• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A prediction model for the effective thermal conductivity of nanofluids considering agglomeration and the radial distribution function of nanoparticles

    2018-06-07 02:19:28ZhengWang
    Acta Mechanica Sinica 2018年3期

    Z.M.Zheng·B.Wang

    1 Introduction

    The intrinsically low thermal conductivity of conventional heat transfer fluids is one of the major limitations on development of high-efficiency cooling devices in industrial fields.To achieve development objectives,these fluids must be replaced or their thermal properties improved.On the other hand,it is well known that solid particles exhibit better thermal conductivity compared with conventional heat transfer fluids.However,addition of micro-or millisize solid particles to base fluids,which will enhance the thermal conductivity,also results in anomalous,high flow resistance and severe pipe wear.These negative side-effects have been obstacles to their feasible applications.In 1995,a breakthrough study on enhancing the thermal conductivity of conventional heat transfer fluids was carried out by Choi and Eastman[1],who put forward the concept of,viz.a suspension of nanoparticles dispersed in a conventional fluid,and firstly synthesized A l2O3–water nanofluid.Intriguingly,he found that addition of nanoparticles to conventional fluids resulted in anomalously enhanced thermal conductivity.In recent years,many experimental investigations have also been performed on thermal conductivity enhancement of nanofluids[2–8].For example,Lee et al.[2]measured the thermal conductivity of several kinds of nanofluids,revealing enhancements of about 12.1%for 3.4vol.%CuO–water nanofluid and 9.3%for 4.0vol.%A l2O3–water nanofluid.They also found that the nanoparticles in these systems were agglomerated(Fig.1a,b),since they did not use an electrostatic repulsion technique during the preparation of nanofluids.Kole and Dey[8]studied the effects of volume fraction and temperature on the enhancement of the thermal conductivity of gear-oil-based nanofluid.Data from transmission electron microscopy(TEM)(Fig.1c)and dynamic light scattering(DLS)measurements confirmed the presence of agglomerated nanoparticles in their prepared nanofluids.Moreover,the thermal conductivity enhancement was about 10.4%for 2.5vol.%CuO loading at 30°C.Intriguingly,the results of Eastman et al.[3]showed that,for a nanofluid consisting of ethylene glycol(EG)and only 0.3vol.%Cu nanoparticles,the thermal conductivity was measured to be increased by 40%,while very little agglomeration of Cu particles was observed by TEM(Fig.1d).

    Fig.1 TEM images of different nanofluids.a Al2O3–water(from Lee et al.[2]).b CuO–water(from Lee et al.[2]).c CuO–gear oil(from Kole and Dey[8]).d Cu–EG(from Eastman et al.[3])

    These amazing experimental results motivated researchers to study the heat conduction mechanisms behind the effective thermal conductivity of nanofluids theoretically.Most existing models are based on effective medium theory,in which the size,shape,and volume fraction of particles are typically incorporated as variables,and the interfacial nanolayer at solid–liquid interfaces is also taken into account[9–14].For instance,Lu and Song[9]developed a theoretical model to second order in volume fractionφto predict the effective thermal conductivity of composites with coated or bonded spherical inclusions.Yu and Choi [10,11] believed that the severalnanometer-thick interfacial nanolayer at solid–liquid interfaces played an important role in the effective thermal conductivity of nanofluids, proposing two novel models based on the Maxwell model and Hamilton and Crosser model, respectively.Xue and Xu[12] also modified Bruggeman’s model for the effective thermal conductivity of nanofluids by taking the interfacial layer effect into account.However, like the predictions of classical models (some of which are listed in Table1)applied for computing the effective thermal conductivity of mixtures including millimeter-size or micrometer-size solid particles,the predictions of their models were lower than experimental results for the thermal conductivity of nanofluids.The weakness of these modified classical models for the thermal conductivity of nanofluids indicates that some mechanisms may have been missed.

    Since nanoparticles have high surface energy,they easily agglomerate together when added to a base fluid,as shown in some experimental results[2,4–8].Moreover,adjacent particles in agglomerates create percolation paths with lower thermal resistance,which may have a major effect on the effective thermal conductivity[15,16].To estimate the contribution of this agglomeration effect to the thermal conductivity enhancement of nanofluids,several prediction models have been proposed.Based on the effective thermal medium approximation and fractal theory,Wang et al.[17]developed a fractal model for nanofluids to take the agglomerates and their radial distribution into account.Their predictions for the effective thermal conductivity of CuO nanofluids fit successfully with their experimental data forφ<5%.However,this model could not match a wide range of experimental results and not be able to predict the nonlinear behavior of the effective thermal conductivity of nanofluids.Prasher et al.[18]used a three-level homogenization method,validated by Monte Carlo simulations of heat conduction in fractal aggregates,to investigate the role of agglomeration in the enhancement of the purely conductive phenomenon in nanofluids.Their prediction results showed that the conductivity enhancement strongly depended on the fractal dimension of the agglomerates and their radius of gyration.Feng et al.[19]considered the nanolayer and agglomeration effects of particles and proposed a theoretical model for the thermal conductivity of nanofluids based on a two-dimensional(2D)lattice model,assuming that the formation of agglomerates followed the simple packing principle.Zhou and Wu[20]proposed a theoretical model to predict the thermal conductivity of nanofluids,in which the influence of nanoparticle clusters was considered,by introducing particle size distribution,with an assumption that particles in clusters aggregated with each other closely.Xiao et al.[21]took into account heat convection between nanoparticles and liquids due to Brownian motion of nanoparticles in nanofluids.Their expression for the thermal conductivity of nanofluids was developed based on fractal geometry theory.However,therandom distribution and disorder effect of nanoparticles to structure formation in nanofluids contribute to heat conduction.Therefore,these effects should be considered in the prediction model for effective thermal conductivity of nanofluids,by introducing the radial distribution function of nanoparticles[9,22–24].

