• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Partition method and experimental validation for impact dynamics of flexible multibody system

    2018-06-07 02:19:22WangLiuHong
    Acta Mechanica Sinica 2018年3期

    J.Y.Wang·Z.Y.Liu·J.Z.Hong

    1 Introduction

    The accurate and efficient modeling of contact/impact is one of the main difficulties in many engineering applications.The numerical approaches that are used widely in contact/impact analysis can be divided into two categories:approaches based on computational solid mechanics(CSM),see Refs.[1–3],and approaches based on multibody system dynamics(MBS),see Refs.[4–7].

    In CSM,the finite element method(FEM)is most widely used to model the deformations,and usually the node-tosegment approach is used to discretize the contact surfaces.It is of major interest to predict the strain and stress field in the deformable bodies com ing into contact.It is well suited for particularly high accuracy needs,yet requires very high computational effort.

    Approaches based on MBS provide a more efficient yet less accurate analysis of the contact/impact problems.These approaches emphasize capturing the effect of impact on the overall motion of the system for long simulation time.Usually,the floating reference frame formulation[8,9]is used to separate the overall motion into the rigid motion of the reference frame and a linear elastic deformation with respect to the reference frame.In order to gain computational effi-ciency,formulations based on the modal superposition and substructure methods have been used to reduce the number of degrees of freedom(DOFs),and various modal reduction techniques exist[10].For the modeling of contact,some simplifying assumptions are usually made in these approaches:the contact interface is represented by two coincident points and a local reference frame rather than a time-varying area,or the contact force is modeled as a Hertz force element rather than distributed forces.

    We would like to bridge the gap between approaches based on CSM,which can acquire results of high accuracy yet require excessively long computation times,and approaches based on MBS,which cannot provide accurate local deformation information yet acquire considerably less computational burden.We thus start here with a survey of different approaches toward the goal of accuracy vs.efficiency trade-offs for contact/impact analysis in multibody system.

    Considering a low velocity impact,only the local region of the flexible body immediately involved in the impact is subject to plastic or finite deformation.Based on this assumption,some methods that maintain accuracy in the local impact region yet reduce computational burden to a manageable level have been developed.The work of Benson and Hallquist[11]implemented a simple rigid body algorithm into DYNA3D.The mesh outside the impact region is replaced with a rigid body model to reduce the cost of the analysis with only a small loss in accuracy.Also,Ambrosio et al.[12]derived the equations of motion of the partially rigid- flexible body model and proposed the methodology for co-simulation of multibody and finite element codes.Furthermore,Lankarani and Nikravesh[13]used a multibody model of the occupant with a nonlinear FEM model of the lumbarspine for the crashdynamic simulation.In Kim et al.’s work[14]on contact problems of two flexible multibody systems,the components under going direct contact are model led using the FEM that incorporates large rigid body displacement,while the rest of the system is handled through the usual flexible multibody formulation.The simulation strategy presented by Seifried et al.[15]and Dong et al.[16]pursues a different approach.Different models of the flexible bodies are implemented in flight and impact phase.The float frame of reference formulation is used in the flight phase and FEM is used in the impact phase.

    In this paper,the partition method is presented for the simulation of multibody system with impact.The non-impact region is modelled using the modal reduction approach to reduce the DOFs.The FEM is employed for modelling the nonlinear and plastic deformation in the local impact region.With this method,the computational efficiency of the whole system and the computational accuracy in the local impact region are both increased.

    For the experimental investigations of impact problems,the main difficulty is that the impact duration is very short and the frequencies of impact responses are extremely high.Early experimental investigation mainly focused on transient strain response,in which the measurement instruments are mainly strain gauges[17].Accelerometers were also used in some impact experiments to measure points not located close to the impacts[18,19].With the advance of laser techniques,some impact experiments were conducted using laser-Doppler vibrometers(LDVs);however,these are mainly for one-dimensional rod impact or two-dimensional planar impact problems[15,16].

    A three-dimensional impact of a hemispherical-tip rod on a square plate is designed and performed to validate the simulation results using the partition method.The rodplate impact problems have been investigated by several researchers using either analytical method[20,21]or FEM[22,23],but few of them are validated experimentally.In this experiment strain gauges and LDVs are employed to measure the high-frequency impact responses.Both FEM and the partition method are used to simulate the experimental case,and a principle for how to partition the contact bodies is proposed.The results show that the partition method is an effective formulation considering both accuracy and efficiency.Moreover,the partition method is applied to solve a more complicated impact problem of a crank slider mechanism,which is a typical flexible multibody system.

    2 Partition method

    In multibody dynamics with contact/impact,the rigidmotion of a flexible body is described by a floating reference frame,and the deformation is modeled by relative deformation coordinates.This section provides the derivation of the partition method for contact/impact problem in a multibody system,including the kinematic description and equations of motion.

    2.1 Equations of motion using FEM

    As shown in Fig.1,a deformable bodyBiis discretized by lumped mass FEM;therefore,the mass of body is distributed to each finite element node.The inertial reference frame is represented byer,and the floating reference frame attached to the body is denoted byeb.The position vector ofebwith respect toeris denoted asr.An arbitrary node positionrPof flexible bodyBiis defined by(ignore the body marki)

    Fig.1 Kinematics of a flexible body using FEM

    whererepresents the position of nodePin inertia frame,is the initial position,is the displacement in the floating frame,andAis the transformation matrix from the floating frame to the inertial frame.Equation(1)follows the notation(?)′,meaning that the quantity(?)is expressed in the floating frame.

