• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Density enhancement mechanism of upwind schemes for low Mach number flows

    2018-06-07 02:19:12BoXiLinChaoYanShuShengChen
    Acta Mechanica Sinica 2018年3期

    Bo-Xi Lin·Chao Yan·Shu-Sheng Chen

    1 Introduction

    When with low-speed flow configurations[1–4],numerical schemes developed for compressible flows suffer because the non-physical behavior deteriorates the solution accuracy and because there is a large disparity between the speed of fluid and acoustic wave.There is also a stiffness problem leading to slow calculation.Low-speed preconditioning techniques have been developed to overcome issue of compressible flow solvers in the in compressible limit[5,6].Later,the non-physical behavior was demonstrated by asymptotic analysis by Guillard and Viozat in Ref.[7].As pointed out in the asymptotic analysis,discrete equations of the shock capturing schemes lead to pressure fieldPfluctuation withbut the true physical pressure should scale as,whereMis the local Mach number,xandtdenote space and time.During recent years,some new attempts to improve the accuracy of conservative schemes in the low-speed limit have been proposed,which focus on dissipation characteristics of flux functions and are different from the previous preconditioning idea.Among the conservative schemes,the Roe scheme[8]is a widely used method for solving compressible flows due to its high resolution for discontinuities and contact shear waves.Many Roe-type schemes with low Mach improvement have been proposed for all speed flows[9].The work of Li and Gu[10]investigated the joint mechanism of many improved schemes,which include all-speed Roe(A-Roe)[11,12],Thornber-Drikakis-Roe(TD-Roe)by Thornber and Drikakis[13],LMRoe by Rieper[14],Fillion-Roe(F-Roe)by Fillion et al.[15].To construct satisfactory schemes showing the correct asymptotic behavior,Li and Gu[10]found three rules for low speeds through asymptotic theoretical analysis.Based on these disciplines,improvements for low speeds have been applied to schemes include Harten,Lax,and van Leer(HLL)[10,16],Roe[17],Toro-Vázquez flux splitting[18].Another group of popular upwind methods are AUSM-family schemes[19,20],and their low Mach number modification[21,22]based on a careful design of dissipation also have been proposed.Besides the accuracy problem,some authors[23,24]also investigated preconditioned implicit time integration methods for efficient calculation of low-speed flows.

    However,the proposed schemes only concern the nonphysical behavior of pressure and the checkerboard problem(i.e.correction of pressure and velocity fields),without concerning the correct asymptotic behavior of density field,which is also important as all-speed schemes are mostly applied to density variable flows(low Mach flows[25,26])or compressible field with low-speed zones(mixed compressible incompressible flows[27]).In the low Mach number speeds,the pressure field gradually decouples with density as the Mach number decreasing to zero,so the asymptotic density variations of these schemes must also be considered in addition to pressure problems.

    The rules for low speed flows developed by Li et al.only concern terms in momentum and continuity equations.In the original T-D-Roe[13]and F-Roe[15]schemes,the energy equation is untouched,while Li and Gu[10]add fixed terms to the energy equation for uniformity,which is just like the form of the momentum equation,and concluded that the modification has little effect on the energy equation.However,it has been found that the correction terms in the energy equation are related closely to the density fluctuation of the flow field in our numerical experiments.These things motivate us to understand the mechanism of density fluctuation with the correction terms in the energy equation and then to find the rules to improve the schemes that have not considered density effects,such as the recently proposed TV-MAS[18].

    The outline of this paper is as follows.Section 2 presents the governing equations.Section3briefly reviews the Roe,TD-Roe,F-Roe schemes and the recently proposed TV-MAS method.Their density enhanced versions are also discussed in this section.Section4 discusses the density fix mechanism with energy equation underlying these schemes and conducts an asymptotic analysis to demonstrate it.The resulting rules of the density fix mechanism are applied to the TV-MAS scheme.Section5 presents the numerical experiments to support the theoretical analysis and prediction.Finally,Sect.6 closes the paper with some conclusions.

