• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets

    2018-06-07 02:19:34YangZhaoShuhongDongPeishiYuJunhuaZhao
    Acta Mechanica Sinica 2018年3期

    Yang Zhao·Shuhong Dong·Peishi Yu·Junhua Zhao

    1 Introduction

    Graphene, a single-atom-thick, two-dimensional carbon material,has been extensively studied because of its remarkable electrical and mechanical properties[1–3].The tensile stiffness and strength of graphene sheets are on the order of 1TPa and 100GPa[4,5],respectively,which makes graphene one of the best candidate materials for reinforced nanocomposites[6]and nanoelectro mechanical devices[7].

    To design and assemble graphene-based nanodevices,it is necessary to understand the mechanical properties of graphene under different loading conditions.Great effort has been made to identify the mechanical properties of graphene.The work of Leeet al.[4]measured the elastic properties and the intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation test.Then Tan et al.[8]further studied the Young’s modulus of monolayer graphene by molecular dynamics(MD)simulations.Furthermore,M in and Aluru[9]derived the mechanical properties(such as shear modulus,shear fracture strength,and shear fracture strain)of zigzag and armchair graphene sheets.The work of Yeh et al.[10]revealed the theoretical foundation for strain-engineering of the electronic properties of graphene and then provided experimental evidence for strain-induced pseudo-magnetic fields and charging effects in monolayer graphene.In their study,Xu et al.[11]proposed a nonlocal continuum orthotropic plate model to study the vibration of orthotropic graphene sheets based on an analytical symplectic approach.Also,Nguyen et al.[12]studied the difference of vibration among graphene,SiC,and BN nanosheets using MD simulations.

    Fig.1 The definition of the chiral angleα and atomic structures of different chiral angles.a Definition of the chiral angleα.bα =5°.cα =10.02°.d α =15.02°.e α =20.03°.f α =25°

    However,the shear behavior of chiral graphene sheets has been not clear yet.The work of Chang[13] firstly found that the torsional behavior of chiral single-walled carbon nanotubes(SWCNTs)strongly depends on the loading direction,in which the critical buckling shear strain of a SWCNT in one direction can be 1.8 times higher than that in the opposite direction.Because of a similar lattice structure with a corresponding chiral SWCNT,the shear behavior of a chiral graphene sheet is also dependent on its chirality and the loading direction.Recently,Yi and Chang[14]have studied the mechanical properties of chiral graphene sheets using molecular mechanics,where the temperature is zero and a finite graphene sheet under free boundary condition is considered.In fact,the finite graphene sheet is not under ideally pure shear deformation.Without loss of generality,it is significant and necessary to understand the shear behavior of chiral graphene sheets under pure shear deformation.Therefore,the atomic structures of chiral graphene sheets must meet periodic boundary conditions along both width and length directions.

    In this study,the loading direction-dependent shear behavior of single-layer chiral graphene sheets under pure shear deformation at different temperatures is studied by MD simulations.Our results show that the shear properties of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry.The amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using MD simulations is in good agreement with that from the existing theory.

    2 Molecular dynamics simulations

    Our MD simulations are implemented using the software package LAMMPS[15].The covalent carbon-carbon interactions are described by the second generation Brenner potential(REBO),which is widely used to study the graphite phase transition in previous studies[16,17].Note that the two cutoff distances are chosen as 1.7 and 1.92 ?,respectively,in order to avoid a non-physical strain hardening in the stress–strain behavior of carbon nanostructures owing to the discontinuity in the second derivative of the cutoff function[18].The cutoff function is taken to be 1.0 within a cutoff distance of 1.92 ? and zero otherwise[19].To obtain different chiral graphene sheets,the chiral angles are defined asα=arctan[31/2m/(2n+m)],wherenandmare integers in Fig.1a.Note that the atomic structures of chiral graphene sheets must meet periodic boundary conditions along both width and length directions.The(n,m)of(40,0),(47,5),(22,5),(30,11),(15,8),(19,14),and(23,23)graphene sheets with corresponding chiral anglesα=0.00°(zigzag),5.00°,10.02°,15.02°,20.03°,25.00°,and 30.00°(armchair)are investigated in this study,as shown in Fig.1b–f(because the shear properties of zigzag and armchair graphene sheets were studied in previous studies[9,14],the atomic structures of zigzag and armchair graphene sheets are not illustrated in Fig.1).Each initial structure is optimized and then is run for 5 ns at different temperatures until the pressure and energy of the system are stable,respectively,keeping both the given temperature and the pressureP=1 atm(the time stepΔt=1 fs),in the NPT ensemble controlled by the Nose-Hoovers thermostat[20,21].After the process and then keeping the structures in the NVT ensemble for 1 ns,the mechanical properties are calculated under shear deformation in the NVT ensemble.To obtain the reliable MD results and save the computational cost,we set the strain rate at 1×10?6/fs under shear deformation,in which such strain rate has been also validated for other materials(such as carbon nanotubes[22],graphene[16],and MoS2[23]).Periodic boundary conditions are applied in all three directions,where the vacuum size of 4 nm is perpendicular to each chiral graphene sheet so that the effect of van der Waals(vdW)force on the out-of-plane deformation of the graphene sheet can be neglected.