    Deriving Eq.(1)with respect to time yields the nodal absolute velocity,and deriving Eq.(1)twice results in the absolute acceleration:

    whererepresents the angular velocity of the floating frame,and

    where the matrixCPis a Boolean matrix,leading to

    Applying the principle of virtual power for the whole body,the equations of motion can be written as

    wherefPis the nodal external force vector,CFandKFare the damping matrix and stiffness matrix assembled by FEM.

    Substituting Eq.(3)into Eq.(6)yields:

    For a single flexible body,the coordinates are independent,Eq.(7)can be written as

    For the system containingnbodies connected by kinematic joints,if the joint constraints aregJ(p)=0,pis generalized displacement vector,the equations of motion can be written as

    whereis matrix leading torepresents the corresponding Lagrange multipliers.

    2.2 Equations of motion using partition method

    As shown in Fig.2,the contact body is decomposed into two parts,namely,the non-impact region I and the impact region II.

    The deformation coordinate can be written as

    wheredescribes the rigid body motion.

    Fig.2 Partition of a flexible body using partition method

    In order to reduce the system DOFs,the nodal coordinates in non-impact region I are reduced by a small number of main modes:

    whereΦis the modal matrix,comprising the eigenmodes of the finite element structure andais the modal coordinate,which has much fewer degrees than that of nodal coordinateu.The eigenvaluesωiand the associated eigenmodes?iare derived from solving the eigenvalue problemis the mass matrix assembled in FEM.The modal matrix of non-impact regionΦIis selected from the entire modal matrix by node number.

    Substituting Eq.(13)into Eq.(12),the generalized velocity becomes:

    3 Modeling of contact force

    For contact/impact dynamics of a discretized elastic body,two typical methods are usually presented to model the contact force:penalty method[1,15,24,25]and Lagrangian method[1,16,26,27].In the penalty method,the contact force is defined by a force function of local penetration at the contact point,because the non-penetration constraint is not precisely satisfied during the contact process,the accuracy of numerical simulation depends on the choice of the coefficient of contact stiffness.In contrast,the Lagrangian method for contact modeling,where constraint equations are appended to dynamic equations to be solved together,reflects the non penetration condition without manually defined parameters.In this section,the contact constraint equation is derived using Lagrangian method.

    In computational contact mechanics,mostly the node-tosegment approach is used to discretize the contact surfaces,as shown in Fig.3.A node-to-segment element for the two colliding bodies is defined by the four nodesM1–M4on the master body and by the penetrating nodeSon the slave body.The other contact pointMon the master surface can be identified according to the closest point projection[2].

    The vector of contact gap is given as

    wherenis the normal vector of the master segment at the pointM.No impact occurs whenindicates an impact andindicates an non-physical penetration.

    When contact occurs,according to the non-penetration condition in the contact point,the locking of the free motion in a normal direction is described by the following constraint equation on position level:

    Fig.3 A node-to-segment contact pair

    Deriving Eq.(21)yields the constraint equation on velocity level:

    Ais on the tangent plane,the second term in Eq.(22)disappears.Deriving Eq.(22)yields the constraint equation on acceleration level:

    Considering a normal contact,the relative velocity of the contact pair in the tangential direction tends to be zero,thus the second term in Eq.(23)can also be ignored.Substituting Eq.(19)into Eq.(23),we obtain:

    If there aremcontact pairs,the system contact constraint equations can be assembled as

    It is to be noted that Eq.(28)is an ODE;therefore,we can choose an arbitrary numerical integration approach.Here the explicit central difference method is applied.

    The time integration can be written in the following form for a typical time steph:

    4 Experimental setup

    A schematic diagram of the impact experiment is shown in Fig.4,and an overview of the experimental setup is shown in Fig.5.A cylindrical steel rod with hemispherical tip is used to strike an alum inum plate.The two colliding bodies are suspended by two sets of thin wires in a“V”shape at two locations and are positioned horizontally by means of a spirit level.The rod just contacts the plate’s center and the rod’s axis is vertical to the plate’s surface when in equilibrium position.The plate remains still until a collision occurs.To ensure the impact point is at the center of the plate,a pencil is used to mark the accurate location,the rod head is painted with red ink,and then adjustments are performed until an imprint is produced exactly at the marked point of the plate.After impact the imprint is also checked and the experimental data is adopted only when the imprint is at the center.

    The rod is set free from a specified height and impacts the plate at a velocity of about 0.596 m/s measured by the LDV.To determine the time of collision,we connect the two bodies to a direct current source,the current signal comes out in the contact process.For the investigated duration of 5 ms,the motion of both bodies can be considered as a free horizontal motion approximately.

    Fig.4 Schematic diagram of the rod-plate impact experiment

    Fig.5 Overview of the experimental setup

    Table 1 Geometrical and material parameters

    Fig.6 Comparisons between experiment and FEM simulation.a Velocity of point P1.b Velocity of point P2

    The strains are measured with strain gauges.As shown in Fig.5,three gauges are bonded to the contact surface of the plate in three directions 15 mm away from the center point,the strain gauge S1is located in thex-direction,the strain gauge S3is located in they-direction,the strain gauge S2has a 45°angle with both S1and S3.The used signal amplifier is of type YE3817c made by Sinocera Piezotronics,Inc.In the measurement the supplied constant voltage is set to 6 V and the amplifier gain is set to 500.

    For the measurement of velocities,two laser-doppler vibrometers of type PSV-300F,made by Polytec GmbH are used.The vibrometer utilizes an interferometric technique to measure vibrational signals.The measurement range of velocity is±10 m/s,and the resolution reaches 10?6m/s.The back point of the rod and the center point of the plate are measured in the normal impact experiment.

    The material and geometrical parameters of the two colliding bodies are tabulated in Table 1.