    2 Governing equations

    Firstly,the compressible Euler equations in2D can be written as the following form

    where the specific heat ratioγ=1.4.

    The finite volume discretization of Eq.(1)can be written as

    whereΩijis the 2D finite volume,ΔSmis the edge length,Nfis the total number of edges composing the finite cell,Fkis the flux function at the edge normal.

    3 Review of the schemes

    3.1 The original Roe scheme

    The original Roe–Pike[8]scheme can be expressed in the following form

    3.2 The F-Roe scheme

    Fillion et al.[15]propose a low Mach Roe scheme by adding a pressure correction to the momentum flux as follows

    This F-Roe scheme is further investigated by Qu et al.[28,29]in supersonic heating problems and Reynolds averaged Navier Stokes(RANS)simulations.There are no energy fix terms in the original F-Roe scheme,and this would result in incorrect density fluctuation which will be shown in asymptotic and numerical experiment.The density correction term is added to energy equation as follows and the scheme is called F-Roe2:

    3.3 The T-D-Roe scheme

    In order to improve the Roe scheme,Thornber and Drikakis[13]modified the right eigenvector as follows

    In Eq.(16),the acoustic terms in RT?D?Roe2(4,1)and RT?D?Roe2(4,4)are also scaled byf(M),while in the original T-D-Roe they are the same as Roe scheme.

    Through mathematical transformation,the T-D-Roe2 can be written as the form of F-Roe2 as follows

    As we can see from Eq.(17),the T-D-Roe2has avery similar form of F-Roe2 in Eq.(12),which implies that they may have similar performance at low speeds.

    3.4 The TV-MAS scheme

    Based on the idea that velocity and pressure should be separately treated owing to the different physics between the convective and acoustic waves,new flux vector splitting(FVS)schemes have been developed.These methods rely on some forms of splitting procedures.Up to now,there mainly exist procedures of Liou-Steffen[19],Zha-Bigen[30],and Toro-Vázquez[31]to split the Euler equations into theadvection systemandpressure system.Further discussions and developments for these methods can be found in Refs.[18,32–34].The main differences between those splitting procedures lie in the energy equation of theconvective system:Liou-Steffen’s total enthalpy,Zha-Bigen’s total energy,and Toro-Vázquez’s kinetic energy respectively.

    The TV-MAS scheme proposed by Sun et al.[18]based on Toro-Vázquez’s splitting is reviewed here,and the TVMAShasbeen claimed as an all-speed scheme in the original paper.In the Toro-Vázquez’s splitting,advection systemhas no pressure terms,and it only appears inpressure system,moreover,this splitting allows direct use of Godunov-type methods to the separated system.These characteristics make the splitting procedures attractive.

    Following Toro-Vázquez’s splitting,the flux vector of Eq.(1)is split into theadvectionsystemandpressure system:

    Thepressure systemis dealt with using an HLL-type[35]Riemann solver,and then the authors follow an isoentropy transformation in AUFS scheme[36],and the resulting pressure dissipation vector is written as

    whereAs we can see,the TV-MAS scheme has applied the rules proposed by Li and Gu[10]to pressure dissipation terms,which modifies the pressure-difference terms in momentum equations by the factorf(M),but apparently the energy equation is neglected by the original authors.

    4 Asymptotic analysis

    Under the adiabatic compression condition,pressure and density are related to each other as=const[37],so the density field would have the same fluctuation pattern as the pressure.To find the mechanism for how the correction term in the energy equation influences density fluctuation,an asymptotic analysis,which has been widely used in Refs.[7,10,11,14],is performed.Previous asymptotic analysis of continuous Euler equation has found that pressure field fluctuates with the square of Mach number,and the asymptotic analysis of the discrete equations with Roe scheme has revealed the terms related to the pressure fluctuation.This time we will find the density related terms in the discrete equations.

