2007)

    30.Fix,G.J.,Roof,J.P.:Least squares finite-element solution of a fractional order two-point boundary value problem.Comput.Math.Appl.48,1017–1033(2004)

    31.Ervin,V.J.,Roop,J.P.:Variational formulation for the stationary fractional advection dispersion equation.Numer.Methods Partial Differ.Equ.22,558–576(2006)

    32.Lian,Y.,Ying,Y.,Tang,S.,et al.:A Petrov–Galerkin finite element method for the fractional advection–diffusion equation.Comput.Methods Appl.Mech.309,388–410(2016)

    33.Luan,S.,Lian,Y.,Ying,Y.,et al.:An enriched finite element method to fractional advection–diffusion equation.Comput.Mech.60,181–201(2017)

    34.Zayernouri,M.,Karniadakis,G.E.:Fractional Sturm–Liouville eigen-problems:theory and numerical approximation.J.Comput.Phys.252,495–517(2013)

    35.Zayernouri,M.,Karniadakis,G.E.:Exponentially accurate spectral and spectral element methods for fractional ODEs.J.Comput.Phys.257,460–480(2014)

    36.Zayernouri,M.,Karniadakis,G.E.:Fractional spectral collocation methods for linear and nonlinear variable order FPDEs.J.Comput.Phys.293,312–338(2015)

    37.Kharazmi,E.,Zayernouri,M.,Karniadakis,G.E.:Petrov–Galerkin and spectral collocation methods for distributed order differential equations.SIAM J.Sci.Comput.39,A1003–A1037(2017)

    38.Fleming,M.,Chu,Y.A.,Moran,B.,et al.:Enriched element-free Galerkin methods for crack tip fields.Int.J.Numer.Mech.Eng.40,1483–1504(1997)

    39.Liu,W.K.,Li,S.,Belytschko,T.:Moving least-square reproducing kernel methods(I):methodology and convergence.Comput.Methods Appl.Mech.143,113–154(1997)