    5 Simulation and experimental results

    5.1 Comparison between FEM simulation and experiment

    For numerical simulation using FEM,the commercial software ANSYS is used here.The finite element type is an 8-node hexahedral element.The spatial discretization is an essential factor.In impact dynamics,the mesh of the main part should be small enough to get an accurate representation of high frequency wave propagation.For the discretization of the local impact region,additional considerations are required.To represent sufficiently the deformation and stress distribution in the impact region,the impact region must be discretized in a much smaller size than the element length required for the wave propagation.

    In the rod-plate impact case,the mesh size is gradually reduced until the simulation reaches convergence.The element length of main part is about 5 mm and that of the local region is less than 0.2 mm,and the total node amount is 95218.Comparisons between experiment and simulation using FEM are shown in Figs.6 and 7.Figure 6 shows the comparisons of velocities of the two measured points.Figure 7a shows the experiment data of three strain gauges and they agree with each other well because they are bonded at the same distance from the center.It also verifies that the contact point is the center of the plate.Take the strain gauge S2as an example to compare the experimental strain with the simulated strain,as shown in Fig.7b.The observation of the comparisons indicates that the FEM approach predicts the measured results very well when the spatial discretization is conducted appropriately.

    5.2 Comparison between FEM and partition method

    As shown in Sect.5.1,for a correct evaluation of the impact process,the FEM leads to an inefficient numerical implementation due to the large number of DOFs.In this section,the partition method will be used to reduce the system DOFs.The partition method is implemented in the MATLAB.

    Fig.7 Strain values.a Experiment data of three strain gauges.b Comparison between Experiment and FEM simulation

    Fig.8 Partition of the impact bodies

    The core idea of partition method is to use different coordinates to describe the deformations of different regions.As shown in Fig.8,the contact bodies are divided into two regions,the impact region is described by nodal coordinates and the non-impact region is defined using modal coordinates.

    For the partition method,a very important problem is how to divide the contact bodies to ensure the accuracy of the simulation.That is to say,how many nodes should be used to describe the impact region,and how many orders of modes should be applied to describe the non-impact region?In the following,the principle for the partition scheme of the contact bodies will be given.

    In order to determine the size of impact region,the maximum contact radius should be estimated beforehand.Here we use the Hertz contact law to simulate the impact case firstly.It predicts a rough maximum force of 800 N.From this the contact radiusrccan be calculated by the Hertz law:

    Fig.9 Maximum contact area

    Fig.10 Amplitude-frequency response of velocity of point P1

    Table 2 Partition schemes of the contact bodies

    Table 3 Comparison of efficiency between FEM and partition method

    wherePis the contact force,Ris the curvature radius of the contact surface,in this caseR1=10 mm,R2=∞.

    As shown in Fig.9,the red points in the circle belong to the impact region.In this rod-plate impact case,the impact region consists of 250 nodes in total.

    Since impacts are high-frequency phenomena, it is not sufficientto retain only the lower order modes for the non-impact region.The modal truncation frequency should be determined by the measurement.Here we perform a fast Fourier transform(FFT)of the velocity response of the impact point P1,as shown in Fig.10.It can be seen that the frequency mainly concentrates in the range from 0 to 10 kHz,and the highest frequency of velocity response is up to 20 kHz.

    We set the truncation frequency as 5,10,20,40 kHz,respectively,then we have four partition schemes as listed in Table 2.The results of the four partition schemes using partition method are compared with the result using FEM,as shown in Fig.11.It is shown that only keeping lower order modes leads to a large deviation.As the modes in nonimpact region increase,the result becomes more accurate.When the truncation frequency reaches 40 kHz,the result of partition method agrees very well with the result of FEM.It means that in the impact process very high order modes of the contact bodies are excited.In order to ensure the simulation accuracy,the modal truncation frequency should be about two times the highest frequency of measured signal.If there is no measurement data,the frequency up to 50–100 kHz have to be included in the reduction in impact dynamics,as presented by Seifried et al.[15].

    Fig.11 Comparisons between FEM and partition method.a Partition scheme 1.b Partition scheme 2.c Partition scheme 3.d Partition scheme 4

    Fig.12 Impact of a crank slider mechanism

    Table 4 Geometrical and material parameters

    The comparison of efficiency between FEM and partition method is listed in Table 3.In this impact case,the partition method uses 250 nodes and 276+94=370 modes instead of 95218 nodes in FEM,the DOFs of the system is highly reduced and the computational scale is correspondingly reduced.When using the same numerical integration algorithm,the CPU time of FEM is about20h while the partition method needs only 0.973h.This shows that the partition method greatly improves the simulation efficiency.

    6 Impact of a crank slider mechanism

    The impact between a crank slider mechanism and a block is considered,as shown in Fig.12.The crank slider mechanism is composed of a rigid crank B1, flexible link B2,and two impact blocks B3,and B4.The rigid crank B1is homogeneous and has a length of 150 mm,a mass of 0.234 kg.The link B2has a rectangle cross-section.The block B3and B4are cylinders with spherical heads.The material and geometrical parameters of flexible bodies are listed in Table 4.All the flexible bodies are meshed with 8-node hexahedral element.

    The crank B1is driven with a constant angular velocityω=10π rad/s,the initial angleθ=0°.The end of block B4is connected to a spring-damper with stiffness coefficientk=1×105N/m and damping coefficientc=1×103N·s/m.All frictions are ignored.A rotation cycle of0.2 sis simulated and the block B3will impact the block B4at some moment during the period.