    Following Ref.[7],the parametersρ?,u?,anda?are used to normalize the compressible Euler equations,which are defined asand the acoustic speedρi(x),ui(x),andpi(x)are the initial values of the discrete domain.The normalized variables are listed in the following form

    HereM?is the reference Mach number andδ?is the characteristic mesh element size.Then all normalized variables are asymptotically expanded into powers of the reference Mach numberM?

    Table 1 Symbols in asympototics

    whererepresents all the physical variablesrespectively.In the following sections,we will drop the tildeconvenience and all the symbols used in analysis are presented in Table 1.

    Inserting the asymptotic expansion Eq.(29)into the FRoe scheme,we collect terms with the same power ofM?.In Ref.[14],Rieper has analyzed the terms with the order,and has found the mechanisms to get the correct pressure field.This correction also fixes the Mach contours of the flows.However,the pressure has a limited influence on density in low Mach number.So further analysis must be conducted upon the asymptotic expansion of pressure to find the density enhance mechanism.We gather the terms with orderin continuity and energy equations as follows continuity equation:

    Note that for a simple entropy conservative shear flow with constant density and pressure,Ronly has the transport term forρ(1).An excessive damping of theρ(1)origins from the underline term in Eq.(35).In the F-Roe2 and TD-Roe2 schemes,this term is lifted with thef(M)function(ΔilU(0)→ 0),and reduces the artificial viscosity to the correct level.This density correction effects will be shown in the following numerical experiments.

    That is to say, fix terms also should be applied to the energy equation to get the right density fluctuation,based on the pressure fix added to momentum equations.The nonphysical phenomenon of upwind schemes at low speed can be cured following the rules of Li and Gu[10],and now we have shown that extra fix terms in the energy equation needed to be considered based on a similar form of momentum correction.According to this theory,we propose the TV-MAS2 scheme,which fixes the energy equation with thef(M)function upon the original TV-MAS scheme.In order to get the correct density fluctuation,the energy equation inis modified as the way in momentum equations,resulting the following TV-MAS2 scheme

    5 Numerical results

    5.1 Greshovortex

    In their work,Gresho and Chan[38,39]proposed a time independent solid body rotating vortex flow.In this unsteady moving flow,the vortex can be transported without distortion by the background flow.We choose a computation domain of[0,1]×[0,1],and periodic conditions are applied on the horizontal direction,while characteristic conditions are on the vertical edges.The domain is first initialized with a uniform background flow of densityρ0,pressureP0,and given MachM0as follows

    A perturbed initial condition permitting different Mach numbers is proposed in Ref.[14].At the timet=0 of the perturbed flow,a vortex is located at(x0,y0)=(0.5,0.5)with the radiusR=0.4.At the positionr=R,the vortex tangential velocity decreases to zero.This perturbed vortex is added to the background flow as follows

    where theur(r)denotes the radial velocity and we obtain the Cartesian components by

    The original incompressible test case is extended to a weakly compressible one by introducing the adiabatic compressionp=ργ,which makes the initial density field have a similar form to pressure fluctuations

    We use a Cartesian grid of[120×120],and all simulations are run until one domain passage is reached.The strong stability preserving a three-stage third-order Runge-Kutta(SSP-RK3)[40]scheme is used for temporal discretization.

    In Ref.[9],the evolution of a normalized pressure field∈[0,1]is used to characterize the accuracy of the computations in incompressible limit.The normalized pressure fieldis expressed as

    In the Gresho vortex test case,the normalized pressure and density field should be unchanged during transportation independent of initial Mach number.Thus,we use this to evaluate the quality of different schemes in the simulation of Gresho vortex.

