• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The dimension split element-free Galerkin method for three-dimensional potential problems

    2018-06-07 02:19:18MengChengMaCheng
    Acta Mechanica Sinica 2018年3期

    Z.J.Meng·H.Cheng·L.D.Ma·Y.M.Cheng

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag GmbH Germany,part of Springer Nature2018

    1 Introduction

    The meshless method is an effective tool to solve boundary value problems of partial differential equations in addition to the finite difference method(FDM), finite element method(FEM),and boundary element method(BEM).The main difference between these conventional numerical methods and meshless method is the different approaches to obtain the shape functions.However,once the shape function has been formed,they use the same procedure to obtain the equation system to get the numerical solution of a problem.FDM,FEM,and BEM rely on meshes,then remeshing must be used to solve some complicated problems,such as extremely large deformations and crack grow th problems.The meshless method only needs nodes or particles,and it can solve many complicated physical and engineering problems that cannot be solved well with conventional computational methods[1,2].

    The potential problem is an important physical and engineering problem,whose governing equations are commonly Laplace’s equations or Poisson’s equations.The popular numerical methods solving potential problems include FEM,FDM, BEM, and meshless methods [3–7]. The meshless method is actually amore effective numerical method to solve partial differential equations that govern various physical and engineering phenomena than traditional methods.

    In recent years,several meshless methods,such as boundary node method[8–10],element-free Galerkin method[11–18],boundary element-free method[19,20],and meshless local Petro-Galerkin method coupled with FEM[21],were developed to solve potential problems.The improved element-free Galerkin(IEFG)method is an effective mesh-less method to solve three-dimensional potential problems,because in the IEFG method,the improved moving least squares(IMLS)approximation,in which the orthogonal function system is selected as the basis function,is used to obtain the shape function[12,22].The algebraic equations system in the IMLS approximation is well-conditioned,and it can be solved without deriving the inverse matrix. There are fewer coefficients in the IMLS approximation than the ones in the moving least-squares(MLS)approximation,which is the basis of the EFG method,then the computational efficiency of the IEFG method is greater than the EFG method.Using the IEFG method,the three-dimensional potential problem was effectively solved[12].Furthermore,the IEFG method can also be successfully applied to other science and engineering problems.In their work,Zhang et al.[23]employed the IEFG method for two-dimensional elasticity problems,2D fracture problems[24],three-dimensional wave equation[25],and two-dimensional elastodynamics problems[26].

    The dimension split method(DSM)was proposed by Li and Huang[27].The essential features of the DSM are that the three-dimensional domain is partitioned by several two dimensional surfaces into several sub-domains.They used optimal control to deal with the stream-function equations of compressible turbomachinery flows and their finite element approximation[27].They also applied the DSM for the 3D compressible Navier–Stokes equations in turbomachine[28],the three dimensional rotating Navier–Stokes equations[29],the incompressible Navier–Stokes equations in three dimensions[30],and the linearly elastic shell[31].Additionally,Hansen and Ostermann[32]presented the DSM for evolution and quasilinear parabolic equations[33].The dimension split method is actually an efficient and convenient numerical method to solve various problems[34–37].The work of Cheng et al.[38,39]introduced the DSM into the improved complex variable element-free Galerkin method for solving three-dimensional potential and wave propagation problems.It is obvious that the DSM is different from the traditional domain decomposition method because only two-dimensional problems are solved in each sub-domain without solving a three-dimensional problem,then the computational efficiency is improved greatly.

    Three-dimensional potential problems are effectively solved with the dimension split element-free Galerkin method.For these two-dimensional problems,the IMLS approximation is applied to construct the shape function.The Galerkin weak form is applied to obtain a discretized system equation,and the penalty method is employed to impose the essential boundary condition.The finite difference method is selected in the splitting direction.Finally,several numerical examples are solved using the dimension split element-free Galerkin(DSEFG)method.These numerical examples test and verify DSEFG theoretical result.The convergence study and error analysis of the DSEFG method are presented.The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.

    2 The basic equations of three-dimensional potential p rob lem s with dimension split scheme

    Consider the following three-dimensional potential problem

    whereu(x)is an unknown function,b(x)is a known function.In the general case,there exist mixed boundary conditions on the boundaryΓof the domainΩ.Γuis one part of the boundaryΓwith known potential function,andΓqis the remaining boundary with known normal derivativeNotice that,andnis the unit outward normal to the boundaryΓ.

    When using the DSEFG method to solve potential problems,we can choose the splitting direction according to the control equations and boundary conditions,which results in that the process of calculating and programming are easy to achieve.

    In this paper,we assume that the problem domainΩis split intoLlayers along the directionx3,and the distance between adjacent layers isΔx3.Then we haveL+1 two dimensional sub-domainsΩ(k),k=0,1,...,L,and

    The corresponding boundary conditions are

    u(x1,x2)is the field potential in the sub-domainΩ(k),is the given potential on essential boundaryis the given gradient on natural boundary

    Then we can solve Eqs.(7)–(9)in the sub-domainby using the IEFG method,and in the directionx3finite difference method is used to obtain the solution of the original problem,i.e.Eqs.(1)–(3).This is the idea of the DSEFG method for three-dimensional potential problems.