    The link B2is modeled using a 20 orders of modal coordinates,and the finite element model of B3and B4contains 9478 nodes.The presented partition method is applied to reduce the DOFs of B3and B4.The impact region consists of 150 nodes.In the reduction of the non-impact region,the modal truncation frequency is set as 100 kHz to guarantee the accuracy,and the modal orders of B3and B4are 15 and 12 respectively.Therefore,we replace 9478 nodes with 27 modes and150nodes.The number of basic variables is highly reduced and the computational burden is correspondingly reduced.

    Figure 13 shows the contact force between B3and B4.It can be seen that the contact force undergoes a sharp jump at the impact moment and then gradually comes into the contact state. Figure 14 shows that the motion torque at the origin has a large peak during the contact and high frequency response is activated after impact.Figure 15 shows the velocity of the center point of B2,and obviously high frequency vibration is also excited due to the impact.

    7 Conclusion

    In this paper partition method for the description of multibody system with impacts is presented.With this method,the contact bodies are divided into two regions called impact region and non-impact region.The FEM is employed for modelling the nonlinear deformation and high stress in the local impact region.The non-impact region is model led using the modal reduction approach to raise the solving efficiency.Partition method bridges the gap between approaches based on CSM,which can acquire results of high accuracy yet require excessively long computation times,and approaches based on MBS,which can not provide accurate local deformation information yet acquire considerably less computational burden.

    Fig.13 Contact force between B3 and B4

    Fig.14 Motion torque at the origin

    Fig.15 Velocity of the center point of B2

    For validation of the presented method,a three-dimensional rod-plate impact experiment is performed with LDVs and straingauges.First,the FEM simulation results are compared with the experimental results,and they are in good agreement.Then,the results of partition method using different partition schemes are compared with the FEM results.The principle for how to partition the contact bodies is proposed:for the impact region,the analytical method is used to predict the maximum contact radius;for the non-impact region,the modal truncation frequency should be about twice of the highest frequency of measured signal.It is shown that the partition method can effectively reduce the computational scale and improve the computational efficiency.At last,the partition method is applied to solve a more complicated impact problem of a crank slider mechanism, which is a typical flexible multibody system.

    AcknowledgementsThe project was supported by the National Natural Science Foundation of China(Grants 11772188,11132007).

    1.W riggers,P.:Computational Contact Mechanics.Springer,Berlin(2006)

    2.Laursen,T.A.:Computational Contact and Impact Mechanics:Fundamentals of Modeling Inter facial Phenomena in Nonlinear Finite Element Analysis.Springer,Berlin(2002)

    3.Nsiampa,N.,Ponthot,J.P.,Noels,L.:Comparative study of numerical explicit schemes for impact problems.Int.J.Impact Eng.35,1688–1694(2008)

    4.Wang,J.,Liu,C.S.,Zhao,Z.:Non-smooth dynamics of a 3D rigid body on a vibrating plate.Multibody Syst.Dyn.32,217–239(2014)

    5.Machado,M.,Moreira,P.,Flores,P.,et al.:Compliant contact force models in multibody dynamics:evolution of the Hertz contact theory.Mech.Mach.Theory 53,99–121(2012)

    6.Tian,Q.,Zhang,Y.,Chen,L.,et al.:Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints.Comput.Struct.87,913–929(2009)

    7.Choi,J.,Han,S.R.,Chang,W.K.,et al.:An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometry.Multibody Syst.Dyn.23,99–120(2010)

    8.Shabana,A.A.:Dynamics of Multibody Systems.Cambridge University Press,New York(2005)

    9.Bauchau,O.A.:Flexible Multibody Dynamics.Springer,Netherlands(2011)

    10.Sherif,K.,Witteveen,W.,Mayrhofer,K.:Quasi-static consideration of high-frequency modes for more efficient flexible multibody simulations.Acta Mech.223,1285–1305(2012)

    11.Benson,D.J.,Hallquist,J.O.:A simple rigid body algorithm for structural dynamics programs.Int.J.Number.Methods Eng.22,723–749(1986)

    12.Ambrosio,J.,Pombo,J.,Rauter,F.,et al.:A memory based communication in the co-simulation of multibody and finite element codes for pantograph-catenary interaction simulation.Multibody Dyn.12,231–252(2009)

    13.Lankarani,H.M.,Nikravesh,P.:Continuous contact force models for impact analysis in multibody systems.Nonlinear Dyn.5,193–207(1994)

    14.Kim,S.W.,Misra,A.K.,Modi,V.J.,et al.:Modeling of contact dynamics of two flexible multibody systems.Acta Astronaut.45,669–677(1999)

    15.Seifried,R.,Schiehlen,W.,Eberhard,P.:The role of the coefficient of restitution on impact problems in multibody dynamics.Proc.Inst.Mech.Eng.Part K J.Multibody Dyn.224,279–306(2010)

    16.Dong,F.X.,Hong,J.Z.,Zhu,K.,et al.:Numerical and experimental studies on impact dynamics of a planar flexible multibody system.Acta.Mech.Sin.26,635–642(2010)

    17.Al-Mousawi,M.M.:On experimental studies of longitudinal and flexural wave propagations:an annotated bibliography.Appl.Mech.Rev.39,853–865(1986)

    18.Hariharesan,S.,Barhorst,A.A.:Modelling,simulation and experimental verification of contact/impact dynamics in flexible multibody systems.J.Sound Vib.221,709–732(1999)

    19.Khemili,I.,Romdhane,L.:Dynamic analysis of a flexible slidercrank mechanism with clearance.Eur.J.Mech.A Solid 27,882–898(2008)

    20.Rossikhin,Y.A.,Shitikova,M.V.:Dynamic response of a prestressed transversely isotropic plate to impact by an elastic rod.J.Vib.Control 15,25–51(2009)

    21.Rossikhin,Y.A.,Shitikova,M.V.:Dynamic response of a viscoelastic plate impacted by an elastic rod.J.Vib.Control 22,2019–2031(2016)