    Fig.2 The loading direction-dependent shear stress–strain curves,buckling strains,and failure strains of different chiral graphene sheets.a The definition of the positive and negative shear deformation.b The loading direction-dependent shear stress–strain curves.c The loading direction dependent buckling strains and failure strains.d The chirality-dependent shear moduli and Poisson’s ratios

    3 Results and discussion

    To understand the loading direction-dependent shear behaviorof chiral graphene sheets, the definition of the positive and negative loading directions is shown in Fig.2a.Figure 2b shows the loading direction-dependent shear stress–strain curves of single-layer chiral graphene sheets at temperatureT=1 K.The stress–strain curves strongly depend on the loading direction because of the structural asymmetry except for zigzag and armchair graphene sheets.To quantitatively analyze the MD results,Fig.2c shows the buckling and failure strains of different chiral graphene sheets under different shear loading directions.The buckling and failure strains(solid boxes and circles in Fig.2c,respectively)under positive shear deformation are always higher than those under negative shear deformation(hollow boxes and circles in Fig.2c,respectively).The maximum values of the critical buckling shear strain and failure strain along the positive direction can be around 1.4 times higher than that along the negative loading direction.From elastic thin plate theory[24],the buckling stress under shear deformation can expressed as

    whereKis the shape factor,bandhare the width and height of the rectangle plate,is the bending stiffness of the plate,tandμare the thickness and the Poisson’s ratio of the plate,respectively.Therefore,the buckling strain can be obtained

    Fig.3 The distribution of three types of bonds and angles for different chiral graphene sheets under shear deformation.a The definition of three kinds of bonds and angles.b Bond 1.c Bond 2.d Bond 3.e Angle 1.f Angle 2.g Angle 3

    The buckling strain is equal to 5.76%whent=3.4 ?,b=h=60 ?,K=9.16,andμ=0.16(see the dash line in Fig.2c)[19,24,25],which is very close to buckling strains of zigzag and armchair graphene sheets.On the other hand,the present failure strains of different chiral graphene sheets are from 30%to 44%,which are in good agreement with those(26%–45%)of previous studies[19,25].

    Figure 2d shows the loading direction-dependent shear moduli and Poisson’s ratios of different chiral graphene sheets.The shear moduli of different chiral graphene sheets are from 310 to 320GPa by fitting the stress–strain curves at the shear strain?1%≤ε≤1%,which also agree well with those(260–460GPa)of previous literature[19,25].The present Poisson’s ratios in Fig.2dare from 0.11 to0.13by fitting the tensile strain–lateral strain curves at the tensile strainε≤0.1%(the detailed method can be seen in previous study[26]),which are a little smaller thanμ=0.16 in previous studies[19,25].

    To reveal further the loading direction-dependent mechanism of the shear behavior for different chiral graphene sheets,the distribution of three types of bonds and angles is illustrated in Fig.3.Since the other three bonds in the hexagonal lattice are parallel to the present chosen three bonds,the change tendency of the two parallel bonds should be similar under shear deformation.Figure 3a shows the definition of three types of bonds and angles,where the hexagonal lattice rotates with chiral angle.Figure 3b,c shows that the lengths of both bond 1 and bond 2 under positive shear deformation increase more sharply than those under negative shear deformation,while the opposite trend is presented for bond 3 in Fig.3d.Therefore,the potential energy under positive shear deformation should be higher than that under negative shear deformation for a given shear strain.The failure stress(the maximum stress)under positive deformation should be also higher than that under negative deformation,which results in the larger failure strain under positive deformation.On the other hand,both bond 1 and bond 2 are mainly compressed under negative shear deformation while they are mainly stretched under positive shear deformation at small strains(see Fig.3b,c).Buckling under compression occurs more easily than that under tension,which leads to the higher buckling strain under positive deformation.Figure 3e,g shows that both angle 1 and angle 3 under positive shear deformation decreases with increasing shear strain,while the change of the angle 1 under negative shear deformation is quite different.The angle 1 of zigzag graphene sheets decreases and the angle 1of armchair graphene sheets andα=25°increases with increasing shear strain,while the angle 1 of the other chiral angles increases at first and then decreases with increasing shear strain.Furthermore,the angle 2 under positive shear deformation increases,while under negative shear deformation it decreases with increasing shear strain.In fact,the potential energy always increases no matter whether the bond angle increases or decreases.Therefore,the tendency of the three angles under different shear deformations also reveals that the potential energy under positive shear deformation is higher than that under negative shear deformation for a given shear strain,which results in the larger failure strain under positive deformation.From pre-vious study,the change of bond lengths dominates the total potential energy while the change of bond angles is the higher order terms of the total potential energy[26],so the change of bond lengths of Fig.3b–d can be used to reveal the loading direction-dependent mechanism of the shear behavior for different chiral graphene sheets.