    The equivalent functional of Eqs.(7)–(9)is

    The shape function of the IMLS approximation does not satisfy the property of the Kronecker delta function;therefore,the essential boundary cannot be directly imposed to Eq.(12).In this paper,the penalty method is used to impose the essential boundary conditions.The modified functional can then be expressed as

    the equivalent integral weak form can be obtained as

    3 The dimension split elem en t-free Galerkin method for three-dimensional potential problems

    3.1 Improved moving least-squares approximation

    Mnodesare distributed in a two dimensional sub-domainTheu(x)at nodeis represented as

    whereis the basis functionis a vector of basis functions that consist mostly of monomials of the lowest order to ensure minimum completeness,mis the number of terms of the monomials,andais a vector of coefficients.For the two-dimensional sub-domain,in this paper the basis function is chosen as the linear basis,i.e.

    Define a functional

    In the IMLS approximation,a weighted orthogonal polynomial set(p1,p2,...,pm)is selected as the basis functions,which results in

    Substituting Eq.(28)into Eq.(18),we can obtain

    is the size of the domain of influence of the nodexI,dmax·cI,dmaxis a scaling parameter,andcIis the distance betweenxIand the nearest node from it.

    3.2 The dimension split element-free Galerkin method for three-dimensional potential problems

    To obtain the solution of the original problem,i.e.Eqs.(1)–(3),the Galerkin weak form of the three-dimensional potential problem is used to get the final discretized equations.

    From Eq.(30),we have

    In order to obtain the discrete equations,we discuss each integration term of Eq.(42)as follows.

    The first integration term of Eq.(42)is

    The second integration term of Eq.(42)is

    The sixth integration term of Eq.(42)is

    Then,Eq.(56)can be written as

    Equation(69)can be simplified as

    4 Example problems

    Four example problems are selected to demonstrate the effectiveness and advantages of the DSEFG method presented in this paper.The convergence of the DSEFG method is discussed by analyzing the final potential function values under different nodes distribution and different scaling factors.The numerical results of these examples are compared with analytical solutions and the ones of the IEFG method.

    In this section,Gaussian quadrature scheme with 4×4 points is used for numerical integrations on each cell of the background mesh.The cubic spline function is used as the weight function,and the linear basis function is selected.

    4.1 Lap lace’s equation with Dirichlet boundary conditions on a cube

    As the first example,we consider Laplace’s equation

    Depending on the boundary conditions,the domainΩis divided intoLequal parts alongx1direction.Uniform node distribution is used in the planeOx2x3.That is,the domainΩcan be represented

    Fig.1 Results obtained by the DSEFG method with different node distributions

    Fig.2 Results obtained by the DSEFG method with different d max

    Results obtained with the DSEFG method with different node distributions and differentdmaxalong the directionx1are shown in Figs.1 and 2.

    The convergence of the DSEFG method with different node distributions and differentdmaxalong the directionx1are shown in Figs.3and 4.In Fig.3,the domainΩis divided intoLequal parts in directionx1,and the node distribution in the planeOx2x3is 10×10,that is,the node distribution in the problem domainΩis(L+1)× 10 × 10.

    From Figs.1–4,we can observe that the DSEFG method has greater computational precision under the node distribution 19×10×10 whendmax=1.3.

    The relationship between the relative error norm and the CPU time of the DSEFG and IEFG methods under different node distributions and differentdmaxare shown in Tables 1 and 2.

    Fig.3 The convergence of the DSEFG method with different node distributions.

    Fig.4 The convergence of the DSEFG method with different d max

    Table1 The relative error norm and CPU time of the DSEFG and IEFG methods under different node distributions

    Table2 The relative error norm and CPU time of the DSEFG and IEFG methods under different d max

    Fig.5 The results of the DSEFG and IEFG methods along the direction x1

    From Tables 1 and 2,we can see that the DSEFG method has higher accuracy and computational efficiency than the IEFG method under the same node distribution anddmax.

    Figures5–7show the numerical solutions obtained by both the IEFG method and DSEFG method along the three axes with the node distribution 19×10×10 anddmax=1.3.We can observe that the result of the DSEFG method and the IEFG method are in agreement with the analytical solution,and the DSEFG method has greater computational precision and efficiency than the IEFG method.

    4.2 Poisson’s equation with Dirichlet boundary conditions

    As a second example,we solve a three-dimensional Poisson’s equation

    Fig.6 The results of the DSEFG and IEFG methods along the direction x2

    Fig.7 The results of the DSEFG and IEFG methods along the directionx3

    Using the IEFG method to solve this problem,9×21×17 regular nodes are distributed in the problem domainΩanddmax=1.22.The relative error is 0.0025 and CPU time is 68.3s.

    Then using the DSEFG method to solve this problem,and three cases in which different splitting direction is selected are discussed.

    (1)The splitting direction isx1.For the first case,the problem domainΩis divided into 8 planes equally along the directionx1.And on each planeOx2x3,21×17 nodes are regularly chosen.It means that the integral node distribution is 9×21×17.Anddmax=2.1,α=3.0×103.Then the relative error is 0.0091 and the CPU time is 7.06s.

    (2)The splitting direction isx2.For the second case,the problem domainΩis divided into20planes equally along the directionx2.And on each planeOx1x3,9×17 nodes are regularly chosen.This means that the integral node distribution is also9×21×17anddmax=1.7,α=3.0×103.Then the relative error is 0.0016 and the CPU time is 5.24s.

    (3)The splitting direction isx3.For the third case,the problem domainΩis divided into 16 planes equally along the directionx3.On each planeOx1x2,9×21 nodes are regularly chosen.This means that the integral node distribution is also 9×21×17.Anddmax=1.13,α=3.0×103.Then the relative error is 0.0013 and the CPU time is 4.55s.