    Against this background,we propose herein a model for predicting the effective thermal conductivity of nanofluids.The development of the model proceeds as follows:The nanofluid system is first divided into several parts,each of which contains agglomerates at a specific level with a nanolayer and the surrounding base fluid;We treat each agglomerate and its surrounded nanolayer as an equilibrium agglomerate with equilibrium nanolayer.To describe the effect of the presence of agglomerates on the effective thermal conductivity in each equilibrium part,a radial distribution function is introduced.Thus,the effective thermal conductivity of the whole system can be evaluated by combining each part.In this way,the agglomeration effect and the radial distribution function of the nanoparticles are taken into account.Finally,the predictions of the present model for several sets of nanofluids are also compared with experimental results,as well as with other theoretical models.

    2 Models of effective thermal conductivity

    2.1 Earlier models

    Many classical models have been developed to calculate the effective thermal conductivity of solid–liquid suspensions.However,these classical models apply to dilute suspensions containing milli-or microparticles.To extend them to predict the effective thermal conductivity of nanofluids,various researchers have proposed modified models derived from classical models.Some of these are listed in Table 1.

    2.1.1 Present model

    The TEM images in Fig.1a–c show nanoparticle agglomerates of different sizes.This random distribution of multisize agglomerates(or multilevel agglomerates)makes a great contribution to the enhancement of the heat conduction in nanofluids.Therefore,we introduce an equivalent agglomeration method[28]to take the agglomeration effect into account in the thermal conductivity calculation.A schematic of the method is shown in Fig.2.The main idea is that the multilevel agglomerates consist of two parts:pure solid-phase particle material and liquid phase bounded in pores.For anith-level agglomerate, the contained solid-phase particles areregarded as an equivalent solid particle with the same volume,while the liquid phase,including the liquid in the gaps and the nanolayer on the surface of the agglomerate,is considered as an equivalent interfacial nanolayer on the surface of the equivalent solid particle.The equivalent nanolayer thicknesstisatisfies the equation:are the radius of the equivalent agglomeration particleiand equivalent solid particlei,respectively.Moreover,each primary single particle with its interfacial nanolayer is treated as a zero-level agglomerate for convenience,thusrepresents the radius of such a single solid particle.

    Since the random distribution of each level of agglomeratesmakes a different partial contribution to the enhancement of the heat conduction in the nanofluid,the agglomeration ratioλiof theith-level agglomerates is introduced to weigh their contribution to the total thermal conductivity enhancement.The agglomeration ratioλican be calculated asandNare the number of agglomeratesiand the total number of particles(single particles and agglomerates),which can both be measured approximately from TEM images.Moreover,λishould satisfy

    To calculate the effective thermal conductivity,we assume that the contribution of each level of agglomerates to the effective thermal conductivity of the nanofluid complies with the principle of linear weighted superposition.Thus,we defineas the effective thermal conductivity of a nanofluid in the presence of onlyith-level agglomerates,which can be expressed as[9]

    Table 1 Earlier theoretical models of effective thermal conductivity of solid–liquid suspensions or nanofluids

    Fig.2 Scheme of equivalent agglomeration method[28]

    In Eq.(1),is the effective volume fraction of agglomerateiwith its combined nanolayer.The second term on the right-hand side, first obtained by Maxwell,accounts for the presence of rigid spheres without interactions;the third term is a correlation to the first-order coefficient due to the mutual impenetrability of the spheres.The fourth term takes into account the thermal interactions(i.e.,how the temperature field around the first spherical particle is affected by the presence of the second),as well as the structural distribution of pairs of particles(i.e.,how the presence of one particles affects the location of the other),where the coefficientM?can be expressed as

    In Eqs.(2)–(5),φandare the volume fraction of all particles without their nanolayers and the effective volume fraction of agglomerateiwith its combined nanolayer,respectively;ApandBpare the coefficients of each term in the summation,which are expressed in detail in Ref.[22];ris the distance between the center of each pair of particles in the system;θ1is the dimensionless polarizability,characterizing the interfacial nanolayer effect;βxyis a convenient measure of the disparity betweenkxandky[22,24];kxandkyrefer tokp,kf,andkl,which are the thermal conductivity of solid-phase particle,base fluid,and interfacial nanolayer,respectively.is a radial distribution function to describe the structure of suspensions of identical rigid spherical particles within a liquid, first proposed by Jeffrey[22].Employing the simplified statistics of a homogeneous structure,he assumed that the radial distribution function should satisfy the conditions of low-density limits and temperature continuity at liquid–solid interfaces,taking the following form:(whereHis a step function).However,a step function cannot represent the structure of an equilibrium rigid sphere fluid at any finite density.Thus,an alternative radial distribution function is introduced in the present model,and can be accurately evaluated using the procedure proposed by Verlet and Weis[29].

    It is worth mentioning that the thermal conductivity of the interfacial nanolayerklshould be a nonlinear function ofδ(ranging from 0 toδi).If not,it would tend to an infinite value as the nanolayer became ultrathin[30,31](t→0).Moreover,it decreases fromkptokfasδchanges from 0 toδi,because the interfacial nanolayer represents an intermediate state between the bulk solid and liquid phase.Following the analysis above,the thermal conductivity of nanolayerklshould become[28,32,33]

    whereis related to the ratio

    We then use the integral average of Eq.(6)to calculate the effective thermal conductivity of nanolayerkl,with the form

    Now,the effective thermal conductivity of the nanofluid,considering the agglomeration effect,can be expressed as

    and the effective thermal conductivity of the nanofluid can be predicted by substituting Eqs.(1)–(5)and Eq.(7)into Eq.(8).According to experimental studies[2,8],we posit that there exists one level of agglomeration in a dilute suspension,for simplicity,thus Eq.(8)becomes

    For the computation using just one-level agglomeration,the radius of the equivalent solid particlecan be replaced by the radius of the first-level agglomerate,sincecan be measured by TEM and the volume of liquid gaps in a one-level agglomerate are small compared with the solid phase particles.Also,the agglomeration ratio of the one-level agglomerateλ1can also be estimated by TEM.