    Fig.4 Ratio of amplitude to half-wavelength vs shear strain under different loading shear deformations for different chiral graphene sheets by MD simulations(T=1 K)and a theoretical method.a The schematic illustration of wrinkles and the wrinkles in a chiral graphene sheet(α =5°)at a shear strain of 0.2.b Chiral angle α =5°.c Chiral angle α =10.02°.d Chiral angle α =15.02°.e Chiral angle α =20.03°.f Chiral angle α=25°

    Fig.5 Temperature-dependent failure strains and failure stresses for different chiral graphene sheets under positive and negative shear deformation.a Temperature-dependent failure strains.b Temperature-dependent failure stresses

    Since wrinkles cause the softening of materials,the wrinkles play a key role in mechanical behavior of two dimensional materials.Graphene can be taken as a thin membrane structure,and its out-of-plane bending stiffness is quite low[27],so it is significant and necessary to understand its wrinkling behavior under shear deformation.To understand the effect of the wrinkles on the shear behavior of chiral graphene sheets,we study the grow th of wrinkles(the amplitudeωand wavelengthλ)of chiral graphene sheets under different shear directions in Fig.4.The ratio of the amplitude to the wavelength of wrinkles atT=1 K can be calculated directly from the MD results.The ratio from the available theory[28]can be expressed as

    whereωis the amplitude,λis the wavelength,vis Poisson’s ratio,andγis the shear strain.Figure 4 shows the ratio of amplitude to half-wavelength vs.shear strain under different shear direction for different chiral graphene sheets by MD simulations and a theoretical method.Poisson’s ratios in Fig.4b–fare obtained from ourMD simulations(seeFig.2d)except forμ=0.16(μ=0.16 is used from previous work[22]).One can find that the effect of loading directions on the wrinkling is not remarkable.The present MD results are in reasonable agreement with those from the theoretical model.

    To understand further the temperature effect on the shear behavior of chiral graphene sheets under different shear directions,Fig.5 shows the failure strains and failure stresses of chiral graphene sheets under different shear directions at different temperatures(fromT=100 K toT=900 K),where all solid configurations and hollow configurations are under positive shear deformation and negative shear deformation,respectively.Both failure strains and failure stresses at different temperatures under positive shear deformation are always higher than those under negative shear deformation except for the symmetric zigzag and armchair graphene sheets.For a given chiral angleα,both failure strains and failure stresses decrease with increasing temperature.The maximum values of both the failure strain and the failure stress under positive shear deformation is around 1.5 times higher than those under negative shear deformation at different temperatures.

    4 Conclusion

    In this study,the loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures has been obtained by MD simulations.The presentMD results show that the shear properties(such as shear stress–strain curves,buckling strains and failure strains)of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry.The maximum values of both the critical buckling strain and the failure strain under positive loading direction is around 1.4 times higher than those under negative loading direction.The loading direction-dependent mechanism of the shear behavior for different chiral graphene sheets has been revealed by analyzing the change of three kinds of bonds and angles.Both failure strain and failure stress decrease with increasing temperature,in which they under positive loading direction arealway shigher than those under negative loading direction for chiral graphene sheets.In particular,the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using MD simulations is in good agreement with that from the existing theory.Our findings are useful for understanding the shear behavior of chiral graphene sheets and their potential applications in nanodevices.

    AcknowledgementsWe gratefully acknowledge the support from the National Natural Science Foundation of China(Grant 11572140),the Programs of Innovation and Entrepreneurship of Jiangsu Province,Primary Research&Development Plan of Jiangsu Province,Science and Technology Plan Project of Wuxi,the Fundamental Research Funds for the Central Universities(Grants JUSRP11529,JUSRP115A10,JG2015059),the research and practice project of teaching reform of graduate education in Jiangsu(Grant JGLX16_048),the Undergraduate Innovation Training Program of Jiangnan University of China(Grant 2015151Y),the Undergraduate Innovation and Entrepreneurship Training Program of China(Grant 201610295057),the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(NUAA)(Grant MCMS-0416G01),the“Project of Jiangsu provincial Six Talent Peaks”in Jiangsu Province and “Thousand Youth Talents Plan.”

    1.Wu,J.,Wei,Y.:Grain misorientation and grain-boundary rotation dependent mechanical properties in polycrystalline graphene.J.Mech.Phys.Solids 61,1421–1432(2013)

    2.Chen,Y.,Zhang,Y.,Cai,K.,et al.:Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures.Carbon 117,399–410(2017)

    3.Eda,G.,Fanchini,G.,Chhowalla,M.:Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material.Nat.Nanotechnol.3,270–274(2008)

    4.Lee,C.,Wei,X.,Kysar,J.W.,et al.:Measurement of the elastic properties and intrinsic strength of monolayer graphene.Science 321,385–388(2008)

    5.Griffith,A.A.:The phenomena of rupture and flow in solids.Philos.Trans.R.Soc.Lond.A 221,163–198(1921)

    6.Stankovich,S.,Dikin,D.A.:Graphene-based composite materials.Nature 442,282–286(2006)