    From the discussion above,we can see that splitting direction will influence the computational accuracy.Thus,we should select the apposite splitting direction according to the control equations and boundary conditions.

    In this paper,we choosex3as the splitting direction and the better result can be obtained.Figures 8–10 show the numerical solutions obtained with the IEFG method and the DSEFG method along the three axes under the same node distribution 9×21×17.From these figures,we can observe that the numerical results obtained with the IEFG method and the DSEFG method are in agreement with the analytical ones.The CPU time of the DSEFG is less than the one for the IEFG method.

    4.3 Lap lace’s equation with Neumann boundary conditions on a cube

    As a third example,we study Laplace’s equation

    Fig.8 The results of the DSEFG and IEFG methods along the direction x1

    Fig.9 The results of the DSEFG and IEFG methods along the direction x2

    Fig.10 The results of the DSEFG and IEFG methods along the direction x3

    Fig.11 The results of the DSEFG and IEFG methods along the direction x1

    For this example,we selectx3as the splitting direction and the uniform node distribution is also adopted.Figures 11–13 show the numerical results obtained with the IEFG method and the DSEFG method along the three axes under the node distribution 11×11×11 anddmax=1.19.For the IEFG method,the error is 0.0072,and the CPU time is 9.56s.For the DSEFG method,the error is 0.0043,and the CPU time is 0.613s.Comparing both methods,the computation accuracy and computation speed of the DSEFG method is higher than IEFG method.

    4.4 Lap lace’s equation with Dirichlet boundary conditions on a half-torus cylinder

    As a fourth example,we study Laplace’s equation

    Fig.12 The results of the DSEFG and IEFG methods along the direction x2

    Fig.13 The results of the DSEFG and IEFG methods along the direction x3

    Fig.14 Node distribution in two-dimensional sub-domain of a halftorus

    Fig.15 The results of the DSEFG and IEFG methods along the direction x3

    Fig.16 The results of the DSEFG and IEFG methods along the radial direction r

    For this example,the problem domain is divided into 20 equal parts along thex3direction.9×31nodes are distributed on a half-torus domain of two-dimensional problem.Nine nodes are laid along the radial directionrin a 1.1 proportion and 31 nodes are uniform ly laid along the angle axisθas shown in Fig.14.It means that the integral node distribution is 9×31×21,anddmax=1.2,α=1.0×104.

    Fig.17 The results of the DSEFG and IEFG methods along the angle axis θ

    Figures 15–17 show the results obtained using the IEFG method and the DSEFG method.It can be found that the results of two methods are in agreement with the analytical solution.Under similar precision,the CPU time of the IEFG method is 224.57s,and the one for the DSEFG method is 3.74s.Then the DSEFG method has greater computational efficiency than the IEFG method.

    5 Conclusions

    This paper presents a new fast meshless method to solve the three-dimensional potential problems.The main idea of the DSEFG method is that a three-dimensional problem can be transformed into a series of two-dimensional problems.We only need to solve a two-dimensional problem in each subdomain.For two-dimensional problems,the IEFG method is applied,which uses an orthogonal function system with a weight function as the basis functions.It is efficient to avoid an ill-conditioned system of equations.Then,the finite difference method is selected for the splitting direction.From numerical results obtained by the DSEFG method,together with comparisons with analytical solutions and the ones for the IEFG method,we can observe that DSEFG method is efficient to solve three-dimensional potential problems and generally has greater computational precision and higher computation speed than the IEFG method.

    AcknowledgementsThis work was supported by the National Natural Science Foundation of China(Grants11571223,51404160)and Shanxi Province Science Foundation for Youths(Grant 2014021025-1).

    1.Belytschko,T.,Krongauz,Y.,Organ,D.,et al.:Meshless methods:an overview and recent developments.Comput.Methods Appl.Mech.Eng.139,3–47(1996)

    2.Dolbow,J.,Belytschko,T.:An introduction to programming the meshless element free Galerkin method.Arch.Comput.Methods Eng.5,207–241(1998)

    3.Canelas,A.,Laurain,A.,Novotny,A.A.:A new reconstruction method for the inverse potential problem.J.Comput.Phys.268,417–431(2014)

    4.Sun,L.L.,Chen,W.,Zhang,C.Z.:A new formulation of regularized meshless method applied to interior and exterior anisotropic potential problems.Appl.Math.Model.37,7452–7464(2013)

    5.Khaji,N.,Javaran,S.H.:New complex Fourier shape functions for the analysis of two-dimensional potential problems using boundary element method.Eng.Anal.Bound.Elem.37,260–272(2013)

    6.Gong,Y.P.,Dong,C.Y.,Qin,X.C.:An isogeometric boundary element method for three dimensional potential problems.J.Comput.Appl.Math.313,454–468(2017)

    7.Sun,F.L.,Zhang,Y.M.,Young,D.L.,et al.:A new boundary meshfree method for potential problems.Adv.Eng.Softw.100,32–42(2016)

    8.Mukherjee,Y.X.,Mukherjee,S.:The boundary node method for potential problems.Int.J.Numer.Methods Eng.40,797–815(1997)

    9.Chati,M.K.,Mukherjee,S.:The boundary node method for three dimensional problems in potential theory.Int.J.Numer.Methods Eng.47,1523–1547(2000)