    22.Shin,H.,Yoo,Y.H.:Effect of the velocity of a single flying plate on the protection capability against obliquely impacting long-rod penetrators.Combust.Explos.Shock Waves 39,591–600(2003)

    23.Lee,M.,Yoo,Y.H.:Assessment of a new dynamic FE-code:application to the impact of a yawed-rod onto nonstationary oblique plate.Int.J.Impact Eng.29,425–436(2003)

    24.Zhang,J.,Wang,Q.:Modeling and simulation of a frictional translational joint with a flexible slider and clearance.Multibody Syst.Dyn.38,367–389(2016)

    25.Lundberg,O.E.,Nordborg,A.,Arteaga,I.L.:The influence of surface roughness on the contact stiffness and the contact filter effect in nonlinear wheel-track interaction.J.Sound Vib.366,429–446(2016)

    26.Weyler,R.,Oliver,J.,Sain,T.,et al.:On the contact domain method:a comparison of penalty and Lagrange multiplier implementations.Comput.Method Appl.Mech.Eng.205,68–82(2012)

    27.Chen,P.,Liu,J.Y.,Hong,J.Z.:An efficient for mulation based on the Lagrangian method for contact-impact analysis of flexible multibody system.Acta.Mech.Sin.32,326–334(2016)

    激情五月婷婷亚洲| 大片电影免费在线观看免费| 99热国产这里只有精品6| 99香蕉大伊视频| 人成视频在线观看免费观看| 老司机影院毛片| 黄片小视频在线播放| 少妇被粗大的猛进出69影院| 精品国产一区二区三区四区第35| 国产午夜精品一二区理论片| avwww免费| 人妻一区二区av| 尾随美女入室| 日本a在线网址| 国产一区二区三区av在线| 又大又黄又爽视频免费| 久久久国产一区二区| 精品第一国产精品| 亚洲国产欧美网| 手机成人av网站| 一级a爱视频在线免费观看| 97精品久久久久久久久久精品| 国产精品久久久久久精品古装| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久久人人做人人爽| 高清视频免费观看一区二区| 90打野战视频偷拍视频| 满18在线观看网站| 制服诱惑二区| 成年女人毛片免费观看观看9 | 19禁男女啪啪无遮挡网站| 叶爱在线成人免费视频播放| 国产精品国产三级专区第一集| 中文字幕色久视频| 制服人妻中文乱码| 色播在线永久视频| 一区二区三区乱码不卡18| 丝袜脚勾引网站| 亚洲精品日本国产第一区| 婷婷成人精品国产| 国产在线观看jvid| 考比视频在线观看| 免费高清在线观看日韩| 最近最新中文字幕大全免费视频 | 国产在视频线精品| 我要看黄色一级片免费的| 两个人看的免费小视频| 少妇的丰满在线观看| 一级片'在线观看视频| 免费av中文字幕在线| 制服人妻中文乱码| 我的亚洲天堂| 高清欧美精品videossex| 国产亚洲一区二区精品| 捣出白浆h1v1| 极品人妻少妇av视频| 亚洲av片天天在线观看| 国产亚洲av片在线观看秒播厂| 亚洲av日韩精品久久久久久密 | 丝袜脚勾引网站| 精品视频人人做人人爽| 久久免费观看电影| 青春草亚洲视频在线观看| 国产精品99久久99久久久不卡| 久久狼人影院| 欧美亚洲 丝袜 人妻 在线| 成人影院久久| 欧美 日韩 精品 国产| www.999成人在线观看| 超色免费av| 亚洲国产精品一区三区| 国产高清视频在线播放一区 | 免费观看a级毛片全部| 50天的宝宝边吃奶边哭怎么回事| 成年av动漫网址| 九草在线视频观看| 国产精品秋霞免费鲁丝片| 高潮久久久久久久久久久不卡| 激情视频va一区二区三区| 午夜免费观看性视频| 母亲3免费完整高清在线观看| 熟女少妇亚洲综合色aaa.