    Figure 1 shows the normalized pressure fluctuation field of the Gresho vortex forMa=0.1.Figure 2 shows the corresponding normalized density fluctuation field.As we can see,the original Roe scheme holds the initial maximumPfof 50%–60%after one domain passage due to the strong dissipation;on the contrary,all others plotted in the figures have preserved the original maximumPf.All the improved schemes(T-D-Roe,F-Roe,TV-MAS,T-D-Roe2,F-Roe2,TV-MAS2)have achieved the same contour onPfas F-Roe,thus not all of them are plotted in the figure.However,the difference lies in the density field.Schemes in the group with no energy correction(T-D-Roe,F-Roe,TV-MAS)show excessive dissipation to density fluctuation.The original Roe preserves30%of the maximumρfafter one domain passage,while F-Roeis40%,TV-MAS is20%.The schemes with energy fix terms(T-D-Roe2,F-Roe2,TV-MAS2)have almost constant density fluctuation as the initial field.This shows the importance of the energy equation fix to get the correct density field in low Mach speeds.

    Fig.1 Normalized pressure field for simulations of a Gresho vortex.a Initial pressure field.b Roe scheme for M a0=0.1.c F-Roe scheme for Ma0=0.1.d F-Roe2 scheme for Ma0=0.1.e TV-MAS scheme for Ma0=0.1.f TV-MAS2 scheme for Ma0=0.1

    Fig.2 Normalized density field for simulations of a Gresho vortex.a Initial density filed.b Roe scheme for Ma0=0.1.c F-Roe scheme for Ma0=0.1.d F-Roe2 scheme for Ma0=0.1.e T-D-Roe scheme for M a0=0.1.f T-D-Roe2 scheme for M a0=0.1.g TV-MAS scheme for Ma0=0.1.h TV-MAS2 scheme for Ma0=0.1

    Fig.3 Vorticity contours of double shear-layer by F-Roe2 schemes at Mach 0.01.a t=0.b t=4.0.c t=8.0

    Fig.4 Velocity v profiles along x=π at t=8.0 of double shear layer cases

    Fig.5 Density profiles along x=π at t=8.0 of double shear layer cases

    The T-D-Roe series have similar formulas and numerical results as corresponding schemes in F-Roe series,and that is verified in the following numerical examples.So in some sections,only the F-Roe results are listed in the discussion.

    5.2 Double shear-layer

    Fig.6 Mach contours for simulations of flow around inviscid cylinder at Mach 0.001.a TV-MAS scheme.b TV-MAS2 scheme.c Roe scheme

    Fig.7 Pressure contours for simulations of flow around inviscid cylinder at Mach 0.001.a TV-MAS scheme.b TV-MAS2 scheme.c Roe scheme

    The “double shear-layer”problem is a typical 2D unsteady inviscid flow.We mostly follow the setup of Ishiko et al.[41]and Kitamura and Hashimoto[42],which makes this problem a weakly compressible flow.Initially,two shear layers are generated by fluids with opposite velocity(Fig.3a),then as time progresses,the initial layers will gradually roll up and develop a strong vortical flow structure (Fig.3b,c)[42].This vortical structure developed by shear-layer is very different to Gresho’s vortex flow,which possesses a consistent pattern.Thus,we conduct it to highlight further the characteristics of density correction.

    The initial conditions for velocity components are

    whereU∞=1.0,δ1= π/15,δ2=0.05.The density is set to beρ=1.0 and the pressure is chosen to satisfy a Mach number ofM∞=0.01 with.The computational domain is [0,2π]×[0,2π]and consists of 1282grid cells.A periodic boundary condition is adopted at all directions of the computational domain.The simulations are run up tot=8.0with the SSP-RK3 time scheme at a time step ofδt=5.0 × 10?5.The reference solution is achieved with Roe scheme at a very fine grid of 5122cells.“At this level of resolution,the flux functions have no influence on the results”[42].

    The differences of all simulated schemes are compared in Fig.4,in which velocityvprofiles are listed alongx=π slice.In Fig.5,the density profiles alongx=π are plotted.As we can see from Fig.4,all the low-Mach enhanced schemes get a more precise velocityvprofile than the original Roe,and there are marginal differences among themselfs.This proves that the momentum fix can recover the velocity and pressure profile at low Mach limit.However,in Fig.5,the density profile is very different.The F-Roe and TV-MAS have density jump glitches at the position of strong shear effect,while the fixed F-Roe2 and TV-MAS2 can recover correct density profile compared to the reference solution.