    Through its consideration of the structural distribution of pairs of particles,the accuracy of our model is up to orderφ2.Moreover,the present model can also be used to predict the effective thermal conductivity of nanofluids without agglomerates.For such cases,one lets the agglomeration ratioλ1be zero,then Eq.(9)degenerates to the model of Lu and Song with an exponential distribution of thermal conductivity in the nanolayer.

    3 Results and discussion

    The present model was validated by comparing its prediction results with several sets of experimental data,as well as results calculated using other theoretical models for nanofluids.A linear distribution and a constant value of thermal conductivity in the nanolayer are employed in the calculations using the models of Lu and Song and of Yu and Choi,respectively.

    Table 2 presents the values of the parametersλi,δi,andti(i=0,1)used in our model according to the experimental data from Lee et al.[2],Kole and Dey[8],and Eastman et al.[4].The agglomeration ratio of the one-level agglomerateλ1was taken as 19%,14%,26%,0%for A l2O3–water,CuO–water,CuO-gear oil,and Cu–EG,respectively.

    The predictions of the present model for the A l2O3–water nanofluid are in good agreement with the experimental datafor the Al2O3–water nanofluid synthesized by Lee et al.[2],as shown in Fig.3.The average equivalent radius of one level agglomerates used in the present calculation is about≈70nm based on the scale bar in the TEM images(Fig.1a),and the nanolayer thickness of the original particle and equivalent agglomeration particle aret0=0.96nm andt1=7.00nm,respectively.The value oft0is close to the results of molecular dynamics(MD)simulation(≈1nm)carried out by Xue et al.[34]and direct observations using the X-ray reflection technique,suggesting that the nanolayer thickness should be several times the water molecule diameter[35].Meanwhile,the calculation results of Maxwell model,Lu and Song model witht0=1nm and Yu an Choi model witht0=1nm,show higher deviations from experimental data.Comparison between the predictions of the present model and those obtained using the model of Lu and Song indicates that the agglomerates of nanoparticles would make a negative contribution to the effective thermal conductivity of nanofluids.

    Table 2 Values of parameters used in our model

    Fig.3 Thermal conductivity variation for Al2O3–water nanofluid[2]

    For the CuO–water nanofluid,the predictions of the present and other models are shown in Fig.4,in comparison with the experimental data obtained by Lee et al.The values of the nanolayer thickness used in the present calculations are chosen ast0=2.00 nm andt1=6.75nm,while the average equivalent radius of one-level agglomerates was≈45nm,based on the scale bar in the TEM image(Fig.1b).Meanwhile,the same value oft0is adopted for the predictions using the model of Lu and Song,with a linear distribution ofkl,as well as the predictions obtained using the model of Yu and Choi,with a constantkl=50kf.As expected,good agreement is found between the predictions of the present model and the experimental data.

    Fig.4 Thermal conductivity variation for CuO–water nanofluid[2]

    Fig.5 Thermal conductivity variation for CuO–gear oil nanofluid[8]

    The predictions for the CuO–gear oil nanofluid are illustrated in Fig.5,using values for the nanolayer thickness oft0=3.90 nm andt1=9.10nm,and the average equivalent radius of one-level agglomerates is≈70 nm based on the scale bar in the TEM image(Fig.1c).By considering the agglomeration effect to reach order up toφ2,the present predictions show better agreement with experimental data[4]compared with the other models.In addition,Figs.4 and 5 reveal that the nanolayer thickness of CuO nanoparticles in water is much thinner than that in gear oil,indicating that the nanolayer thickness depends on the type of base fluid,as also reported in several previous investigations[30,36,37].

    Fig.6 Thermal conductivity variation for Cu–EG nanofluid[3]

    In the case of the Cu–EG nanofluid,the predictions of the present model are shown in Fig.6,in comparison with the results of other models and experimental data[3].The method used by Eastman et al.to synthesize their nanofluid resulted in little or no agglomerates,as shown in the TEM image(Fig.1d).Therefore,we chose an agglomeration ratio for one-level agglomerates ofλ1=0%in our calculations.The good consistency between the effective thermal conductivity predictions and the experimental data and the results of other models results from the contribution of orderφ2and the nonlinear distribution of thermal conductivitykl.In addition,this also indicates that the chosen values ofδipresented in Table 2 are reasonable.Another impressive finding is that the ratioδibecomes relatively large ifis small enough,both with and without agglomerates.

    4 Conclusions

    We present a prediction model for the effective thermal conductivity of nanofluids,using the equivalent agglomeration method to consider the agglomeration effect.With the help of the radial distribution function of the nanoparticles in the nanofluid,the present model is up to orderφ2in the volume fraction,comparable to most other theoretical models.The highly consistent predictions of the present method indicate that its application for predicting the thermal conductivity of nanofluids,with or without agglomerates,is more appropriate than other models,based on comparisons with experimental datasets.However,validation of the chosen values,including the agglomeration ratio and nanolayer thickness,must be further investigated.Moreover,other mechanisms for thermal conductivity enhancement,e.g.,based on temperature,pH value,and even viscosity,might also be considered in future studies.