    7.Wu,S.,He,Q.,Tan,C.,et al.:Graphene—based electrochemical sensors.Small 9,1160–1172(2013)

    8.Tan,X.,Wu,J.,Zhang,K.,et al.:Nanoindentation models and Young’s modulus of monolayer graphene:a molecular dynamics study.Appl.Phys.Lett.102,109(2013)

    9.M in,K.,Aluru,N.R.:Mechanical properties of graphene under shear deformation.Appl.Phys.Lett.98,013113(2011)

    10.Yeh,N.C.,Hsu,C.C.,Teague,M.L.,et al.:Nanoscale strain engineering of graphene and graphene-based devices.Acta Mech.Sin.32,497–509(2016)

    11.Xu,X.,Rong,D.,Lim,C.W.,et al.:An analytical symplectic approach to the vibration analysis of orthotropic graphene sheets.Acta Mech.Sin.33,912–925(2017)

    12.Nguyen,D.T.,Le,M.Q.,Bui,T.L.,et al.:Atomistic simulation of free transverse vibration of graphene,hexagonal SiC,and BN nanosheets.Acta Mech.Sin.33,132–147(2017)

    13.Chang,T.:Torsional behavior of chiral single-walled carbon nanotubes is loading direction dependent.Appl.Phys.Lett.90,787(2007)

    14.Yi,L.,Chang,T.:Loading direction dependent mechanical behavior of graphene under shear strain.Sci.China Phys.Mech.55,1083–1087(2012)

    15.Plimpton,S.:Fast parallel algorithms for short-range molecular dynamics.J.Comput.Phys.117,1–19(1995)

    16.Zhang,B.,Mei,L.,Xiao,H.:Nanofracture ingraphene under complex mechanical stresses.Appl.Phys.Lett.101,121915(2012)

    17.Tabarraei,A.,Wang,X.,Jia,D.:Effects of hydrogen adsorption on the fracture properties of graphene.Comput.Mater.Sci.121,151–158(2016)

    18.Belytschko,T.,Xiao,S.P.,Schatz,G.C.,et al.:Atomistic simulations of nanotube fracture.Phys.Rev.B 65,235430(2002)

    19.Grantab,R.,Shenoy,V.B.,Ruoff,R.S.:Anomalous strength characteristics of tilt grain boundaries in graphene.Science330,946–948(2010)

    20.Synder,R.G.,Schachtschneider,J.H.:A valence force field for saturated hydrocarbons.Spectrochim.Acta.21,169–195(1965)

    21.Nosé,S.:A unified formulation of the constant temperature molecular dynamics methods.J.Chem.Phys.81,511–519(1984)

    22.Wu,J.,Nagao,S.,He,J.,et al.:Nanohinge—induced plasticity of helical carbon nanotubes.Small 9,3561–3566(2013)

    23.Zhao,J.,Kou,L.,Jiang,J.W.,et al.:Tension-induced phase transition of single-layer molybdenum disulphide(MoS2)at low temperatures.Nanotechnology 25,295701(2014)

    24.Timoshenko,S.,Woinowsky-Krieger,S.:Theory of Plates and Shells.Engineering Societies Monographs,2ndedn.McGraw-Hill,New York(1959)

    25.Pei,Q.X.,Zhang,Y.W.,Shenoy,V.B.:A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene.Carbon 48,898–904(2010)

    26.Yang,Z.,Zhao,J.,Wei,N.:Temperature-dependent mechanical properties of monolayer black phosphorus by molecular dynamics simulations.Appl.Phys.Lett.107,023107(2015)

    27.Gao,W.,Huang,R.:Thermomechanics of monolayer graphene:rippling,thermal expansion and elasticity.J.Mech.Phys.Solids 66,42–58(2014)

    28.Wong,W.,Pellegrino,S.:Wrinkled membranes I:experiments.J.Mech.Mater.Struct.1,3–25(2006)