    10.Zhang,Y.M.,Sun,F.L.,Young,D.L.,et al.:Average source boundary node method for potential problems.Eng.Anal.Bound.Elem.70,114–125(2016)

    11.Li,X.L.:Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces.Appl.Numer.Math.99,77–97(2016)

    12.Lu,Y.Y.,Belytschko,T.,Gu,L.:A new implementation of the element free Galerkin method.Comput.Methods Appl.Mech.Eng.113,397–414(1994)

    13.Li,X.L.,Zhang,S.G.,Wang,Y.,et al.:Analysis and application of the element-free Galerkin method for nonlinear Sine-Gordon and generalized Sinh-Gordon equations.Comput.Math.Appl.71,1655–1678(2016)

    14.Vahid,S.:Topology optimization using bi-directional evolutionary structural optimization based on the element-free Galerkin method.Eng.Optim.48,380–396(2016)

    15.Dehghan,M.,Abbaszadeh,M.,Mohebbi,A.:The use of interpolating element-free Galerkin technique for solving 2D generalized Benjam in–Bona–Mahony–Burgers and regularized longwave equations on non-rectangular domains with error estimate.J.Comput.Appl.Math.286,211–231(2015)

    16.Joldes,G.R.,Wittek,A.,Miller,K.:Adaptive numerical integration in element-free Galerkin methods for elliptic boundary value problems.Eng.Anal.Bound.Elem.51,52–63(2015)

    17.Chen,L.,Liu,C.,Ma,H.P.,et al.:An interpolating local Petrov–Galerkin method for potential problems.Int.J.Appl.Mech.6,1450009(2014)

    18.Deng,Y.J.,Liu,C.,Peng,M.J.,et al.:The interpolating complex variable element-free Galerkin method for temperature field problems.Int.J.Appl.Mech.7,1550017(2015)

    19.Peng,M.J.,Cheng,Y.M.:A boundary element-free method(BEFM)for two-dimensional potential problems.Eng.Anal.Bound.Elem.33,77–82(2009)

    20.Lian,H.,Kerfriden,P.,Bordas,S.:Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity.Int.J.Numer.Methods Eng.106,972–1017(2016)

    21.Chen,T.,Raju,I.S.:A coupled finite element and meshless local Petrov–Galerkin method for two-dimensional potential problems.Comput.Methods Appl.Mech.Eng.192,4533–4550(2003)

    22.Cheng,Y.M.,Chen,M.J.:A boundary element-free method for linear elasticity.Acta.Mech.Sin.19,181–186(2003)

    23.Zhang,Z.,Liew,K.M.,Cheng,Y.M.:Coupling of the improved element-free Galerkin and boundary element methods for two-dimensional elasticity problems.Eng.Anal.Bound.Elem.32,100–107(2008)

    24.Zhang,Z.,Liew,K.M.,Cheng,Y.M.,et al.:Analyzing 2D fracture problems with the improved element-free Galerkin method.Eng.Anal.Bound.Elem.32,241–250(2008)

    25.Zhang,Z.,Li,D.M.,Cheng,Y.M.,et al.:The improved element free Galerkin method for three-dimensional wave equation.Acta Mech.Sin.28,808–818(2012)

    26.Zhang,Z.,Hao,S.Y.,Liew,K.M.,et al.:The improve delement-free Galerkin method for two-dimensional elastodynamics problems.Eng.Anal.Bound.Elem.37,1576–1584(2013)

    27.Li,K.T.,Huang,A.X.:Mathematical aspect of the stream-function equations of compressible turbomachinery flows and their finite element approximation using optimal control.Comput.Methods Appl.Mech.Eng.41,175–194(1983)

    28.Li,K.T.,Huang,A.X.,Zhang,W.L.:A dimension split method for the 3-D compressible Navier–Stokes equations in turbomachine.Commun.Numer.Methods Eng.18,1–14(2002)

    29.Li,K.T.,Yu,J.P.,Shi,F.,et al.:Dimension splitting method for the three dimensional rotating Navier–Stokes equations.Acta Math.Appl.Sinica 28,417–442(2012)

    30.Chen,H.,Li,K.T.,Wang,S.:A dimension split method for the incompressible Navier–Stokes equations in three dimensions.Int.J.Numer.Methods Fluids 73,409–435(2013)

    31.Li,K.T.,Shen,X.Q.:A dimensional splitting method for the linearly elastic shell.Int.J.Comput.Math.84,807–824(2007)

    32.Hansen,E.,Ostermann,A.:Dimension splitting for evolution equations.Numer.Math.108,557–570(2008)

    33.Hansen,E.,Ostermann,A.:Dimension splitting for quasilinear parabolic equations.IMA J.Numer.Anal.30,857–869(2010)

    34.Hou,R.Y.,Wei,H.B.:Dimension splitting algorithm for a three dimensional elliptic equation.Int.J.Comput.Math.89,112–127(2012)

    35.ter Maten,E.J.W.:Splitting methods for fourth order parabolic partial differential equations.Computing 37,335–350(1986)

    36.Bragin,M.D.,Rogov,B.V.:On exact dimensional splitting for a multidimensional scalar quasilinear Hyperbolic conservation law.Dokl.Math.94,382–386(2016)

    37.D’souza,R.M.,Margolus,N.H.,Smith,M.A.:Dimension-splitting for simplifying diffusion in lattice-gas models.J.Stat.Phys.107,401–422(2002)