    AcknowledgementsThis work was supported by the National Natural Science Foundation of China(Grants 11472313,11232015,and 11572355)and the Guangdong Province Research Fund for Applied Research.

    1.Choi,S.U.S.,Eastman,J.A.:Enhancing Thermal Conductivity of Fluids with Nanoparticles.In:International mechanical engineering congress and exhibition,San Francisco,Nov.12–17(1995)

    2.Lee,S.,Choi,S.U.S.,Li,S.,et al.:Measuring thermal conductivity of fluids containing oxide nanoparticles.ASME J.Heat Transf.121,280–9(1999)

    3.Eastman,J.A.,Choi,S.U.S.,Li,S.,et al.:Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles.Appl.Phys.Lett.78,718–720(2001)

    4.Das,S.K.,Putra,N.,Thiesen,P.,et al.:Temperature dependence of thermal conductivity enhancement for nanofluids.ASME J.Heat Transf.125,567–574(2003)

    5.Kang,H.U.,Kim,S.H.,Oh,J.M.:Estimation of thermal conductivity of nanofluid using experimental effective particle volume.Exp.Heat Transf.19,181–191(2006)

    6.Karthikeyan,N.R.,Philip,J.,Raj,B.:Effect of clustering on the thermal conductivity of nanofluids.Mater.Chem.Phys.109,50–55(2008)

    7.Mintsa,H.A.,Roy,G.,Nguyen,C.T.,et al.:New temperature dependent thermal conductivity data for water-based nanofluids.Int.J.Therm.Sci.48,363–371(2009)

    8.Kole,M.,Dey,T.K.:Enhanced thermophysical properties of copper nanoparticles dispersed in gear oil.Appl.Therm.Eng.56,45–53(2013)

    9.Lu,S.Y.,Song,J.L.:Effective conductivity of composites with spherical inclusions:effect of coating and detachment.J.Appl.Phys.79,609–618(1996)

    10.Yu,W.,Choi,S.U.S.:The role of interfacial layers in the enhanced thermal conductivity of nanofluids:a renovated Maxwell model.J.Nano.Res.5,167–171(2003)

    11.Yu,W.,Choi,S.U.S.:The role of interfacial layers in the enhanced thermal conductivity of nanofluids:a renovated Hamilton–Crosser model.J.Nano.Res.6,355–361(2014)

    12.Xue,Q.,Xu,W.M.:A model of thermal conductivity of nanofluids with interfacial shells.Mater.Chem.Phys.90,298–301(2005)

    13.Rizvi,I.H.,Jain,A.,Ghosh,S.K.,et al.:Mathematical modelling of thermal conductivity for nanofluid considering interfacial nanolayer.Heat Mass Transf.49,595–600(2013)

    14.Jiang,H.,Xu,Q.,Huang,C.,et al.:The role of interfacial nanolayer in the enhanced thermal conductivity of carbon nanotube-based nanofluids.Appl.Phys.A 118,197–205(2015)

    15.Buongiorno,J.:Convective transport in nanofluids.J.Heat Transf.128,240–250(2006)

    16.Keblinski,P.,Prasher,R.,Eapen,J.:Thermal conductance of nanofluids:Is the controversy over?J.Nano.Res.10,1089–1097(2008)

    17.Wang,B.X.,Zhou,L.P.,Peng,X.F.:A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles.Int.J.Heat Mass Transf.46,2665–2672(2003)

    18.Prasher,R.,Evans,W.,Meakin,P.,et al.:Effect of aggregation on thermal conduction in colloidal nanofluids.Appl.Phys.Lett.89,143119(2006)

    19.Feng,Y.,Yu,B.,Xu,P.,et al.:The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles.J.Phys.D:Appl.Phys.40,3164(2007)

    20.Zhou,D.,Wu,H.:A thermal conductivity model of nanofluids based on particle size distribution analysis.Appl.Phys.Lett.105,083117(2014)

    21.Xiao,B.,Yang,Y.,Chen,L.:Developing a novel form of thermal conductivity of nanofluids with Brownian motion effect by means of fractal geometry.Powder Technol.239,409–414(2013)

    22.Jeffrey,D.J.:Conduction through a random suspension of spheres.Proc.R.Soc.Lond.A:Math.Phys.Eng.Sci.335,355–367(1973)

    23.Chiew,Y.C.,Glandt,E.D.:The effect of structure on the conductivity of a dispersion.J.Colloid Interface Sci.94,90–104(1983)

    24.Chiew,Y.C.,Glandt,E.D.:Effective conductivity of dispersions:the effect of resistance at the particle surfaces.Chem.Eng.Sci.42,2677–2685(1987)

    25.Maxwell,J.C.:Electricity and Magnetism.Clarendon Press,Oxford(1873)

    26.Hamilton,R.L.,Crosser,O.K.:Thermal conductivity of heterogeneous two-component systems.Ind.Eng.Chem.Fund.1,187–191(1962)

    27.Murshed,S.M.S.,Leong,K.C.,Yang,C.:Investigations of thermal conductivity and viscosity of nanofluids.Int.J.Therm.Sci.47,560–568(2008)

    28.Sui,J.,Zheng,L.C.,Zhang,X.X.,et al.:A novel equivalent agglomeration model for heat conduction enhancement in nanofluids.Sci.Rep.6,19560(2016)

    29.Verlet,L.,Weis,J.J.:Equilibrium theory of simple liquids.Phys.Rev.A 5,939–952(1972)

    30.Liang,Z.,Tsai,H.L.:Thermal conductivity of interfacial layers in nanofluids.Phys.Rev.E 83,041602(2011)