    Fig.8 Density contours for simulations of flow around inviscid cylinder at M a=0.001.a F-Roe scheme.b F-Roe2 scheme.c TV-MAS scheme.d TV-MAS2 scheme.e Roe scheme

    Fig.9 Convergence comparison of NACA0012 test case at Ma=0.01

    5.3 Inviscid cylinder

    The Euler flow over a two-dimensional cylinder is a typical low speed flow of blunt body.In this case,the size of the computational domain isΩ=[r0,r1] × [φ0,φ1],which is[0.5,20]× [0,2π]in details,wherer0is the radius of a cylinder surface andr1is the radius of exterior boundary.The adopted mesh is O-type and contains 301(cuicumference)×401(radius)grid points.The in flow Mach numbers??0.001 with initial conditions ofρ=1.0,The far field condition is used at the outer boundary,and the slip wall condition is applied at the cylinder wall.

    Figure 6 shows the Mach contours of the TV-MAS,TVMAS2,and Roe schemes,while Fig.7 shows the pressure contours.As we can see,in this condition,the TV-MAS and TV-MAS2 get the physical Mach and pressure field,while the original Roe scheme gets nonphysical contours.The TD-Roe and F-Roe series have the same Mach and pressure results,so are not plotted here.In Refs.[10,18],it has been shown that the Mach and pressure fields can be solved by the momentum corrections together,so only the pressure fields are used for comparison in the following.Figure 8 shows the density contours of the F-Roe,F-Roe2,TV-MAS,TVMAS2,and Roe schemes.The Roe,F-Roe,and TV-MAS get diffusive density field,while the TV-MAS2 and F-Roe2 can recover the correct density field.It also can be noticed that the F-Roe and TV-MAS get more diffusive density field than original Roe scheme.

    5.4 Inviscid NACA0012 airfoil

    Fig.10 Pressure contours for simulations of inviscid flow around NACA0012 at Ma=0.01.a F-Roe scheme.b F-Roe2 scheme.c T-D-Roe scheme.d T-D-Roe2 scheme.e TV-MAS scheme.f TV-MAS2 scheme.g Roe scheme

    The inviscid flow over NACA0012 airfoil is a typical test case at the low-speed condition.An O-type mesh that contains points of 241(airfoil)×121(normal)is used for the following computations.The discretization domain extends 19 chord lengths from the airfoil wall,the far field condition is used at the exterior boundary and the slip wall condition is applied to the airfoil surface.The flow results with several in flow Mach numbersMinf=0.1,0.01,0.001 at a zerodegree angle of attack are investigated to assess the density fix effects.In addition,the flow simulations are conducted by the implicit LU-SGS approach[43]withCFL=5 for over 100,000-time iterations,which achieve at least five orders of the density residual reduction(L2?norm).Though the preconditioned implicit LU-SGS[23]is a better choice,we still use LU-SGS since we mainly focus on the flux functions.

    Figure 9 shows the convergence history of in flow Mach number 0.01 by different schemes.The T-D-Roe serial schemes perform similarly to F-Roe and are not shown in the figure for clarity.We can see clearly in the convergence history that schemes without the energy correction stall after five orders of residual reduction.The schemes with corresponding corrections can continue with the residual drop.

    The results of pressure profiles with in flow Mach 0.01 are plotted in Fig.10,and density fields of the solutions are presented in Fig.11.It is important to note that although T-D-Roe,F-Roe,and TV-MAS schemes can obtain accurate pressure flow fields at low speeds,but fail in density fluctuation fields.The schemes with corrections in energy equation can get the accurate density field corresponding to the pressure field.However,in Fig.11f,the density field of TV-MAS2 seems more diffusive than F-Roe2and T-D-Roe2,especially in the wake region.This may owe to the inherent dissipation characteristic of HLL Riemann solver solving the pressure system,which is more diffusive than the Roe Riemann solver in nature.