    38.Cheng,H.,Peng,M.J.,Cheng,Y.M.:The hybrid improved complex variable element-free Galerkin method for three-dimensional potential problems.Eng.Anal.Bound.Elem.84,52–62(2017)

    39.Cheng,H.,Peng,M.J.,Cheng,Y.M.:A fast complex variable element-free Galerkin method for three-dimensional wave propagation problems.Int.J.Appl.Mech.9,1750090(2017)

    国产午夜精品久久久久久一区二区三区 | 日韩精品有码人妻一区| 欧美性感艳星| 亚洲四区av| 日本三级黄在线观看| 国产精品不卡视频一区二区| 久久久午夜欧美精品| 深夜精品福利| 国产欧美日韩一区二区精品| 真实男女啪啪啪动态图| 亚洲中文字幕一区二区三区有码在线看| 久久精品夜夜夜夜夜久久蜜豆| 少妇裸体淫交视频免费看高清| 国产淫片久久久久久久久| 老师上课跳d突然被开到最大视频| 成人永久免费在线观看视频| 日韩欧美精品v在线| 精品久久久久久久久av| 熟女人妻精品中文字幕| 在线国产一区二区在线| 婷婷精品国产亚洲av在线| 久久久久久久久久黄片| 最近在线观看免费完整版| 老师上课跳d突然被开到最大视频| 亚洲经典国产精华液单| 日日撸夜夜添| 国模一区二区三区四区视频| 国产成人a区在线观看| 女同久久另类99精品国产91| 国产精品国产三级国产av玫瑰| 午夜福利在线观看吧| 中文字幕免费在线视频6| 91在线观看av| 97人妻精品一区二区三区麻豆| 中文字幕熟女人妻在线| 久久久国产成人精品二区| 国产精品不卡视频一区二区| 18禁黄网站禁片免费观看直播| 成人漫画全彩无遮挡| aaaaa片日本免费| 麻豆一二三区av精品| 人人妻人人澡欧美一区二区| 国产国拍精品亚洲av在线观看| 俺也久久电影网| 精品人妻一区二区三区麻豆 | 变态另类丝袜制服| 最近的中文字幕免费完整| 日日摸夜夜添夜夜添小说| 寂寞人妻少妇视频99o| 亚州av有码| 国产亚洲精品久久久com| 亚洲美女搞黄在线观看 | 亚洲av免费高清在线观看| 观看免费一级毛片| 久久久久久九九精品二区国产| АⅤ资源中文在线天堂| 久久精品国产亚洲网站| 伊人久久精品亚洲午夜| 菩萨蛮人人尽说江南好唐韦庄 | 一a级毛片在线观看| av在线播放精品| 极品教师在线视频| 小说图片视频综合网站| 波多野结衣高清作品| 亚洲最大成人手机在线| 看片在线看免费视频| 一进一出抽搐gif免费好疼| 久久人人爽人人爽人人片va| 一级黄片播放器| 午夜免费男女啪啪视频观看 | 色av中文字幕| 三级经典国产精品| 深夜精品福利| 亚洲国产精品成人久久小说 | 国内少妇人妻偷人精品xxx网站| 精品久久国产蜜桃| a级毛色黄片| av在线亚洲专区| 国产午夜精品久久久久久一区二区三区 | 亚洲人与动物交配视频| 搞女人的毛片| 男女下面进入的视频免费午夜| 一个人观看的视频www高清免费观看| 欧美成人免费av一区二区三区| 久久久久久久久久成人| 亚洲国产精品sss在线观看| 午夜亚洲福利在线播放| 日本三级黄在线观看| 国产视频一区二区在线看| 在线免费观看的www视频| 给我免费播放毛片高清在线观看| 天堂av国产一区二区熟女人妻| 久久热精品热| 一夜夜www| 日本黄色片子视频| 国产高清不卡午夜福利| 久久精品综合一区二区三区| 特大巨黑吊av在线直播| 欧美日韩综合久久久久久| 高清日韩中文字幕在线| 最近的中文字幕免费完整| 日韩在线高清观看一区二区三区| 日韩欧美精品v在线| av在线播放精品| 日本三级黄在线观看| 全区人妻精品视频| 中国国产av一级| 美女高潮的动态| 成人高潮视频无遮挡免费网站| 国产高清激情床上av| 久久久久国内视频| 十八禁国产超污无遮挡网站| 欧美又色又爽又黄视频| 天天躁日日操中文字幕| 国产伦精品一区二区三区四那| 国产精品久久久久久亚洲av鲁大| 色播亚洲综合网| 国产av一区在线观看免费| 国产精品久久久久久久电影| 黄色视频,在线免费观看| 国产精品久久久久久久久免| 精品一区二区三区视频在线观看免费| 国产精品爽爽va在线观看网站| 久久精品国产99精品国产亚洲性色| 黄色配什么色好看| 少妇人妻一区二区三区视频| 日韩欧美一区二区三区在线观看| 免费电影在线观看免费观看| 九色成人免费人妻av| 嫩草影院新地址| 