    日本撒尿小便嘘嘘汇集6| 看黄色毛片网站| 我的亚洲天堂| 在线观看舔阴道视频| 日韩免费高清中文字幕av| 成年版毛片免费区| 欧美+亚洲+日韩+国产| 精品国产美女av久久久久小说| 亚洲精品粉嫩美女一区| 亚洲av欧美aⅴ国产| 国产精华一区二区三区| 欧美日韩福利视频一区二区| 首页视频小说图片口味搜索| 正在播放国产对白刺激| 在线国产一区二区在线| 老司机在亚洲福利影院| 伊人久久大香线蕉亚洲五| 久久精品亚洲熟妇少妇任你| 国产一区二区三区视频了| 国产又色又爽无遮挡免费看| 热re99久久精品国产66热6| 老熟女久久久| 国产真人三级小视频在线观看| 午夜福利一区二区在线看| 91精品三级在线观看| 18禁美女被吸乳视频| 制服诱惑二区| 中文字幕色久视频| 精品一区二区三区av网在线观看| 成年人午夜在线观看视频| 黄色 视频免费看| 午夜精品国产一区二区电影| 亚洲国产毛片av蜜桃av| 丰满的人妻完整版| 色94色欧美一区二区| 老鸭窝网址在线观看| 亚洲av熟女| 日韩欧美免费精品| 亚洲精品一二三| 欧美黑人精品巨大| 国产主播在线观看一区二区| 19禁男女啪啪无遮挡网站| 少妇裸体淫交视频免费看高清 | 69精品国产乱码久久久| 国产极品粉嫩免费观看在线| 国产成人一区二区三区免费视频网站| 久久久国产成人精品二区 | 黄片播放在线免费| 精品国内亚洲2022精品成人 | 少妇粗大呻吟视频| 国产精品久久久久久精品古装| 成人特级黄色片久久久久久久| 成人国产一区最新在线观看| 国产深夜福利视频在线观看| 999久久久国产精品视频| 国产精品影院久久| 国产深夜福利视频在线观看| 午夜福利一区二区在线看| 精品福利永久在线观看| 国产一区二区三区综合在线观看| 大陆偷拍与自拍| 国产精品av久久久久免费| 欧美激情高清一区二区三区| 免费女性裸体啪啪无遮挡网站| 一边摸一边抽搐一进一小说 | 亚洲欧美激情综合另类| 少妇的丰满在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 最新在线观看一区二区三区| 国产熟女午夜一区二区三区| 国产精品成人在线| 亚洲欧美激情综合另类| 日本撒尿小便嘘嘘汇集6| 中出人妻视频一区二区| 国产成人一区二区三区免费视频网站| 免费在线观看亚洲国产| 成年人黄色毛片网站| 亚洲精品国产一区二区精华液| 看片在线看免费视频| 久久久精品区二区三区| 欧美在线黄色| 天堂动漫精品| 男女免费视频国产| 后天国语完整版免费观看| 国产欧美日韩综合在线一区二区| 欧美久久黑人一区二区| 99久久99久久久精品蜜桃| 免费在线观看视频国产中文字幕亚洲| 精品少妇一区二区三区视频日本电影| 亚洲专区国产一区二区| 日韩免费av在线播放| 欧美亚洲日本最大视频资源| 黑人巨大精品欧美一区二区蜜桃| 国产野战对白在线观看| 久久亚洲精品不卡| 黄色女人牲交| 80岁老熟妇乱子伦牲交| 久久精品国产清高在天天线| 人人妻人人爽人人添夜夜欢视频| 天堂√8在线中文| 欧美激情 高清一区二区三区| 另类亚洲欧美激情| 丰满的人妻完整版| 国产淫语在线视频| 国产成人精品在线电影| 中亚洲国语对白在线视频| 后天国语完整版免费观看| √禁漫天堂资源中文www| 久久久久国产精品人妻aⅴ院 | 午夜福利在线观看吧| e午夜精品久久久久久久| 国产熟女午夜一区二区三区| 大码成人一级视频| 国产精品 欧美亚洲| 国产精品免费一区二区三区在线 | 久久久国产精品麻豆| 亚洲性夜色夜夜综合| 亚洲国产精品一区二区三区在线| 欧美色视频一区免费| 欧美日韩成人在线一区二区| 黄片大片在线免费观看| a级毛片在线看网站| 欧美日韩一级在线毛片| 久久天堂一区二区三区四区| 久久人人爽av亚洲精品天堂| 黑人猛操日本美女一级片| 大码成人一级视频| 中文字幕色久视频| 国产人伦9x9x在线观看| 香蕉久久夜色| 老司机在亚洲福利影院| 精品人妻1区二区| 91精品三级在线观看| 亚洲五月天丁香| 亚洲avbb在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久免费高清国产稀缺| 国产高清国产精品国产三级| 天天躁日日躁夜夜躁夜夜| 激情视频va一区二区三区| 欧美精品高潮呻吟av久久| 欧美老熟妇乱子伦牲交| 亚洲七黄色美女视频| 两性夫妻黄色片| 十分钟在线观看高清视频www| 成人三级做爰电影| 黄色a级毛片大全视频| 国产精品乱码一区二三区的特点 | 俄罗斯特黄特色一大片| 国产精品九九99| 