| 在线 av 中文字幕| 国产又色又爽无遮挡免| 久久九九热精品免费| 国产精品一区二区免费欧美 | 亚洲,欧美,日韩| 日本av免费视频播放| 色视频在线一区二区三区| 另类精品久久| 亚洲人成77777在线视频| 精品久久久久久电影网| 91成人精品电影| 成在线人永久免费视频| 中文精品一卡2卡3卡4更新| 热99国产精品久久久久久7| 巨乳人妻的诱惑在线观看| 黄频高清免费视频| 中文字幕最新亚洲高清| 男人舔女人的私密视频| 国产亚洲精品久久久久5区| 精品欧美一区二区三区在线| 秋霞在线观看毛片| av有码第一页| xxx大片免费视频| 曰老女人黄片| 亚洲,欧美,日韩| 99精品久久久久人妻精品| 少妇猛男粗大的猛烈进出视频| 伊人久久大香线蕉亚洲五| 国产精品一区二区在线观看99| 亚洲av男天堂| 亚洲欧美精品综合一区二区三区| 国产在线视频一区二区| 一级毛片 在线播放| 2021少妇久久久久久久久久久| 精品一区二区三卡| 两性夫妻黄色片| 脱女人内裤的视频| 国产一区有黄有色的免费视频| 欧美xxⅹ黑人| 国产视频首页在线观看| 亚洲专区中文字幕在线| 51午夜福利影视在线观看| 亚洲精品国产一区二区精华液| 97精品久久久久久久久久精品| 人妻一区二区av| 精品国产乱码久久久久久小说| 丝袜美足系列| 在线观看免费视频网站a站| 亚洲精品日韩在线中文字幕| 高清不卡的av网站| 欧美97在线视频| 久久天躁狠狠躁夜夜2o2o | 国产男女超爽视频在线观看| 亚洲欧洲日产国产| 纯流量卡能插随身wifi吗| 亚洲成人国产一区在线观看 | 曰老女人黄片| 在线亚洲精品国产二区图片欧美| 精品一品国产午夜福利视频| 国产在线免费精品| 一级片免费观看大全| 欧美人与性动交α欧美精品济南到| 亚洲av成人精品一二三区| 国产精品亚洲av一区麻豆| www.精华液| 黄色毛片三级朝国网站| 欧美成人午夜精品| 一边摸一边抽搐一进一出视频| 亚洲精品中文字幕在线视频| 国产成人系列免费观看| 久久毛片免费看一区二区三区| 国产亚洲欧美在线一区二区| 亚洲av欧美aⅴ国产| 女警被强在线播放| 国产精品一区二区在线不卡| 在线亚洲精品国产二区图片欧美| 国产女主播在线喷水免费视频网站| 成人影院久久| av天堂在线播放| 人成视频在线观看免费观看| 亚洲中文日韩欧美视频| 国产真人三级小视频在线观看| 最新的欧美精品一区二区| 久久青草综合色| 丁香六月天网| 欧美精品一区二区免费开放| 欧美性长视频在线观看| 国产一区二区三区综合在线观看| 大片电影免费在线观看免费| 久久久久久人人人人人| 国产成人精品久久二区二区91| 欧美大码av| 国产欧美日韩一区二区三区在线| 日韩av不卡免费在线播放| 啦啦啦中文免费视频观看日本| 免费黄频网站在线观看国产| 69精品国产乱码久久久| 9热在线视频观看99| 欧美人与善性xxx| 老司机午夜十八禁免费视频| 亚洲熟女毛片儿| 国产精品一区二区在线观看99| 一边亲一边摸免费视频| 纯流量卡能插随身wifi吗| 亚洲欧美一区二区三区黑人| 日日夜夜操网爽| 欧美精品高潮呻吟av久久| 中国美女看黄片| 一区二区三区四区激情视频| av欧美777| 久9热在线精品视频| 我要看黄色一级片免费的| 欧美激情 高清一区二区三区| 精品国产一区二区久久| 午夜两性在线视频| 成年美女黄网站色视频大全免费| 欧美日韩视频高清一区二区三区二| 97在线人人人人妻| 在线观看免费日韩欧美大片| 老司机影院成人| 亚洲国产看品久久| 国产成人精品无人区| 50天的宝宝边吃奶边哭怎么回事| 亚洲第一av免费看| 少妇人妻 视频| 久久99热这里只频精品6学生| 婷婷成人精品国产| 国产免费福利视频在线观看| av又黄又爽大尺度在线免费看| 黄色视频在线播放观看不卡| 午夜福利免费观看在线| 久久国产精品人妻蜜桃| 日韩电影二区| 操美女的视频在线观看| 另类精品久久| 亚洲激情五月婷婷啪啪| 亚洲欧美清纯卡通| 岛国毛片在线播放| 制服人妻中文乱码| 久久狼人影院| 十分钟在线观看高清视频www| 欧美成人午夜精品| 久久人妻熟女aⅴ| 黄色a级毛片大全视频| 国产日韩欧美在线精品| 精品一区二区三区四区五区乱码 | 大陆偷拍与自拍| 男女国产视频网站| 午夜影院在线不卡| 国产精品一国产av| 成年人午夜在线观看视频| 国产一区二区激情短视频 | 国产精品一区二区精品视频观看| 欧美日韩亚洲综合一区二区三区_| 一区二区三区精品91| 一级毛片我不卡| 欧美激情 高清一区二区三区| 首页视频小说图片口味搜索 | 女人精品久久久久毛片| 久久久久久久大尺度免费视频| 高清黄色对白视频在线免费看| 一区二区三区四区激情视频| 亚洲av美国av| 男女国产视频网站| 精品国产一区二区三区四区第35| 性少妇av在线| 亚洲专区中文字幕在线| 亚洲色图 男人天堂 中文字幕| 亚洲成人手机| 精品少妇黑人巨大在线播放| 多毛熟女@视频| 国产免费福利视频在线观看| 亚洲欧美日韩高清在线视频 | 欧美+亚洲+日韩+国产| 亚洲激情五月婷婷啪啪| a级毛片黄视频| 午夜福利免费观看在线| 国精品久久久久久国模美| 考比视频在线观看| 亚洲精品国产一区二区精华液| 黑人巨大精品欧美一区二区蜜桃| 成人黄色视频免费在线看| 女性被躁到高潮视频| 