    31.Tso,C.Y.,Fu,S.C.,Chao,C.Y.:A semi-analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness.Int.J.Heat Mass Transf.70,202–214(2014)

    32.Xie,H.,Fujii,M.,Zhang,X.:Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle- fluid mixture.Int.J.Heat Mass Transf.48,2926–2932(2005)

    33.Sohrabi,N.,Masoum i,N.,Behzadmehr,A.,et al.:A simple analytical model for calculating the effective thermal conductivity of nanofluids.Heat Transf.Asian Res.39,141–150(2010)

    34.Xue,L.,Keblinski,P.,Phillpot,S.R.,et al.:Effect of liquid layering at the liquid–solid interface on thermal transport.Int.J.Heat Mass Transf.47,4277–4284(2004)

    35.Yu,C.J.,Richter,A.G.,Datta,A.,et al.:Molecular layering in a liquid on a solid substrate:an X-ray reflectivity study.Phys.B:Cond.Mater.283,27–31(2000)

    36.Xue,Q.Z.:Model for effective thermal conductivity of nanofluids.Phys.Lett.A 307,313–317(2003)

    37.Firlar,E.,??nar,S.,Kashyap,S.,et al.:Direct visualization of the hydration layer on alum in a nanoparticles with the fluid cell STEM in situ.Sci.Rep.5,9830(2015)