午夜爱爱视频在线播放| 久久久久国产网址| 天堂√8在线中文| 99热6这里只有精品| 成人永久免费在线观看视频| 美女黄网站色视频| 午夜激情福利司机影院| 成人永久免费在线观看视频| 97超视频在线观看视频| 欧美3d第一页| 久久精品91蜜桃| 十八禁网站免费在线| 国产亚洲av嫩草精品影院| 国产免费一级a男人的天堂| 国语自产精品视频在线第100页| 国产三级中文精品| 波多野结衣高清无吗| 久久人人精品亚洲av| 亚洲熟妇中文字幕五十中出| а√天堂www在线а√下载| 51国产日韩欧美| 国产精品一二三区在线看| 久久久久久久亚洲中文字幕| 看免费成人av毛片| 亚洲人成网站在线播放欧美日韩| 亚洲av中文av极速乱| 成年女人永久免费观看视频| av在线播放精品| 亚洲美女搞黄在线观看 | 日韩中字成人| 成人漫画全彩无遮挡| 插阴视频在线观看视频| 亚洲欧美日韩卡通动漫| 亚洲成a人片在线一区二区| 最新在线观看一区二区三区| 国产91av在线免费观看| 国产免费男女视频| 麻豆精品久久久久久蜜桃| 久久精品国产亚洲av天美| 亚洲欧美日韩东京热| 大型黄色视频在线免费观看| 天堂动漫精品| 性色avwww在线观看| 国产精品久久电影中文字幕| 免费看光身美女| 深夜a级毛片| 少妇的逼好多水| 久久午夜福利片| 高清毛片免费看| 成人高潮视频无遮挡免费网站| 村上凉子中文字幕在线| 日韩成人av中文字幕在线观看 | 国产精品综合久久久久久久免费| 在线观看美女被高潮喷水网站| 国产久久久一区二区三区| 国内精品美女久久久久久| 91久久精品国产一区二区三区| 一级av片app| 在线观看66精品国产| 亚洲国产欧洲综合997久久,| 国产精品久久电影中文字幕| 亚洲精品在线观看二区| 99久国产av精品国产电影| 亚洲无线观看免费| 变态另类丝袜制服| 亚洲美女搞黄在线观看 | 久久久国产成人精品二区| 国产熟女欧美一区二区| 综合色丁香网| 99久久精品一区二区三区| 亚洲精品成人久久久久久| 亚洲四区av| 欧美人与善性xxx| 我的女老师完整版在线观看| 美女高潮的动态| 你懂的网址亚洲精品在线观看 | 国产亚洲91精品色在线| 别揉我奶头 嗯啊视频| 午夜福利高清视频| 春色校园在线视频观看| 免费看光身美女| 长腿黑丝高跟| 午夜久久久久精精品| 午夜福利在线在线| 好男人在线观看高清免费视频| 国产伦一二天堂av在线观看| 国产成人福利小说| 天堂影院成人在线观看| 美女免费视频网站| 精品无人区乱码1区二区| 亚洲精品一卡2卡三卡4卡5卡| 国国产精品蜜臀av免费| 国产在线精品亚洲第一网站| 草草在线视频免费看| 午夜激情福利司机影院| 麻豆久久精品国产亚洲av| 日本a在线网址| 亚洲三级黄色毛片| 色综合亚洲欧美另类图片| 韩国av在线不卡| 国产熟女欧美一区二区| 一个人观看的视频www高清免费观看| 国产激情偷乱视频一区二区| 久久亚洲精品不卡| 老司机午夜福利在线观看视频| 色哟哟哟哟哟哟| 女人十人毛片免费观看3o分钟| 久久久久久久亚洲中文字幕| 日本黄色视频三级网站网址| 看非洲黑人一级黄片| 听说在线观看完整版免费高清| 久久精品夜色国产| 97超碰精品成人国产| 久久热精品热| a级毛片a级免费在线| 国产精品久久电影中文字幕| 无遮挡黄片免费观看| 国产欧美日韩一区二区精品| 99视频精品全部免费 在线| 一级毛片久久久久久久久女| 亚洲丝袜综合中文字幕| 日韩欧美三级三区| 99久久成人亚洲精品观看| 久久人人精品亚洲av| 男人和女人高潮做爰伦理| 亚洲欧美日韩东京热| 国产一区二区亚洲精品在线观看| 日本一本二区三区精品| 国产成人91sexporn| 亚洲一区高清亚洲精品| 久久久久久九九精品二区国产| 久久午夜福利片| 伦精品一区二区三区| 国产av不卡久久| 亚洲美女搞黄在线观看 | 别揉我奶头 嗯啊视频| 日本与韩国留学比较| 国产淫片久久久久久久久| 婷婷精品国产亚洲av| 99九九线精品视频在线观看视频| 亚洲欧美日韩高清在线视频| 我的女老师完整版在线观看| 亚洲人成网站在线播| 久久欧美精品欧美久久欧美| 精品人妻熟女av久视频| 国产免费一级a男人的天堂| 中国国产av一级| 精品久久久久久成人av| 女同久久另类99精品国产91| 亚州av有码| 久久精品国产亚洲网站| 人妻制服诱惑在线中文字幕| 精品国产三级普通话版| 六月丁香七月| 欧美高清性xxxxhd video| 亚洲精品一卡2卡三卡4卡5卡| 美女黄网站色视频| 一进一出抽搐动态| 内射极品少妇av片p| 草草在线视频免费看| 99久国产av精品国产电影| a级一级毛片免费在线观看| 深夜a级毛片| 