    丰满迷人的少妇在线观看| 国产老妇伦熟女老妇高清| 国产欧美亚洲国产| 久久精品国产鲁丝片午夜精品| 99热6这里只有精品| 日本黄色片子视频| 一级黄片播放器| 丝袜脚勾引网站| 国精品久久久久久国模美| 一级毛片久久久久久久久女| 一级毛片久久久久久久久女| 久久6这里有精品| 免费观看性生交大片5| 嫩草影院入口| 99九九在线精品视频 | 亚洲国产成人一精品久久久| 狠狠精品人妻久久久久久综合| 99久久人妻综合| 久久婷婷青草| 黄色日韩在线| 一区在线观看完整版| 高清av免费在线| 国产亚洲精品久久久com| av线在线观看网站| 色网站视频免费| 国产极品粉嫩免费观看在线 | 热re99久久国产66热| 亚洲精品456在线播放app| 亚洲人成网站在线观看播放| 伊人亚洲综合成人网| 国产精品人妻久久久影院| 欧美日韩国产mv在线观看视频| 午夜精品国产一区二区电影| 久久久国产精品麻豆| 哪个播放器可以免费观看大片| 国产日韩一区二区三区精品不卡 | 嘟嘟电影网在线观看| 在线播放无遮挡| 久久久亚洲精品成人影院| 亚洲国产欧美在线一区| 国产精品久久久久成人av| 精品亚洲乱码少妇综合久久| 精品国产一区二区三区久久久樱花| 夜夜看夜夜爽夜夜摸| 26uuu在线亚洲综合色| 天美传媒精品一区二区| 亚洲国产成人一精品久久久| 欧美日韩综合久久久久久| 最新中文字幕久久久久| 精品国产国语对白av| 亚洲精品国产av蜜桃| 久久久久国产网址| 成人黄色视频免费在线看| 久久午夜综合久久蜜桃| 亚洲成人一二三区av| 色5月婷婷丁香| 亚洲真实伦在线观看| 伦理电影免费视频| 性色av一级| 久久亚洲国产成人精品v| 成人毛片60女人毛片免费| 久久久久久久久大av| 亚洲国产最新在线播放| 日本欧美视频一区| 三级经典国产精品| 黑人高潮一二区| 国产在视频线精品| 亚洲三级黄色毛片| 国产黄色免费在线视频| 啦啦啦中文免费视频观看日本| 免费看日本二区| 看免费成人av毛片| 日韩伦理黄色片| av国产精品久久久久影院| 男人狂女人下面高潮的视频| 看免费成人av毛片| 成人国产av品久久久| 五月天丁香电影| 蜜桃久久精品国产亚洲av| 国模一区二区三区四区视频| 国产精品秋霞免费鲁丝片| 免费不卡的大黄色大毛片视频在线观看| 国产精品三级大全| 视频中文字幕在线观看| 美女内射精品一级片tv| 中文字幕精品免费在线观看视频 | 一级爰片在线观看| 久热久热在线精品观看| 国产深夜福利视频在线观看| 啦啦啦啦在线视频资源| 高清在线视频一区二区三区| 精品亚洲成国产av| 欧美精品一区二区大全| 美女xxoo啪啪120秒动态图| 韩国高清视频一区二区三区| 欧美激情极品国产一区二区三区 | 国产黄频视频在线观看| 狂野欧美激情性xxxx在线观看| videossex国产| 中文在线观看免费www的网站| 一级毛片黄色毛片免费观看视频| 午夜久久久在线观看| 亚洲欧美日韩另类电影网站| 一个人看视频在线观看www免费| 精华霜和精华液先用哪个| 91精品伊人久久大香线蕉| 久久久久久人妻| 亚洲经典国产精华液单| 亚洲av福利一区| 人妻少妇偷人精品九色| 内射极品少妇av片p| 精品久久久久久久久亚洲| 国产免费视频播放在线视频| tube8黄色片| 亚洲av日韩在线播放| 免费久久久久久久精品成人欧美视频 | 久久久久久久亚洲中文字幕| 纵有疾风起免费观看全集完整版| 一级毛片久久久久久久久女| 中文在线观看免费www的网站| 三级国产精品欧美在线观看| 