    国产精品成人在线| 水蜜桃什么品种好| 国产真人三级小视频在线观看| videosex国产| 黄色片一级片一级黄色片| 国产日韩一区二区三区精品不卡| 午夜激情av网站| 丁香欧美五月| 极品教师在线免费播放| 国产单亲对白刺激| 美国免费a级毛片| 精品电影一区二区在线| 老汉色av国产亚洲站长工具| 国产熟女午夜一区二区三区| 桃色一区二区三区在线观看| av片东京热男人的天堂| 波多野结衣av一区二区av| 女警被强在线播放| 日日摸夜夜添夜夜添小说| 亚洲精品在线美女| 欧美一级毛片孕妇| 一区在线观看完整版| 一区二区三区激情视频| 搡老熟女国产l中国老女人| 国产激情欧美一区二区| 国产精品一区二区免费欧美| 性欧美人与动物交配| 国产精品美女特级片免费视频播放器 | 亚洲成人久久性| netflix在线观看网站| 女警被强在线播放| 国产一区二区三区在线臀色熟女 | 国产精品偷伦视频观看了| 亚洲精品粉嫩美女一区| 国产一区在线观看成人免费| 黄色 视频免费看| 在线十欧美十亚洲十日本专区| 黄色毛片三级朝国网站| 亚洲国产中文字幕在线视频| 真人一进一出gif抽搐免费| 日日干狠狠操夜夜爽| 亚洲av熟女| 久久天躁狠狠躁夜夜2o2o| 1024视频免费在线观看| 青草久久国产| 国产精华一区二区三区| 18美女黄网站色大片免费观看| 免费女性裸体啪啪无遮挡网站| 18美女黄网站色大片免费观看| 女警被强在线播放| 新久久久久国产一级毛片| 手机成人av网站| 亚洲精品中文字幕在线视频| 国产av在哪里看| av国产精品久久久久影院| 亚洲熟妇熟女久久| 黄色视频不卡| 日韩欧美免费精品| 黄片大片在线免费观看| 免费在线观看黄色视频的| 免费av中文字幕在线| 级片在线观看| 黄色怎么调成土黄色| 美女大奶头视频| 久久久久亚洲av毛片大全| 99久久人妻综合| 男人舔女人下体高潮全视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲中文字幕日韩| 777久久人妻少妇嫩草av网站| 欧美 亚洲 国产 日韩一| 激情在线观看视频在线高清| 曰老女人黄片| 国产精品乱码一区二三区的特点 | e午夜精品久久久久久久| 中文欧美无线码| 亚洲一区二区三区欧美精品| 夜夜爽天天搞| 国产精品 国内视频| 免费观看人在逋| 国产成年人精品一区二区 | 精品熟女少妇八av免费久了| 18禁裸乳无遮挡免费网站照片 | 老司机午夜福利在线观看视频| 色婷婷av一区二区三区视频| 视频区图区小说| 亚洲一区高清亚洲精品| 亚洲第一欧美日韩一区二区三区| 欧美一级毛片孕妇| 国产aⅴ精品一区二区三区波| 午夜久久久在线观看| 国产单亲对白刺激| 国产欧美日韩综合在线一区二区| 国产精华一区二区三区| 日日干狠狠操夜夜爽| 18禁美女被吸乳视频| 日日干狠狠操夜夜爽| 国产成人精品无人区| 最近最新中文字幕大全免费视频| 国产精品av久久久久免费| av有码第一页| 亚洲中文av在线| 国产三级黄色录像| 俄罗斯特黄特色一大片| 侵犯人妻中文字幕一二三四区| 操出白浆在线播放| 久9热在线精品视频| 国产精品偷伦视频观看了| 国产精品偷伦视频观看了| 中文欧美无线码| 国产成人影院久久av| 亚洲国产欧美一区二区综合| 性色av乱码一区二区三区2| 日韩视频一区二区在线观看| 免费观看人在逋| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品国产精品久久久不卡| 久久精品国产清高在天天线| 国产主播在线观看一区二区| av视频免费观看在线观看| 国产一卡二卡三卡精品| 亚洲激情在线av| 国产成人精品在线电影| 国内毛片毛片毛片毛片毛片| 亚洲精品粉嫩美女一区| av在线天堂中文字幕 | 久久精品亚洲av国产电影网| 国产成人影院久久av| 国产精品美女特级片免费视频播放器 | 十分钟在线观看高清视频www| 99热国产这里只有精品6| 视频区图区小说| 自拍欧美九色日韩亚洲蝌蚪91| 两个人看的免费小视频| 日日爽夜夜爽网站| 亚洲精品一卡2卡三卡4卡5卡| 午夜激情av网站| 动漫黄色视频在线观看| 亚洲精品中文字幕在线视频| 999久久久国产精品视频| 日本 av在线| 亚洲,欧美精品.| 精品卡一卡二卡四卡免费| 啦啦啦在线免费观看视频4| 99国产精品99久久久久| 亚洲专区字幕在线| 国产亚洲av高清不卡| 天天躁夜夜躁狠狠躁躁| 国产精品久久久av美女十八| 亚洲成人国产一区在线观看| 在线观看免费视频网站a站| 免费av毛片视频| 五月开心婷婷网| 在线看a的网站| 欧美日韩视频精品一区| 多毛熟女@视频| 窝窝影院91人妻| 亚洲午夜精品一区,二区,三区| 日本黄色视频三级网站网址| 午夜精品国产一区二区电影| 亚洲,欧美精品.| 99精国产麻豆久久婷婷| 亚洲九九香蕉| 日日干狠狠操夜夜爽| av网站免费在线观看视频| 母亲3免费完整高清在线观看| 亚洲一区二区三区欧美精品| 久久精品成人免费网站| 一边摸一边抽搐一进一小说| 国产成人影院久久av| 制服诱惑二区| 别揉我奶头~嗯~啊~动态视频| 无人区码免费观看不卡| 操美女的视频在线观看| 十分钟在线观看高清视频www| www国产在线视频色| 熟女少妇亚洲综合色aaa.