视频区欧美日本亚洲| 欧美精品人与动牲交sv欧美| 叶爱在线成人免费视频播放| 亚洲成人国产一区在线观看| 欧美黑人精品巨大| 另类亚洲欧美激情| 国产精品一区二区在线观看99| av有码第一页| 午夜亚洲福利在线播放| 又大又爽又粗| 一进一出抽搐动态| 三级毛片av免费| 18禁裸乳无遮挡动漫免费视频| 很黄的视频免费| 国产成人免费观看mmmm| 久久久久国产一级毛片高清牌| av一本久久久久| 国产精品一区二区在线不卡| 国产高清videossex| 夫妻午夜视频| 精品少妇久久久久久888优播| 咕卡用的链子| 天堂俺去俺来也www色官网| 欧美+亚洲+日韩+国产| 一区福利在线观看| 黄频高清免费视频| 后天国语完整版免费观看| svipshipincom国产片| 一级毛片精品| 亚洲欧美精品综合一区二区三区| 妹子高潮喷水视频| 天天躁夜夜躁狠狠躁躁| 国产精品香港三级国产av潘金莲| 我的亚洲天堂| 少妇猛男粗大的猛烈进出视频| 一边摸一边做爽爽视频免费| 免费看a级黄色片| 国产av一区二区精品久久| 国产有黄有色有爽视频| 在线观看午夜福利视频| 国产精品亚洲av一区麻豆| 国产日韩一区二区三区精品不卡| 一区二区三区国产精品乱码| 国产亚洲av高清不卡| 波多野结衣av一区二区av| 美女高潮喷水抽搐中文字幕| 亚洲精品中文字幕一二三四区| 视频区图区小说| 成年女人毛片免费观看观看9 | 我的亚洲天堂| 正在播放国产对白刺激| 怎么达到女性高潮| 国产99久久九九免费精品| 亚洲午夜理论影院| 手机成人av网站| 午夜福利视频在线观看免费| 精品电影一区二区在线| 亚洲第一青青草原| 黄频高清免费视频| 无人区码免费观看不卡| 大片电影免费在线观看免费| 一级毛片精品| 在线观看舔阴道视频| 下体分泌物呈黄色| 亚洲 国产 在线| 极品少妇高潮喷水抽搐| 99在线人妻在线中文字幕 | 伦理电影免费视频| 一边摸一边抽搐一进一出视频| 巨乳人妻的诱惑在线观看| 男女免费视频国产| 老司机福利观看| 高清欧美精品videossex| 国产精品影院久久| 欧美激情高清一区二区三区| 精品国产一区二区久久| 午夜成年电影在线免费观看| 黄色怎么调成土黄色| 午夜激情av网站| 一区二区日韩欧美中文字幕| 亚洲五月婷婷丁香| 亚洲色图综合在线观看| 亚洲专区中文字幕在线| 丝袜美腿诱惑在线| av片东京热男人的天堂| 国产激情欧美一区二区| 午夜两性在线视频| 精品一区二区三卡| 亚洲黑人精品在线| 亚洲欧美激情综合另类| 好看av亚洲va欧美ⅴa在| 亚洲国产欧美日韩在线播放| 亚洲精品美女久久av网站| 成人黄色视频免费在线看| 91九色精品人成在线观看| 91字幕亚洲| 露出奶头的视频| 亚洲第一欧美日韩一区二区三区| 久久 成人 亚洲| 一级黄色大片毛片| 精品一品国产午夜福利视频| 黑丝袜美女国产一区| 91麻豆av在线| 在线国产一区二区在线| 777久久人妻少妇嫩草av网站| 国产淫语在线视频| 国产精品 国内视频| 制服人妻中文乱码| 欧美 日韩 精品 国产| 国产精品一区二区在线观看99| 免费在线观看亚洲国产| 在线观看免费高清a一片| 新久久久久国产一级毛片| 日韩三级视频一区二区三区| 亚洲五月婷婷丁香| 美女福利国产在线| 国产野战对白在线观看| 欧美日韩乱码在线| 校园春色视频在线观看| 在线观看免费视频日本深夜| 亚洲男人天堂网一区| 青草久久国产| 日日爽夜夜爽网站| 亚洲熟女毛片儿| 91成年电影在线观看| 男女免费视频国产| 国产亚洲欧美精品永久| 在线观看舔阴道视频| 免费看a级黄色片| 丝袜美腿诱惑在线| 成人精品一区二区免费| 亚洲精品国产精品久久久不卡| 丰满人妻熟妇乱又伦精品不卡| 午夜福利视频在线观看免费| 99热网站在线观看| 国产精品影院久久| 日韩有码中文字幕| ponron亚洲| 大香蕉久久成人网| 丁香六月欧美| 亚洲精品中文字幕在线视频| 日日摸夜夜添夜夜添小说| 妹子高潮喷水视频| 国产三级黄色录像| 免费在线观看亚洲国产| 真人做人爱边吃奶动态| 亚洲国产精品sss在线观看 | 国产精品免费视频内射| 久久精品国产清高在天天线| 99香蕉大伊视频| 一本综合久久免费| 精品视频人人做人人爽| 成人手机av| 中文字幕高清在线视频| 国产xxxxx性猛交| 1024视频免费在线观看| 高潮久久久久久久久久久不卡| av天堂在线播放| 一级,二级,三级黄色视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品在线观看二区| 