91久久精品国产一区二区三区| 麻豆乱淫一区二区| 亚洲在久久综合| 久久精品久久久久久噜噜老黄| 亚洲成人手机| 成人午夜精彩视频在线观看| 如日韩欧美国产精品一区二区三区 | 女人精品久久久久毛片| 最近的中文字幕免费完整| a级一级毛片免费在线观看| 91午夜精品亚洲一区二区三区| 亚洲国产精品一区三区| 九九爱精品视频在线观看| 熟女电影av网| 成人18禁高潮啪啪吃奶动态图 | 新久久久久国产一级毛片| 九九在线视频观看精品| 伦理电影免费视频| 晚上一个人看的免费电影| 久久久国产精品麻豆| 亚洲精品色激情综合| 少妇人妻精品综合一区二区| 女人久久www免费人成看片| 日日撸夜夜添| 国产成人a∨麻豆精品| 欧美日韩亚洲高清精品| 9色porny在线观看| 好男人视频免费观看在线| 熟妇人妻不卡中文字幕| 尾随美女入室| 亚洲欧美一区二区三区黑人 | 国产 一区精品| 日本vs欧美在线观看视频 | 大又大粗又爽又黄少妇毛片口| 国产精品免费大片| 国产精品久久久久久av不卡| 少妇熟女欧美另类| 97在线人人人人妻| 国产精品99久久久久久久久| 国内少妇人妻偷人精品xxx网站| 国产精品国产三级国产av玫瑰| 91在线精品国自产拍蜜月| 天堂俺去俺来也www色官网| 人妻 亚洲 视频| 22中文网久久字幕| 男女边吃奶边做爰视频| av女优亚洲男人天堂| 国产一区有黄有色的免费视频| 欧美区成人在线视频| 久久99蜜桃精品久久| 国产精品一区二区性色av| 日韩,欧美,国产一区二区三区| 精品久久久久久久久亚洲| 女人精品久久久久毛片| 男男h啪啪无遮挡| 亚洲精品中文字幕在线视频 | 免费大片黄手机在线观看| 看非洲黑人一级黄片| 黑丝袜美女国产一区| 亚洲av.av天堂| 国产免费一区二区三区四区乱码| 久久久久久人妻| 自线自在国产av| 亚洲无线观看免费| 亚洲精品aⅴ在线观看| 又大又黄又爽视频免费| 国产精品免费大片| 高清欧美精品videossex| 黑人巨大精品欧美一区二区蜜桃 | 国产熟女午夜一区二区三区 | 国精品久久久久久国模美| 麻豆精品久久久久久蜜桃| 亚洲人成网站在线观看播放| 亚洲精品aⅴ在线观看| 日本猛色少妇xxxxx猛交久久| a级毛色黄片| 亚洲性久久影院| 大话2 男鬼变身卡| 久久97久久精品| 夜夜爽夜夜爽视频| 亚洲欧洲国产日韩| 国产av国产精品国产| 久久久久久人妻| 全区人妻精品视频| 精品午夜福利在线看| 少妇 在线观看| 九草在线视频观看| 国内揄拍国产精品人妻在线| 久久97久久精品| 又黄又爽又刺激的免费视频.| 在线看a的网站| 少妇的逼好多水| 国产成人aa在线观看| 另类亚洲欧美激情| 国产午夜精品久久久久久一区二区三区| 国产亚洲最大av| 超碰97精品在线观看| 日韩视频在线欧美| 伊人久久精品亚洲午夜| 一区二区三区精品91| a级毛片免费高清观看在线播放| 男人爽女人下面视频在线观看| 亚洲国产毛片av蜜桃av| 大陆偷拍与自拍| 国产一区二区在线观看日韩| 在线观看美女被高潮喷水网站| 性色av一级| 国产成人一区二区在线| 欧美精品人与动牲交sv欧美| 日本猛色少妇xxxxx猛交久久| 狂野欧美白嫩少妇大欣赏| 国产精品国产av在线观看| 黄片无遮挡物在线观看| 色视频在线一区二区三区| 丝瓜视频免费看黄片| 久久久午夜欧美精品| 丰满少妇做爰视频| 麻豆成人av视频| 各种免费的搞黄视频| 超碰97精品在线观看| 人妻夜夜爽99麻豆av| 国产免费视频播放在线视频| 国产精品99久久久久久久久| 