| 久久伊人香网站| 久久久久九九精品影院| 久久人妻福利社区极品人妻图片| 亚洲七黄色美女视频| 中亚洲国语对白在线视频| 国产精品美女特级片免费视频播放器 | 俄罗斯特黄特色一大片| 欧美激情高清一区二区三区| a级毛片在线看网站| 18美女黄网站色大片免费观看| 老司机午夜十八禁免费视频| 国产精品永久免费网站| 在线国产一区二区在线| 水蜜桃什么品种好| 波多野结衣高清无吗| 男女床上黄色一级片免费看| 在线观看午夜福利视频| 国内久久婷婷六月综合欲色啪| 中文字幕av电影在线播放| 一进一出抽搐gif免费好疼 | 交换朋友夫妻互换小说| 欧美人与性动交α欧美精品济南到| 一级,二级,三级黄色视频| 午夜免费激情av| 国产成人av教育| 国产成人欧美在线观看| 国产高清videossex| 99国产精品一区二区三区| 日韩欧美国产一区二区入口| av在线播放免费不卡| 老汉色av国产亚洲站长工具| 午夜亚洲福利在线播放| av在线天堂中文字幕 | 国产精品一区二区三区四区久久 | 一个人观看的视频www高清免费观看 | 免费搜索国产男女视频| 91国产中文字幕| 亚洲一区高清亚洲精品| xxx96com| 超碰成人久久| 亚洲少妇的诱惑av| 亚洲精品国产精品久久久不卡| 久久精品成人免费网站| 久久久精品国产亚洲av高清涩受| 夫妻午夜视频| 韩国av一区二区三区四区| 免费在线观看影片大全网站| 欧美亚洲日本最大视频资源| 在线观看一区二区三区| 久久久精品欧美日韩精品| a级片在线免费高清观看视频| 国产一区二区在线av高清观看| 欧美成人性av电影在线观看| 亚洲人成电影观看| 很黄的视频免费| 亚洲欧洲精品一区二区精品久久久| 免费日韩欧美在线观看| 亚洲国产精品999在线| 亚洲成av片中文字幕在线观看| 夜夜爽天天搞| 国产97色在线日韩免费| 脱女人内裤的视频| 欧美日韩黄片免| 久久中文看片网| 亚洲七黄色美女视频| 性欧美人与动物交配| 看黄色毛片网站| 老熟妇仑乱视频hdxx| 免费av毛片视频| 日韩大码丰满熟妇| 美女 人体艺术 gogo| 丰满迷人的少妇在线观看| 精品国产国语对白av| 老司机靠b影院| 免费在线观看完整版高清| 亚洲五月婷婷丁香| 久久人妻av系列| 黄色成人免费大全| 人人妻人人爽人人添夜夜欢视频| 又大又爽又粗| 人妻丰满熟妇av一区二区三区| 久久人人97超碰香蕉20202| 国产精品九九99| 18禁黄网站禁片午夜丰满| 美女福利国产在线| 亚洲三区欧美一区| 两个人免费观看高清视频| 亚洲国产精品一区二区三区在线| 亚洲成国产人片在线观看| 日韩国内少妇激情av| 国产精品综合久久久久久久免费 | 精品福利观看| 天堂动漫精品| 国产国语露脸激情在线看| 国产熟女xx| 午夜福利一区二区在线看| tocl精华| 亚洲午夜理论影院| 无遮挡黄片免费观看| 亚洲精品中文字幕一二三四区| 午夜久久久在线观看| 精品少妇一区二区三区视频日本电影| 国产91精品成人一区二区三区| 真人一进一出gif抽搐免费| 91老司机精品| 悠悠久久av| 国产精品一区二区三区四区久久 | 亚洲精品一卡2卡三卡4卡5卡| 国产又色又爽无遮挡免费看| 亚洲五月天丁香| 最新美女视频免费是黄的| 国产无遮挡羞羞视频在线观看| 国产一区二区激情短视频| 视频区图区小说| 不卡av一区二区三区| 国产蜜桃级精品一区二区三区| 亚洲成a人片在线一区二区| 老汉色∧v一级毛片| 国产精品久久视频播放| 亚洲色图av天堂| 免费观看人在逋| 一区二区三区国产精品乱码| 成人免费观看视频高清| 真人做人爱边吃奶动态| 99在线人妻在线中文字幕| 欧美一级毛片孕妇| 成人特级黄色片久久久久久久| 久久久久久久午夜电影 | 久久人人97超碰香蕉20202| 成在线人永久免费视频| 无人区码免费观看不卡| 日韩免费高清中文字幕av| 久久精品国产亚洲av香蕉五月| 免费看十八禁软件| 两个人看的免费小视频| 久久久久久久久免费视频了| 两性午夜刺激爽爽歪歪视频在线观看 | 新久久久久国产一级毛片| 欧美日韩一级在线毛片| 纯流量卡能插随身wifi吗| 男人的好看免费观看在线视频 | 欧美精品一区二区免费开放| 激情视频va一区二区三区| 电影成人av| 亚洲自偷自拍图片 自拍| 一个人免费在线观看的高清视频| 亚洲av片天天在线观看| 国产精品九九99| 制服人妻中文乱码| 嫩草影视91久久| 亚洲va日本ⅴa欧美va伊人久久| 国产99白浆流出| 亚洲精品粉嫩美女一区| 国产欧美日韩综合在线一区二区| 国内久久婷婷六月综合欲色啪| 欧美乱色亚洲激情| 亚洲少妇的诱惑av| 叶爱在线成人免费视频播放| 美女 人体艺术 gogo| 欧美乱码精品一区二区三区| 亚洲全国av大片| 久久久国产精品麻豆| 最新在线观看一区二区三区| 亚洲自偷自拍图片 自拍| 新久久久久国产一级毛片| 国产成人精品久久二区二区91| 免费久久久久久久精品成人欧美视频| 欧美日韩av久久| 丰满的人妻完整版| 后天国语完整版免费观看| 757午夜福利合集在线观看| 免费在线观看完整版高清| e午夜精品久久久久久久| 又黄又粗又硬又大视频| 1024香蕉在线观看| 青草久久国产| 午夜91福利影院| 亚洲精品一区av在线观看| 中文字幕人妻丝袜制服| 老司机午夜福利在线观看视频| 欧美精品啪啪一区二区三区| 日韩精品免费视频一区二区三区| 麻豆av在线久日| 亚洲精品久久午夜乱码| 伊人久久大香线蕉亚洲五| 免费在线观看影片大全网站| 啦啦啦免费观看视频1| cao死你这个sao货| 国产av一区在线观看免费| 亚洲 欧美 日韩 在线 免费| 91成年电影在线观看| 欧美黄色淫秽网站| 黑人巨大精品欧美一区二区mp4| 美女高潮喷水抽搐中文字幕| av福利片在线| 在线观看免费高清a一片| 午夜免费成人在线视频| 视频在线观看一区二区三区| 亚洲欧美日韩高清在线视频| 嫩草影视91久久| 狠狠狠狠99中文字幕| 久久伊人香网站| 午夜视频精品福利| 长腿黑丝高跟| 亚洲人成伊人成综合网2020| 久久精品国产综合久久久| 精品一区二区三卡| 又大又爽又粗| 午夜日韩欧美国产| 免费看a级黄色片| 免费女性裸体啪啪无遮挡网站| 少妇的丰满在线观看| 欧美日韩av久久| 宅男免费午夜| x7x7x7水蜜桃| 欧美日韩av久久| 在线永久观看黄色视频| 国产黄色免费在线视频| 日日爽夜夜爽网站| 乱人伦中国视频| 日本a在线网址| 中出人妻视频一区二区| 亚洲欧美精品综合一区二区三区| 亚洲五月色婷婷综合| 天天影视国产精品| 欧美成狂野欧美在线观看| 在线观看免费高清a一片| 亚洲成人精品中文字幕电影 | 国产精品爽爽va在线观看网站 | 亚洲av成人一区二区三| 国产三级在线视频| 