男女下面插进去视频免费观看| 久久人人爽av亚洲精品天堂| 人人妻,人人澡人人爽秒播| 亚洲aⅴ乱码一区二区在线播放 | 波多野结衣一区麻豆| 午夜福利影视在线免费观看| 欧美激情高清一区二区三区| 又黄又粗又硬又大视频| 一夜夜www| 好看av亚洲va欧美ⅴa在| 日韩熟女老妇一区二区性免费视频| 黑人欧美特级aaaaaa片| 人人妻人人爽人人添夜夜欢视频| 91老司机精品| 91精品三级在线观看| 最新美女视频免费是黄的| 国产免费av片在线观看野外av| 欧美另类亚洲清纯唯美| 99re在线观看精品视频| 国产精品久久电影中文字幕 | 亚洲人成伊人成综合网2020| 婷婷精品国产亚洲av在线 | 天天影视国产精品| 色综合欧美亚洲国产小说| 女人被躁到高潮嗷嗷叫费观| 黑丝袜美女国产一区| 亚洲第一青青草原| 99riav亚洲国产免费| 高清在线国产一区| a级毛片在线看网站| 久久热在线av| 老熟女久久久| 狠狠婷婷综合久久久久久88av| 亚洲综合色网址| 精品久久久久久,| 午夜福利,免费看| 中文欧美无线码| 亚洲专区字幕在线| 一本一本久久a久久精品综合妖精| 欧美丝袜亚洲另类 | 国产高清videossex| 无遮挡黄片免费观看| 久久香蕉激情| 不卡一级毛片| 在线观看免费日韩欧美大片| 成年人午夜在线观看视频| 一个人免费在线观看的高清视频| 免费在线观看日本一区| 亚洲精品美女久久久久99蜜臀| 黄色丝袜av网址大全| av欧美777| 国产区一区二久久| 国产亚洲精品第一综合不卡| 日本撒尿小便嘘嘘汇集6| 飞空精品影院首页| 国产熟女午夜一区二区三区| 高清av免费在线| xxx96com| 搡老熟女国产l中国老女人| 亚洲欧美激情在线| av在线播放免费不卡| 欧美乱妇无乱码| 看黄色毛片网站| 久久精品亚洲熟妇少妇任你| 欧美国产精品一级二级三级| 啦啦啦在线免费观看视频4| 日日夜夜操网爽| 亚洲精品一卡2卡三卡4卡5卡| 精品国产一区二区三区四区第35| 成在线人永久免费视频| 免费不卡黄色视频| 一本大道久久a久久精品| 国产不卡一卡二| 亚洲一区二区三区欧美精品| 在线播放国产精品三级| 精品国产超薄肉色丝袜足j| 日韩三级视频一区二区三区| 日本vs欧美在线观看视频| 又黄又粗又硬又大视频| 一a级毛片在线观看| 久久精品国产亚洲av高清一级| 久久青草综合色| 午夜福利,免费看| 我的亚洲天堂| 欧美日本中文国产一区发布| 少妇猛男粗大的猛烈进出视频| 99精品欧美一区二区三区四区| 人人妻人人添人人爽欧美一区卜| 亚洲熟妇熟女久久| 看黄色毛片网站| 黄色视频,在线免费观看| 好看av亚洲va欧美ⅴa在| 久久中文字幕人妻熟女| av不卡在线播放| 狠狠狠狠99中文字幕| 免费日韩欧美在线观看| 母亲3免费完整高清在线观看| 九色亚洲精品在线播放| 亚洲人成电影观看| 久久久久久免费高清国产稀缺| 青草久久国产| 18禁观看日本| 最新在线观看一区二区三区| 国产一区有黄有色的免费视频| 亚洲第一欧美日韩一区二区三区| 久久狼人影院| 国产片内射在线| 日韩欧美三级三区| 日日夜夜操网爽| 精品久久久久久久毛片微露脸| 亚洲欧美一区二区三区久久| 男女之事视频高清在线观看| 老司机在亚洲福利影院| 国产黄色免费在线视频| 亚洲精品国产区一区二| 国产国语露脸激情在线看| 日韩欧美国产一区二区入口| 大码成人一级视频| 国产精品综合久久久久久久免费 | 人妻久久中文字幕网| 999久久久国产精品视频| 麻豆av在线久日| 亚洲午夜理论影院| 久久精品国产清高在天天线| 99热网站在线观看| 成人特级黄色片久久久久久久| 国产成人精品在线电影| 最近最新中文字幕大全电影3 | 一区二区三区激情视频| 国产av精品麻豆| 黄色怎么调成土黄色| 99re在线观看精品视频| 大香蕉久久成人网| 美国免费a级毛片| 免费在线观看完整版高清| 69精品国产乱码久久久| 免费一级毛片在线播放高清视频 | 精品熟女少妇八av免费久了| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久久午夜电影 | 国产高清国产精品国产三级| 午夜视频精品福利| 国产伦人伦偷精品视频| √禁漫天堂资源中文www| 在线观看www视频免费| 亚洲熟妇熟女久久| 三级毛片av免费| 老司机深夜福利视频在线观看| 日韩成人在线观看一区二区三区| 国产精品久久视频播放| 免费一级毛片在线播放高清视频 | 国产精品永久免费网站| 日韩免费av在线播放| 亚洲精品自拍成人| 