午夜福利在线观看吧| 亚洲欧美日韩高清在线视频| 男女啪啪激烈高潮av片| 一个人免费在线观看电影| 国产在视频线在精品| 国产女主播在线喷水免费视频网站 | 一进一出抽搐gif免费好疼| 亚洲性久久影院| 男人舔奶头视频| av卡一久久| 国产精品一区二区免费欧美| 日韩av不卡免费在线播放| 九九热线精品视视频播放| 国产亚洲欧美98| 欧美人与善性xxx| 男女做爰动态图高潮gif福利片| 精品熟女少妇av免费看| 一级毛片电影观看 | avwww免费| or卡值多少钱| 国内久久婷婷六月综合欲色啪| 免费观看精品视频网站| 全区人妻精品视频| 欧美性猛交╳xxx乱大交人| 国产 一区 欧美 日韩| 亚洲第一区二区三区不卡| 日日摸夜夜添夜夜爱| 又爽又黄无遮挡网站| 人人妻人人澡人人爽人人夜夜 | 99久久精品热视频| 免费观看的影片在线观看| a级一级毛片免费在线观看| 国产三级在线视频| 综合色av麻豆| 晚上一个人看的免费电影| 亚洲国产高清在线一区二区三| 久久久久久国产a免费观看| 精品午夜福利视频在线观看一区| 国产精品亚洲一级av第二区| 成年女人永久免费观看视频| 欧美成人精品欧美一级黄| 你懂的网址亚洲精品在线观看 | 变态另类成人亚洲欧美熟女| 九色成人免费人妻av| 如何舔出高潮| 亚洲第一区二区三区不卡| 成人漫画全彩无遮挡| 国产乱人偷精品视频| 12—13女人毛片做爰片一| 欧美成人一区二区免费高清观看| 日本成人三级电影网站| 一区二区三区免费毛片| 日本成人三级电影网站| 亚洲精品国产av成人精品 | 亚洲人与动物交配视频| 97碰自拍视频| 午夜福利视频1000在线观看| 免费观看精品视频网站| 亚洲激情五月婷婷啪啪| 国产精品久久视频播放| 欧美日韩综合久久久久久| 精品久久久久久久末码| 亚洲成人av在线免费| 免费搜索国产男女视频| 国产精品一区二区三区四区免费观看 | av黄色大香蕉| 99热只有精品国产| 亚洲人成网站高清观看| 精品午夜福利在线看| 久久久a久久爽久久v久久| av免费在线看不卡| 天堂网av新在线| 国产精品国产三级国产av玫瑰| 午夜久久久久精精品| 免费av毛片视频| 国产久久久一区二区三区| 久久这里只有精品中国| 午夜久久久久精精品| 99热网站在线观看| 国产 一区 欧美 日韩| av免费在线看不卡| 亚洲欧美日韩高清在线视频| 男女边吃奶边做爰视频| 日韩欧美在线乱码| 激情 狠狠 欧美| 日韩在线高清观看一区二区三区| 舔av片在线| 欧美日本视频| 搡老妇女老女人老熟妇| 国产精品一区二区三区四区免费观看 | 欧美潮喷喷水| 亚洲无线在线观看| 欧美人与善性xxx| 国产黄色小视频在线观看| av在线亚洲专区| 午夜亚洲福利在线播放| 欧美不卡视频在线免费观看| 一边摸一边抽搐一进一小说| 亚洲第一区二区三区不卡| 久久午夜亚洲精品久久| 国产精品一区二区性色av| 亚洲国产精品成人久久小说 | 久久精品综合一区二区三区| 中文资源天堂在线| 亚洲七黄色美女视频| 国产精品一区二区三区四区免费观看 | 午夜日韩欧美国产| 少妇裸体淫交视频免费看高清| 久久精品国产亚洲av涩爱 | 一卡2卡三卡四卡精品乱码亚洲| www日本黄色视频网| 欧美极品一区二区三区四区| 菩萨蛮人人尽说江南好唐韦庄 | 99riav亚洲国产免费| 亚洲国产高清在线一区二区三| 亚洲av免费高清在线观看| 悠悠久久av| 熟女人妻精品中文字幕| 亚洲乱码一区二区免费版| 蜜桃亚洲精品一区二区三区| 搡女人真爽免费视频火全软件 | 精华霜和精华液先用哪个| 欧美另类亚洲清纯唯美| 国产精品,欧美在线| 黄色欧美视频在线观看| a级毛片a级免费在线| 国产成人一区二区在线| 91久久精品国产一区二区成人| 亚洲经典国产精华液单| 亚洲最大成人手机在线| 此物有八面人人有两片| 91精品国产九色| 热99在线观看视频| 成人美女网站在线观看视频| 综合色av麻豆| 久久久久国产网址| 午夜免费激情av| 悠悠久久av| 99热全是精品| 男女下面进入的视频免费午夜| 国产av一区在线观看免费| 亚洲av美国av| 久久久欧美国产精品| 美女xxoo啪啪120秒动态图| 内射极品少妇av片p| 夜夜爽天天搞| 国产精品一区二区性色av| 狂野欧美白嫩少妇大欣赏| 午夜福利18| 九九爱精品视频在线观看| 美女黄网站色视频| 少妇的逼水好多| 午夜亚洲福利在线播放| 一级黄色大片毛片| 国产人妻一区二区三区在| 神马国产精品三级电影在线观看| 蜜桃亚洲精品一区二区三区| 香蕉av资源在线| 亚洲三级黄色毛片| 偷拍熟女少妇极品色| 人妻制服诱惑在线中文字幕| 男插女下体视频免费在线播放| 成人毛片a级毛片在线播放| 