亚洲精品国产色婷婷电影| 精品亚洲成a人片在线观看| 街头女战士在线观看网站| 一本大道久久a久久精品| 不卡视频在线观看欧美| 伦理电影免费视频| 日韩精品免费视频一区二区三区 | 伦理电影大哥的女人| 国产成人精品婷婷| 久久午夜福利片| 亚洲综合色惰| 少妇的逼好多水| 乱系列少妇在线播放| 欧美+日韩+精品| 婷婷色麻豆天堂久久| 日本猛色少妇xxxxx猛交久久| 成人影院久久| 少妇 在线观看| 国产精品不卡视频一区二区| 伊人亚洲综合成人网| 自拍欧美九色日韩亚洲蝌蚪91 | 99久久人妻综合| 天堂中文最新版在线下载| 伦理电影免费视频| 国产精品伦人一区二区| 国产一区二区三区综合在线观看 | 国产免费又黄又爽又色| 国产成人精品无人区| 国产国拍精品亚洲av在线观看| 亚洲国产最新在线播放| 一级爰片在线观看| tube8黄色片| 免费黄网站久久成人精品| 成年人免费黄色播放视频 | 男男h啪啪无遮挡| 日本欧美视频一区| 国产精品国产三级专区第一集| 日韩强制内射视频| 成人二区视频| 黄色日韩在线| 2018国产大陆天天弄谢| 亚洲欧美中文字幕日韩二区| 日日啪夜夜爽| 欧美xxⅹ黑人| 欧美少妇被猛烈插入视频| 青春草国产在线视频| 国产欧美亚洲国产| 精品久久久久久电影网| 麻豆乱淫一区二区| av网站免费在线观看视频| 99九九在线精品视频 | 我要看黄色一级片免费的| 亚洲欧美日韩东京热| av天堂久久9| 久久婷婷青草| 日本猛色少妇xxxxx猛交久久| 全区人妻精品视频| av一本久久久久| 99久久人妻综合| 欧美精品人与动牲交sv欧美| 国产精品女同一区二区软件| 亚洲av综合色区一区| 亚洲人成网站在线观看播放| 日韩伦理黄色片| 国产片特级美女逼逼视频| kizo精华| 午夜日本视频在线| 亚洲,一卡二卡三卡| 特大巨黑吊av在线直播| 国产免费福利视频在线观看| 国产综合精华液| 91成人精品电影| 全区人妻精品视频| 亚洲av福利一区| 国内精品宾馆在线| 国产精品人妻久久久久久| 日本色播在线视频| 美女福利国产在线| 亚洲av成人精品一区久久| 欧美精品一区二区大全| 国产精品国产三级国产av玫瑰| 男人和女人高潮做爰伦理| 日韩一区二区视频免费看| 哪个播放器可以免费观看大片| 亚洲精品国产av成人精品| 亚洲三级黄色毛片| 亚洲精品,欧美精品| 久久国产亚洲av麻豆专区| 成年女人在线观看亚洲视频| 2022亚洲国产成人精品| 好男人视频免费观看在线| 极品教师在线视频| 国产成人91sexporn| 亚洲综合精品二区| 高清在线视频一区二区三区| 亚洲一区二区三区欧美精品| 有码 亚洲区| 51国产日韩欧美| 国产精品一区二区三区四区免费观看| 最近最新中文字幕免费大全7| 亚洲人与动物交配视频| 免费看光身美女| 日本猛色少妇xxxxx猛交久久| av在线app专区| 最新中文字幕久久久久| 简卡轻食公司| 欧美最新免费一区二区三区| 九九久久精品国产亚洲av麻豆| 国产日韩欧美视频二区| 中文字幕人妻丝袜制服| 国精品久久久久久国模美| 80岁老熟妇乱子伦牲交| 欧美日韩精品成人综合77777| 亚洲欧美日韩另类电影网站| 国产精品一区二区性色av| 91久久精品国产一区二区三区| 免费黄频网站在线观看国产| 国产精品无大码| 日韩免费高清中文字幕av| 国产伦在线观看视频一区| 九九久久精品国产亚洲av麻豆| 久久精品夜色国产| 国产av码专区亚洲av| 久久99热这里只频精品6学生| 丝袜喷水一区| 