伦理电影免费视频| 黄网站色视频无遮挡免费观看| 狠狠狠狠99中文字幕| 国产精品免费视频内射| 欧美成狂野欧美在线观看| 在线观看免费视频日本深夜| 一级作爱视频免费观看| 精品亚洲成a人片在线观看| 99久久综合精品五月天人人| 亚洲视频免费观看视频| 脱女人内裤的视频| 欧美日韩乱码在线| 亚洲专区国产一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看www视频免费| 欧美激情高清一区二区三区| 在线av久久热| 欧美国产精品一级二级三级| 黄网站色视频无遮挡免费观看| 久久精品人人爽人人爽视色| 婷婷丁香在线五月| 妹子高潮喷水视频| 51午夜福利影视在线观看| 久99久视频精品免费| 女人被狂操c到高潮| 变态另类成人亚洲欧美熟女 | 午夜福利在线观看吧| 咕卡用的链子| 日本黄色日本黄色录像| 免费久久久久久久精品成人欧美视频| 伊人久久大香线蕉亚洲五| 免费看十八禁软件| 一本综合久久免费| 天堂动漫精品| 国产精品一区二区在线不卡| 亚洲国产毛片av蜜桃av| 黄色片一级片一级黄色片| 久久香蕉精品热| 亚洲av熟女| 一区二区三区国产精品乱码| 香蕉丝袜av| 侵犯人妻中文字幕一二三四区| 99香蕉大伊视频| 日韩成人在线观看一区二区三区| 久久人妻av系列| 国产av精品麻豆| 精品少妇一区二区三区视频日本电影| 国产精品美女特级片免费视频播放器 | 亚洲一卡2卡3卡4卡5卡精品中文| 国产男靠女视频免费网站| 国产麻豆69| 免费看a级黄色片| 国产精品久久电影中文字幕 | 久久ye,这里只有精品| 国产精品九九99| 亚洲午夜精品一区,二区,三区| 一区在线观看完整版| 精品亚洲成国产av| 国产在线精品亚洲第一网站| 香蕉丝袜av| 激情视频va一区二区三区| 欧美黄色淫秽网站| 黄片小视频在线播放| 美国免费a级毛片| 大香蕉久久成人网| 亚洲国产精品sss在线观看 | 日韩免费高清中文字幕av| 在线观看午夜福利视频| 黑人巨大精品欧美一区二区蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 国产精品九九99| 777久久人妻少妇嫩草av网站| 午夜精品久久久久久毛片777| 国产又色又爽无遮挡免费看| 久久 成人 亚洲| 亚洲精华国产精华精| 欧美+亚洲+日韩+国产| 高清在线国产一区| 久久中文字幕人妻熟女| 热re99久久精品国产66热6| 亚洲免费av在线视频| 美女高潮喷水抽搐中文字幕| 欧美乱色亚洲激情| 青草久久国产| 免费少妇av软件| 窝窝影院91人妻| 亚洲aⅴ乱码一区二区在线播放 | 免费高清在线观看日韩| 久久国产精品影院| 久久久久久亚洲精品国产蜜桃av| 亚洲成av片中文字幕在线观看| 老司机亚洲免费影院| 久9热在线精品视频| 国产xxxxx性猛交| 精品国内亚洲2022精品成人 | 欧美日韩国产mv在线观看视频| 亚洲精品自拍成人| 午夜福利视频在线观看免费| 人人澡人人妻人| 狠狠狠狠99中文字幕| 日韩免费av在线播放| 国产精品永久免费网站| 久久中文字幕一级| 亚洲精品中文字幕在线视频| 婷婷丁香在线五月| 日韩熟女老妇一区二区性免费视频| 97人妻天天添夜夜摸| 人人妻人人澡人人看| 80岁老熟妇乱子伦牲交| av电影中文网址| 欧美精品一区二区免费开放| 一级a爱片免费观看的视频| 精品少妇久久久久久888优播| а√天堂www在线а√下载 | 欧美中文综合在线视频| 久久久久久久午夜电影 | 亚洲久久久国产精品| 美女国产高潮福利片在线看| 日本一区二区免费在线视频| 午夜福利一区二区在线看| 成人精品一区二区免费| 这个男人来自地球电影免费观看| 在线视频色国产色| 日日爽夜夜爽网站| 色精品久久人妻99蜜桃| 免费看a级黄色片| xxxhd国产人妻xxx| 国产精品久久视频播放| 在线视频色国产色| 久久 成人 亚洲| 高清毛片免费观看视频网站 | 久久天堂一区二区三区四区| 无限看片的www在线观看| 久9热在线精品视频| 在线永久观看黄色视频| 一本大道久久a久久精品| 免费在线观看黄色视频的| 国产91精品成人一区二区三区| 老司机亚洲免费影院| 国产精品秋霞免费鲁丝片| 免费在线观看完整版高清| 激情在线观看视频在线高清 | 久久精品国产清高在天天线| 久久精品亚洲熟妇少妇任你| 美女 人体艺术 gogo| 亚洲av美国av| 欧美激情久久久久久爽电影 | 欧美人与性动交α欧美精品济南到| 免费少妇av软件| 黑人欧美特级aaaaaa片|