啦啦啦 在线观看视频| 日本猛色少妇xxxxx猛交久久| 亚洲伊人色综图| 中文欧美无线码| 欧美国产精品va在线观看不卡| 日韩,欧美,国产一区二区三区| 国产精品免费大片| 国产xxxxx性猛交| bbb黄色大片| 麻豆乱淫一区二区| 亚洲av欧美aⅴ国产| 99九九在线精品视频| 深夜精品福利| 久久国产精品人妻蜜桃| 久久久欧美国产精品| 国产精品亚洲av一区麻豆| 午夜视频精品福利| 日韩一本色道免费dvd| 一本大道久久a久久精品| 看免费成人av毛片| 黄色怎么调成土黄色| 国产深夜福利视频在线观看| 亚洲欧美精品自产自拍| 亚洲精品国产色婷婷电影| 又黄又粗又硬又大视频| 国产日韩欧美亚洲二区| 狠狠婷婷综合久久久久久88av| 欧美黄色淫秽网站| 97人妻天天添夜夜摸| 久久亚洲国产成人精品v| 亚洲天堂av无毛| 免费在线观看日本一区| 极品少妇高潮喷水抽搐| 男女边摸边吃奶| 脱女人内裤的视频| 丝瓜视频免费看黄片| 人体艺术视频欧美日本| 国产人伦9x9x在线观看| 99久久人妻综合| 日韩人妻精品一区2区三区| 亚洲欧美日韩高清在线视频 | 成年女人毛片免费观看观看9 | 美国免费a级毛片| 亚洲国产成人一精品久久久| 成人亚洲欧美一区二区av| 国产精品亚洲av一区麻豆| 国产精品99久久99久久久不卡| 欧美日本中文国产一区发布| 日韩大码丰满熟妇| 人人妻人人澡人人爽人人夜夜| 久久久久久亚洲精品国产蜜桃av| 啦啦啦啦在线视频资源| 99re6热这里在线精品视频| 又粗又硬又长又爽又黄的视频| 妹子高潮喷水视频| 精品免费久久久久久久清纯 | 亚洲色图 男人天堂 中文字幕| 十分钟在线观看高清视频www| 性色av一级| 黑丝袜美女国产一区| 美女扒开内裤让男人捅视频| 晚上一个人看的免费电影| 色网站视频免费| 成人国产av品久久久| 午夜免费观看性视频| 中国美女看黄片| 国产1区2区3区精品| 亚洲少妇的诱惑av| 男的添女的下面高潮视频| svipshipincom国产片| 啦啦啦啦在线视频资源| 成人亚洲精品一区在线观看| 在线av久久热| 亚洲中文字幕日韩| 叶爱在线成人免费视频播放| 在线观看国产h片| a级毛片黄视频| 精品卡一卡二卡四卡免费| 在线亚洲精品国产二区图片欧美| 成在线人永久免费视频| 久久人人爽av亚洲精品天堂| av线在线观看网站| 母亲3免费完整高清在线观看| 久久人人爽av亚洲精品天堂| 在线亚洲精品国产二区图片欧美| 一级毛片黄色毛片免费观看视频| 精品久久蜜臀av无| 又紧又爽又黄一区二区| 在线精品无人区一区二区三| 日韩伦理黄色片| 黄片播放在线免费| 97在线人人人人妻| 51午夜福利影视在线观看| av天堂久久9| 亚洲精品一区蜜桃| 久久久久久久久久久久大奶| 成人18禁高潮啪啪吃奶动态图| 黑人巨大精品欧美一区二区蜜桃| 日韩人妻精品一区2区三区| 日日摸夜夜添夜夜爱| 精品人妻熟女毛片av久久网站| 丰满迷人的少妇在线观看| a级片在线免费高清观看视频| 激情五月婷婷亚洲| 黄片小视频在线播放| av天堂久久9| 国产91精品成人一区二区三区 | 亚洲精品自拍成人| 国产精品国产三级国产专区5o| 这个男人来自地球电影免费观看| 丰满饥渴人妻一区二区三| 精品少妇黑人巨大在线播放| 久久 成人 亚洲| 国产一区二区激情短视频 | 伊人久久大香线蕉亚洲五| 久久精品久久久久久噜噜老黄| 天天躁夜夜躁狠狠躁躁| 免费不卡黄色视频| 波多野结衣av一区二区av| 亚洲成国产人片在线观看| tube8黄色片| 国产精品亚洲av一区麻豆| 久久精品国产a三级三级三级| 久久精品久久久久久噜噜老黄| 好男人电影高清在线观看| 国产欧美日韩综合在线一区二区| 亚洲少妇的诱惑av| 777米奇影视久久| 久久精品熟女亚洲av麻豆精品| 免费久久久久久久精品成人欧美视频| 国产精品国产av在线观看| 国产精品一区二区在线不卡| 99国产精品免费福利视频| 高潮久久久久久久久久久不卡| 捣出白浆h1v1| 王馨瑶露胸无遮挡在线观看| 狠狠婷婷综合久久久久久88av| 欧美国产精品va在线观看不卡| 纵有疾风起免费观看全集完整版| 一级黄片播放器| 久久性视频一级片| 纯流量卡能插随身wifi吗| 亚洲欧洲国产日韩| av在线老鸭窝| 午夜久久久在线观看| 一区二区日韩欧美中文字幕| 国产日韩一区二区三区精品不卡| 九草在线视频观看| 一本综合久久免费| 国产精品久久久久久人妻精品电影 | 精品一品国产午夜福利视频| 亚洲av电影在线观看一区二区三区| 欧美人与善性xxx| 亚洲 欧美一区二区三区| 日韩熟女老妇一区二区性免费视频| 亚洲av片天天在线观看| 国产免费福利视频在线观看| 侵犯人妻中文字幕一二三四区| 亚洲五月婷婷丁香| 久久人人97超碰香蕉20202| av片东京热男人的天堂| 天天躁狠狠躁夜夜躁狠狠躁| 婷婷色综合大香蕉| 国产精品国产三级国产专区5o| 免费女性裸体啪啪无遮挡网站| 成人影院久久| 黄网站色视频无遮挡免费观看| 国产三级黄色录像| 久久久精品94久久精品| av在线老鸭窝| 欧美日韩一级在线毛片| 亚洲欧美一区二区三区久久| 