    Fig.11 Density contours for simulations of inviscid flow around NACA0012at M a=0.01.a F-Roescheme.b F-Roe2 scheme.c T-D-Roescheme.d T-D-Roe2 scheme.e TV-MAS scheme.f TV-MAS2 scheme.g Roe scheme

    Fig.12 Comparison of pressure fluctuations computed by different schemes versus in flow Mach number

    Following Ref.[17],we define two fluctuation coefficients as follows

    Fig.13 Comparison of density fluctuations computed by different schemes versus in flow Mach number

    Figure 12 shows pressure fluctuationsInd(p)versus in flow Mach number for inviscid flows over NACA0012 airfoils.Figure 13 shows corresponding density fluctuationsInd(ρ).From these figures,we can draw the conclusions as follows:

    (1)T-D-Roe,F-Roe,and TV-MAS schemes are perfectly consistent with the theoretical asymptotic analysis that the pressure fluctuations scale with the square of the Mach number[7],but fails with the theoretical prediction of density fluctuation.

    (2)T-D-Roe2,F-Roe2,and TV-MAS2 schemes are able to obtain the correct scaling of both pressure and density fluctuations.Thus,they can simulate low Mach number flows more concisely.

    6 Conclusion

    In this work,we have presented a comprehensive study of the enhancement to a low-speed density fluctuation accuracy problem.The asymptotic analysis has shown the relation of density fluctuation with terms of?ρ?a?UΔUin energy equation at low Mach number limit of Roe-type schemes.Applying fix terms in momentum and energy equations at the same time not only can get the expected pressure fluctuations scales of square Mach number and the physical velocity fields,but also can correct the density field into the correct square Mach number scale.An improved TV-MAS scheme,i.e.TVMAS2,is proposed based on these study.Unsteady Gresho vortex flow,double shear-layer,low Mach number flows over an inviscid cylinder and the NACA0012 airfoil show that energy enhancement terms effectively obtain the expected square of Mach number scaling of density fluctuations,which is in good agreement with corresponding asymptotic analysis.In summary,the energy correction is recommended for low-speed enhancement of upwind schemes when using compressible flow solvers.

    AcknowledgementsThe authors would like to acknowledge the support for this work provided by the National Natural Science Foundation of China(Grant11402016),and all the authors are grateful to the anonymous reviewers for their constructive comments.

    1.Zheng,X.,Zhou,S.,Hou,A.,et al.:Separation control using synthetic vortex generator jets in axial compressor cascade. Acta Mech.Sin.22,521–527(2006)

    2.Xu,G.,Jiang,X.,Liu,G.:Delayed detached eddy simulations of fighter aircraft at high angle of attack.Acta Mech.Sin.32,588–603(2016)

    3.Zheng,W.,Yan,C.,Liu,H.,et al.:Comparative assessment of SAS and DES turbulence modeling for massively separated flows.Acta Mech.Sin.32,12–21(2016)

    4.Fang,J.,Lu,L.-P.,Shao,L.:Heat transport mechanisms of low Mach number turbulent channel flow with spanwise wall oscillation.Acta Mech.Sin.26,391–399(2010)

    5.Turkel,E.:Preconditioning techniques in computational fluid dynamics.Annu.Rev.Fluid Mech.31,385–416(1999)

    6.Weiss,J.,Smith,W.:Preconditioning applied to variable and constant density flows.AIAA J.33,2050–2057(1995)

    7.Guillard,H.,Viozat,C.:On the behaviour of upwind schemes in the low Mach number limit.Comput.Fluids 28,63–86(1999)

    8.Roe,P.L.,Pike,J.:Efficient construction and utilisation of approximate Riemann solutions.In:Computing Methods in Applied Sciences and Engineering,VI,North Holland,499–518(1984)

    9.Boniface,J.-C.:Rescaling of the Roe scheme in low Mach-number flow regions.J.Comput.Phys.328,177–199(2017)

    10.Li,X.-S.,Gu,C.-W.:Mechanism of Roe-type schemes for all-speed flows and its application.Comput.Fluids 86,56–70(2013)