久久国产乱子免费精品| 最近2019中文字幕mv第一页| 大香蕉久久网| 少妇人妻久久综合中文| 亚洲欧美清纯卡通| 少妇被粗大的猛进出69影院 | 久久韩国三级中文字幕| av专区在线播放| 日本vs欧美在线观看视频 | 欧美日韩视频精品一区| av福利片在线| 亚洲高清免费不卡视频| 午夜免费观看性视频| 亚洲av.av天堂| 久久久久久人妻| 亚洲欧美精品专区久久| 精品一区二区三区视频在线| 内射极品少妇av片p| 久久ye,这里只有精品| 乱码一卡2卡4卡精品| 最新中文字幕久久久久| 日本黄色片子视频| 国内少妇人妻偷人精品xxx网站| 国产成人a∨麻豆精品| 国产成人午夜福利电影在线观看| 亚洲av.av天堂| 亚洲精品国产av蜜桃| 日日啪夜夜撸| 老司机亚洲免费影院| 老司机影院毛片| 欧美日韩视频高清一区二区三区二| av在线app专区| 深夜a级毛片| 国产精品99久久99久久久不卡 | 秋霞在线观看毛片| 你懂的网址亚洲精品在线观看| 在线观看美女被高潮喷水网站| 久久狼人影院| 亚洲伊人久久精品综合| 国产精品久久久久久精品古装| 22中文网久久字幕| 午夜福利影视在线免费观看| 国产一区二区三区综合在线观看 | av天堂中文字幕网| 大香蕉97超碰在线| 中文天堂在线官网| 男女边吃奶边做爰视频| 人人妻人人爽人人添夜夜欢视频 | 国产成人午夜福利电影在线观看| 校园人妻丝袜中文字幕| av福利片在线观看| 99久国产av精品国产电影| 国产精品一区二区性色av| 国产成人aa在线观看| 在线观看免费日韩欧美大片 | 国产一区二区三区综合在线观看 | 校园人妻丝袜中文字幕| av天堂中文字幕网| 国产片特级美女逼逼视频| 男人舔奶头视频| 国产精品久久久久久精品古装| 欧美bdsm另类| 精品人妻一区二区三区麻豆| 欧美精品国产亚洲| 久久毛片免费看一区二区三区| 综合色丁香网| 国产高清不卡午夜福利| 久久久久精品性色| 亚洲美女黄色视频免费看| 亚洲人成网站在线播| www.色视频.com| 国产免费又黄又爽又色| 欧美性感艳星| 黄色日韩在线| 亚洲国产色片| 国产精品偷伦视频观看了| 中文字幕制服av| 一级毛片 在线播放| 国产免费又黄又爽又色| 成人漫画全彩无遮挡| 伊人久久精品亚洲午夜| 午夜福利影视在线免费观看| 亚洲激情五月婷婷啪啪| 在线亚洲精品国产二区图片欧美 | 高清欧美精品videossex| 国产永久视频网站| 丰满饥渴人妻一区二区三| 91精品伊人久久大香线蕉| 久久久精品免费免费高清| 日本与韩国留学比较| 日韩免费高清中文字幕av| 精品酒店卫生间| 国产亚洲最大av| av专区在线播放| 亚州av有码| 亚洲图色成人| 99热国产这里只有精品6| 韩国高清视频一区二区三区| 天天躁夜夜躁狠狠久久av| 老司机亚洲免费影院| 欧美区成人在线视频| 久久99热这里只频精品6学生| 91精品一卡2卡3卡4卡| 中文精品一卡2卡3卡4更新| av在线老鸭窝| 18禁裸乳无遮挡动漫免费视频| av黄色大香蕉| 看非洲黑人一级黄片| 晚上一个人看的免费电影| 精华霜和精华液先用哪个| 国产一级毛片在线| 永久免费av网站大全| 亚洲国产最新在线播放| 欧美日韩综合久久久久久| 大片电影免费在线观看免费| 极品少妇高潮喷水抽搐| 精品国产乱码久久久久久小说| 久久精品国产亚洲网站| 我的老师免费观看完整版| 亚洲,一卡二卡三卡| 中文资源天堂在线| 狂野欧美激情性xxxx在线观看| 日本91视频免费播放| 精品久久久久久电影网| 