老司机靠b影院| 亚洲熟女毛片儿| videos熟女内射| 国产欧美日韩精品亚洲av| av又黄又爽大尺度在线免费看| 亚洲欧美一区二区三区国产| 啦啦啦 在线观看视频| 精品欧美一区二区三区在线| 国产成人欧美| 久久99一区二区三区| 精品一区在线观看国产| 97在线人人人人妻| 91国产中文字幕| 美国免费a级毛片| 99国产精品免费福利视频| 亚洲免费av在线视频| 国产日韩欧美视频二区| 成人亚洲精品一区在线观看| 亚洲情色 制服丝袜| 免费少妇av软件| 超色免费av| 黄网站色视频无遮挡免费观看| 91国产中文字幕| 老汉色∧v一级毛片| 观看av在线不卡| 乱人伦中国视频| 99久久精品国产亚洲精品| 国产亚洲av片在线观看秒播厂| 狂野欧美激情性xxxx| 天天影视国产精品| 午夜久久久在线观看| 亚洲人成网站在线观看播放| 久久人人爽av亚洲精品天堂| 国产在线免费精品| 91精品国产国语对白视频| 视频区欧美日本亚洲| 99久久99久久久精品蜜桃| 欧美日韩综合久久久久久| 无限看片的www在线观看| 久久精品国产亚洲av高清一级| 国产片特级美女逼逼视频| 日韩一本色道免费dvd| 亚洲欧美激情在线| 国产精品一国产av| 狠狠精品人妻久久久久久综合| 国产一区二区在线观看av| 国产在线观看jvid| 国产激情久久老熟女| 91麻豆精品激情在线观看国产 | 中文字幕人妻丝袜制服| 亚洲一区中文字幕在线| 1024视频免费在线观看| 啦啦啦啦在线视频资源| 又大又黄又爽视频免费| 免费少妇av软件| 多毛熟女@视频| 亚洲第一青青草原| 日日夜夜操网爽| 国产高清不卡午夜福利| 五月天丁香电影| 免费看十八禁软件| 婷婷成人精品国产| 日韩一卡2卡3卡4卡2021年| 亚洲欧美色中文字幕在线| 黄色毛片三级朝国网站| 国产伦人伦偷精品视频| 精品国产超薄肉色丝袜足j| 亚洲一卡2卡3卡4卡5卡精品中文| 一个人免费看片子| 欧美久久黑人一区二区| 国产精品一区二区在线观看99| 9热在线视频观看99| 欧美日韩视频精品一区| 91成人精品电影| 久久久精品94久久精品| 90打野战视频偷拍视频| 亚洲精品一卡2卡三卡4卡5卡 | xxx大片免费视频| 亚洲av美国av| 国产在视频线精品| 在线观看免费日韩欧美大片| 亚洲少妇的诱惑av| 久久午夜综合久久蜜桃| 精品国产一区二区三区久久久樱花| 国产黄色视频一区二区在线观看| 操出白浆在线播放| av欧美777| 中文字幕av电影在线播放| 亚洲七黄色美女视频| 久久久久久免费高清国产稀缺| 最新在线观看一区二区三区 | av网站在线播放免费| 欧美人与善性xxx| 高清欧美精品videossex| 国产精品成人在线| 国产精品久久久av美女十八| 欧美久久黑人一区二区| 狠狠婷婷综合久久久久久88av| 韩国高清视频一区二区三区| 亚洲av男天堂| 久久亚洲国产成人精品v| 女人爽到高潮嗷嗷叫在线视频| 国产精品国产三级专区第一集| 女人高潮潮喷娇喘18禁视频| 中文字幕最新亚洲高清| 久久中文字幕一级| 免费看av在线观看网站| 91麻豆av在线| www.av在线官网国产| 亚洲午夜精品一区,二区,三区| 在线观看免费午夜福利视频| 日韩欧美一区视频在线观看| 91精品国产国语对白视频| 国产精品 国内视频| 亚洲图色成人| 中文字幕最新亚洲高清| 欧美日韩亚洲综合一区二区三区_| 99热全是精品| 十分钟在线观看高清视频www| 午夜福利,免费看| 超碰成人久久| 中文字幕人妻熟女乱码| av欧美777| 大片免费播放器 马上看| 日韩大码丰满熟妇| 波多野结衣av一区二区av| 亚洲欧美日韩高清在线视频 | 老司机影院毛片| 久久人人爽人人片av| 日韩大片免费观看网站| 一二三四社区在线视频社区8| 中文乱码字字幕精品一区二区三区| 亚洲天堂av无毛| 一区福利在线观看| 色播在线永久视频| 久久精品成人免费网站| 午夜福利视频在线观看免费| 一级毛片女人18水好多 | 婷婷成人精品国产| 高清av免费在线| 五月开心婷婷网| 精品久久久精品久久久| av网站免费在线观看视频| 九色亚洲精品在线播放| 免费高清在线观看视频在线观看| 国产精品99久久99久久久不卡| 久久国产精品大桥未久av| 亚洲成人手机| 欧美日韩综合久久久久久| 国产99久久九九免费精品| 久久天堂一区二区三区四区| 欧美大码av| 国产一区二区激情短视频 | 丝袜脚勾引网站| 久久99精品国语久久久| 欧美日韩亚洲高清精品| 在线av久久热| 欧美变态另类bdsm刘玥| av天堂久久9| 精品久久久久久电影网| 国产真人三级小视频在线观看| 国产视频首页在线观看| 大香蕉久久网| 2021少妇久久久久久久久久久| 美女大奶头黄色视频| 亚洲精品国产区一区二| 两人在一起打扑克的视频| 男女无遮挡免费网站观看| 久久综合国产亚洲精品| 日韩熟女老妇一区二区性免费视频| 超碰成人久久| 一区二区三区精品91| 成人国产一区最新在线观看 | 国产精品香港三级国产av潘金莲 | 成人亚洲精品一区在线观看| 欧美精品亚洲一区二区| 人人妻人人澡人人看| 亚洲国产看品久久|