非洲黑人性xxxx精品又粗又长| 精品人妻视频免费看| 成年av动漫网址| 久久久久久久久久黄片| 国产精品人妻久久久久久| 亚洲人与动物交配视频| 亚洲精品粉嫩美女一区| 波多野结衣高清作品| 大又大粗又爽又黄少妇毛片口| 久久精品久久久久久噜噜老黄 | 成人高潮视频无遮挡免费网站| 舔av片在线| 人妻丰满熟妇av一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 国产综合懂色| 亚洲av.av天堂| 中文字幕免费在线视频6| 国产男靠女视频免费网站| 能在线免费观看的黄片| 免费一级毛片在线播放高清视频| 日韩中字成人| 国产单亲对白刺激| 最好的美女福利视频网| 中文字幕精品亚洲无线码一区| av在线蜜桃| 一本一本综合久久| 亚洲国产高清在线一区二区三| 性色avwww在线观看| 小说图片视频综合网站| 性插视频无遮挡在线免费观看| 日韩精品中文字幕看吧| 日日干狠狠操夜夜爽| 特级一级黄色大片| 欧美一区二区亚洲| av在线亚洲专区| 欧美性猛交╳xxx乱大交人| 午夜免费男女啪啪视频观看 | 成人一区二区视频在线观看| 国产成年人精品一区二区| 最近最新中文字幕大全电影3| 国产精品久久久久久精品电影| 成熟少妇高潮喷水视频| av国产免费在线观看| 干丝袜人妻中文字幕| 国产男靠女视频免费网站| 国产精品一二三区在线看| 久久久午夜欧美精品| 精品无人区乱码1区二区| 人人妻,人人澡人人爽秒播| 免费在线观看成人毛片| 自拍偷自拍亚洲精品老妇| 亚洲不卡免费看| 亚洲精品粉嫩美女一区| 欧美激情久久久久久爽电影| 午夜精品在线福利| 久久国产乱子免费精品| 精品久久久久久久久久免费视频| 舔av片在线| 三级男女做爰猛烈吃奶摸视频| 成人性生交大片免费视频hd| 欧美日韩精品成人综合77777| 国产高清三级在线| 在线观看美女被高潮喷水网站| 99视频精品全部免费 在线| 在线免费观看不下载黄p国产| 国内揄拍国产精品人妻在线| 99久久精品一区二区三区| 久久久久久久午夜电影| 在线国产一区二区在线| 波多野结衣高清作品| 国产高清三级在线| 男女做爰动态图高潮gif福利片| 人妻久久中文字幕网| 97人妻精品一区二区三区麻豆| 久久草成人影院| 日本 av在线| av在线老鸭窝| 国产一区二区激情短视频| 国产精品人妻久久久久久| 日韩欧美免费精品| 欧美激情国产日韩精品一区| 国产成人a∨麻豆精品| 亚洲色图av天堂| 丝袜美腿在线中文| 婷婷亚洲欧美| 国产成人a∨麻豆精品| 变态另类成人亚洲欧美熟女| 亚洲精品国产av成人精品 | 日韩欧美精品免费久久| 夜夜看夜夜爽夜夜摸| 日韩欧美精品免费久久| 国产极品精品免费视频能看的| 国产欧美日韩一区二区精品| 日韩人妻高清精品专区| 99热6这里只有精品| 村上凉子中文字幕在线| 精品午夜福利视频在线观看一区| 国内揄拍国产精品人妻在线| 中文字幕人妻熟人妻熟丝袜美| 国产精品国产三级国产av玫瑰| 国内精品久久久久精免费| 国产精品三级大全| 亚洲中文日韩欧美视频| 我要搜黄色片| 成年版毛片免费区| 日韩高清综合在线| 成人av一区二区三区在线看| 一级黄片播放器| 男女下面进入的视频免费午夜| 男女那种视频在线观看| 日韩强制内射视频| 两性午夜刺激爽爽歪歪视频在线观看| 97热精品久久久久久| 日本与韩国留学比较| 亚洲在线观看片| 搡老妇女老女人老熟妇| 成人av一区二区三区在线看| 亚洲不卡免费看| 我要看日韩黄色一级片| 亚洲第一区二区三区不卡| 极品教师在线视频| 久久久久久国产a免费观看| 国产高清不卡午夜福利| 啦啦啦啦在线视频资源| 十八禁网站免费在线| 免费无遮挡裸体视频| 秋霞在线观看毛片| 亚洲精品色激情综合| 又黄又爽又免费观看的视频| 国产黄色视频一区二区在线观看 | 欧美日韩在线观看h| 联通29元200g的流量卡| 少妇猛男粗大的猛烈进出视频 | 国产精品爽爽va在线观看网站| 国产熟女欧美一区二区| 蜜桃亚洲精品一区二区三区| 国内揄拍国产精品人妻在线| 精品一区二区三区av网在线观看| 色哟哟·www| 赤兔流量卡办理| 一级毛片久久久久久久久女| 国内精品一区二区在线观看| 日产精品乱码卡一卡2卡三| 在线观看午夜福利视频| 国产探花极品一区二区| 一区二区三区四区激情视频 | 精品无人区乱码1区二区| 不卡一级毛片| 午夜老司机福利剧场| 成人av一区二区三区在线看| 久久精品国产亚洲网站| 国产不卡一卡二| 国产色爽女视频免费观看| 男女边吃奶边做爰视频| 搞女人的毛片| 中国美女看黄片| 免费在线观看影片大全网站| 桃色一区二区三区在线观看| 热99在线观看视频|