精品福利永久在线观看| 久久午夜综合久久蜜桃| 亚洲人成网站在线播放欧美日韩| www.999成人在线观看| 亚洲国产欧美网| 国产男靠女视频免费网站| 久久精品国产亚洲av高清一级| 国产精品永久免费网站| 国产野战对白在线观看| 欧美日韩视频精品一区| 欧美激情久久久久久爽电影 | 巨乳人妻的诱惑在线观看| 中亚洲国语对白在线视频| 黑人欧美特级aaaaaa片| 身体一侧抽搐| 国产av精品麻豆| 美女扒开内裤让男人捅视频| 亚洲中文字幕日韩| 女生性感内裤真人,穿戴方法视频| 欧美丝袜亚洲另类 | 亚洲精品一卡2卡三卡4卡5卡| 美女高潮喷水抽搐中文字幕| 国产极品粉嫩免费观看在线| 两性午夜刺激爽爽歪歪视频在线观看 | 99精品在免费线老司机午夜| 女人高潮潮喷娇喘18禁视频| 久久久久久久精品吃奶| 人人澡人人妻人| 亚洲成人精品中文字幕电影 | 老司机福利观看| 欧美成人午夜精品| 黄色视频,在线免费观看| 日本三级黄在线观看| 女人被躁到高潮嗷嗷叫费观| 丝袜美腿诱惑在线| 国产精品久久电影中文字幕| 黄色 视频免费看| 中文字幕人妻丝袜制服| 日韩欧美在线二视频| 午夜视频精品福利| 中文字幕人妻丝袜制服| 久久 成人 亚洲| 久久这里只有精品19| 91在线观看av| 男人舔女人下体高潮全视频| 中文欧美无线码| 两性午夜刺激爽爽歪歪视频在线观看 | 久久国产亚洲av麻豆专区| 亚洲男人天堂网一区| 精品日产1卡2卡| 亚洲少妇的诱惑av| 男人的好看免费观看在线视频 | 少妇 在线观看| 18禁美女被吸乳视频| 黄色a级毛片大全视频| 在线观看一区二区三区激情| 久久性视频一级片| 国产精品98久久久久久宅男小说| 久久中文字幕一级| 欧美最黄视频在线播放免费 | 国产精品av久久久久免费| 国产高清videossex| 女人高潮潮喷娇喘18禁视频| 久久久久九九精品影院| a级毛片黄视频| 亚洲性夜色夜夜综合| 国产高清videossex| 亚洲精品一区av在线观看| 国产成人影院久久av| 一本综合久久免费| 欧美日本中文国产一区发布| 大码成人一级视频| 国产深夜福利视频在线观看| 国产黄色免费在线视频| 精品久久久精品久久久| 免费在线观看完整版高清| 久久久国产成人精品二区 | 国产成人精品久久二区二区91| 可以在线观看毛片的网站| 一a级毛片在线观看| 国产极品粉嫩免费观看在线| 水蜜桃什么品种好| 免费高清在线观看日韩| 一级毛片女人18水好多| 午夜a级毛片| 午夜老司机福利片| 亚洲欧美激情在线| 欧美日韩乱码在线| xxxhd国产人妻xxx| 欧美黑人精品巨大| 亚洲成a人片在线一区二区| 不卡一级毛片| 男女之事视频高清在线观看| 国产精品野战在线观看 | 亚洲第一欧美日韩一区二区三区| 麻豆一二三区av精品| 国产精品久久久人人做人人爽| 最新在线观看一区二区三区| 欧美亚洲日本最大视频资源| 精品福利永久在线观看| 国产亚洲精品综合一区在线观看 | 日韩精品免费视频一区二区三区| 黄色片一级片一级黄色片| 一边摸一边做爽爽视频免费| 亚洲精品中文字幕一二三四区| 一级毛片精品| 亚洲成人国产一区在线观看| 大码成人一级视频| 欧美+亚洲+日韩+国产| 91国产中文字幕| av免费在线观看网站| 日韩人妻精品一区2区三区| 欧美日韩瑟瑟在线播放| 俄罗斯特黄特色一大片| 久久青草综合色| 99在线人妻在线中文字幕| 91老司机精品| a级片在线免费高清观看视频| 免费久久久久久久精品成人欧美视频| 一级a爱片免费观看的视频| 久久久久久久精品吃奶| 高清在线国产一区| 另类亚洲欧美激情| √禁漫天堂资源中文www| 欧美黑人精品巨大| 高清av免费在线| 天天躁狠狠躁夜夜躁狠狠躁| e午夜精品久久久久久久| 国产欧美日韩一区二区三区在线| 欧美成狂野欧美在线观看| 亚洲三区欧美一区| 成人手机av| 身体一侧抽搐| 两性夫妻黄色片| 亚洲中文字幕日韩| 午夜免费激情av| 久久国产精品影院| 亚洲国产欧美一区二区综合| 国产精品国产高清国产av| av有码第一页| 91精品国产国语对白视频| 搡老岳熟女国产| 在线观看日韩欧美| 999精品在线视频| 免费av中文字幕在线| 一区福利在线观看| 亚洲男人的天堂狠狠| 国产又色又爽无遮挡免费看| a在线观看视频网站| 久久精品国产综合久久久| 国产精品九九99| 亚洲 欧美一区二区三区| 亚洲av日韩精品久久久久久密| 啦啦啦在线免费观看视频4| 在线天堂中文资源库| 亚洲精品久久午夜乱码| 美女高潮喷水抽搐中文字幕| 法律面前人人平等表现在哪些方面| 啦啦啦免费观看视频1| 久久久久国产一级毛片高清牌| 美女大奶头视频| 可以免费在线观看a视频的电影网站| 亚洲成人精品中文字幕电影 | 精品久久久久久久久久免费视频 | av超薄肉色丝袜交足视频| 99国产精品一区二区三区| 国产伦人伦偷精品视频| 中文字幕高清在线视频| 久久香蕉国产精品| 久久 成人 亚洲| 视频区欧美日本亚洲| 欧美日韩国产mv在线观看视频| 午夜福利在线免费观看网站| 黄色怎么调成土黄色| 天堂√8在线中文| 美女福利国产在线| 视频区欧美日本亚洲| 99久久99久久久精品蜜桃| 亚洲av电影在线进入| 女人爽到高潮嗷嗷叫在线视频| 极品教师在线免费播放| 香蕉久久夜色| 精品免费久久久久久久清纯| 欧美国产精品va在线观看不卡| 天堂中文最新版在线下载| a级毛片黄视频| 1024视频免费在线观看| 日本黄色视频三级网站网址| 午夜精品在线福利| 亚洲国产欧美日韩在线播放| 欧美日韩福利视频一区二区| 久久欧美精品欧美久久欧美| e午夜精品久久久久久久| 亚洲第一av免费看| 美女扒开内裤让男人捅视频| 久热这里只有精品99| 丰满迷人的少妇在线观看| 国产精品一区二区三区四区久久 | 日本黄色视频三级网站网址| 成人手机av| 亚洲专区中文字幕在线| 桃色一区二区三区在线观看| 国产野战对白在线观看| www.精华液| 国产精品久久久人人做人人爽| 久久人妻av系列| 日韩三级视频一区二区三区|