91精品国产九色| freevideosex欧美| 狂野欧美白嫩少妇大欣赏| 国产女主播在线喷水免费视频网站| 久久人人爽av亚洲精品天堂| 国产又色又爽无遮挡免| 丰满人妻一区二区三区视频av| 亚洲国产精品国产精品| 少妇丰满av| 妹子高潮喷水视频| 亚洲精品自拍成人| 三级国产精品片| 中文天堂在线官网| 日本欧美国产在线视频| 波野结衣二区三区在线| 国产精品久久久久久av不卡| 日本黄色日本黄色录像| a级毛片免费高清观看在线播放| 亚洲第一av免费看| 一本—道久久a久久精品蜜桃钙片| 极品教师在线视频| 婷婷色综合大香蕉| 99热这里只有精品一区| av免费在线看不卡| 一级毛片aaaaaa免费看小| 青春草亚洲视频在线观看| 99国产精品免费福利视频| 热re99久久国产66热| 亚洲电影在线观看av| 精品人妻熟女av久视频| 亚洲欧美精品专区久久| 亚洲精品国产av蜜桃| 成人国产av品久久久| 国国产精品蜜臀av免费| 亚洲精品一二三| 日日摸夜夜添夜夜爱| 黑丝袜美女国产一区| av不卡在线播放| 久久人妻熟女aⅴ| 人妻人人澡人人爽人人| 午夜福利在线观看免费完整高清在| 精品卡一卡二卡四卡免费| 日韩熟女老妇一区二区性免费视频| 综合色丁香网| 日韩在线高清观看一区二区三区| 一级毛片电影观看| 成人综合一区亚洲| 国产精品秋霞免费鲁丝片| 黑人巨大精品欧美一区二区蜜桃 | 国产色婷婷99| 色哟哟·www| 日韩精品免费视频一区二区三区 | 久久精品久久久久久久性| 亚洲精品视频女| 成人免费观看视频高清| 国产综合精华液| 国产精品人妻久久久久久| 亚洲欧洲日产国产| 久久久精品免费免费高清| 国产高清国产精品国产三级| 80岁老熟妇乱子伦牲交| 亚洲av电影在线观看一区二区三区| 国产伦在线观看视频一区| 久久99热这里只频精品6学生| 少妇高潮的动态图| 六月丁香七月| 国产精品久久久久久久电影| 麻豆成人午夜福利视频| freevideosex欧美| 免费看日本二区| 搡女人真爽免费视频火全软件| 乱码一卡2卡4卡精品| 啦啦啦在线观看免费高清www| 国产av一区二区精品久久| 人人澡人人妻人| 色94色欧美一区二区| 最后的刺客免费高清国语| 在线看a的网站| 狂野欧美白嫩少妇大欣赏| 国产午夜精品久久久久久一区二区三区| 特大巨黑吊av在线直播| 亚洲伊人久久精品综合| 精品久久久噜噜| 欧美少妇被猛烈插入视频| 国产精品99久久久久久久久| 国产成人a∨麻豆精品| 日韩熟女老妇一区二区性免费视频| 夜夜骑夜夜射夜夜干| 伊人亚洲综合成人网| 国产视频内射| 精品国产乱码久久久久久小说| 又爽又黄a免费视频| 国产成人精品婷婷| 亚洲精华国产精华液的使用体验| 嫩草影院新地址| 大陆偷拍与自拍| 国产片特级美女逼逼视频| 国产黄频视频在线观看| 亚洲av综合色区一区| 欧美日韩精品成人综合77777| 新久久久久国产一级毛片| 亚洲国产欧美在线一区| 80岁老熟妇乱子伦牲交| 免费观看性生交大片5| 成人亚洲精品一区在线观看| 亚洲综合精品二区| 亚洲国产精品一区二区三区在线| 国产中年淑女户外野战色| 日本与韩国留学比较| 纯流量卡能插随身wifi吗| 日韩中文字幕视频在线看片| 国产免费又黄又爽又色| 黑人猛操日本美女一级片| 精品人妻熟女毛片av久久网站| 午夜老司机福利剧场| 国产精品一区二区性色av| 在线免费观看不下载黄p国产| 亚洲精品久久久久久婷婷小说| 三级国产精品片| 美女国产视频在线观看| 少妇的逼水好多| 六月丁香七月|