    11.Li,X.,Gu,C.:An all-speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour.J.Comput.Phys.227,5144–5159(2008)

    12.Li,X.-S.,Gu,C.-W.,Xu,J.-Z.:Development of Roe-type scheme for all-speed flows based on preconditioning method.Comput.Fluids 38,810–817(2009)

    13.Thornber,B.J.R.,Drikakis,D.:Numerical dissipation of upwind schemes in low Mach flow.Int.J.Numer.Methods Fluids56,1535–1541(2008)

    14.Rieper,F.:A low-Mach number fix for Roe’s approximate Riemann solver.J.Comput.Phys.230,5263–5287(2011)

    15.Fillion,P.,Chanoine,A.,Dellacherie,S.,et al.:FLICA-OVAP:a new platform for core thermalhydraulic studies.Nucl.Eng.Des.241,4348–4358(2011)

    16.Li,X.-S.:Uniform algorithm for all-speed shock-capturing schemes.Int.J.Comput.Fluid Dyn.28,329–338(2014)

    17.Qu,F.,Yan,C.,Sun,D.,et al.:A new Roe-type scheme for all speeds.Comput.Fluids 121,11–25(2015)

    18.Sun,D.,Yan,C.,Qu,F.,et al.:A robust flux splitting method with low dissipation for all-speed flows.Int.J.Numer.Methods Fluids 84,3–18(2016)

    19.Liou,M.-S.,Steffen,C.J.:A new flux splitting scheme.J.Comput.Phys.107,23–39(1993)

    20.Liou,M.S.:A sequel to{AUSM:AUSM}+.J.Computat.Phys.129,364–382(1996)

    21.Liou,M.:A sequel to AUSM,part II:AUSM+-up for all speeds.J.Comput.Phys.214,137–170(2006)

    22.Shima,E.,Kitamura,K.:Parameter-free simple low-dissipation AUSM-family scheme for all speeds.AIAA J.49,1693–1709(2011)

    23.Kitamura,K.,Shima,E.,Fujimoto,K.,et al.:Performance of low dissipation euler fluxes and preconditioned LU-SGS at low speeds.Commun.Comput.Phys.10,90–119(2011)

    24.Shima,E.,Kitamura,K.:New approaches for computation of low Mach number flows.Comput.Fluids 85,143–152(2013)

    25.Yao,S.B.,Sun,Z.X.,Guo,D.L.,et al.:Numerical study on wake characteristics of high-speed trains.Acta Mech.Sin.29,811–822(2013)

    26.Guo,D.,Shang,K.,Zhang,Y.,et al.:Influences of affiliated components and train length on the train wind.Acta Mech.Sin.32,191–205(2016)

    27.Xiao,Z.,Fu,S.:Studies of the unsteady supersonic base flows around three after bodies.Acta Mech.Sin.25,471–479(2009)

    28.Qu,F.,Yan,C.,Sun,D.:Investigation into the influences of the low speed’s accuracy on the hypersonic heating computations.Int.Commun.Heat Mass Transf.70,53–58(2016)

    29.Qu,F.,Sun,D.,Shi,Y.,et al.:Investigation into the influences of the low speeds’accuracy on RANS simulations.In:21st AIAA International Space Planes and Hypersonics Technologies Conference,Xiamen,China,1–14(2017)

    30.Zha,G.,Bilgen,E.:Numerical solutions of Euler equations by using a new flux vector splitting scheme.Int.J.Numer.Methods Fluids 17,115–144(1993)

    31.Toro,E.F.,Vazquez-Cendon,M.E.:Flux splitting schemes for the Euler equations.Comput.Fluids 70,1–12(2012)

    32.Qu,F.,Yan,C.,Yu,J.,et al.:A new flux splitting scheme for the Euler equations.Comput.Fluids 102,203–214(2014)

    33.Kapen,P.T.,Tchuen,G.:An extension of the TV-HLL scheme for multi-dimensional compressible flows.Int.J.Comput.Fluid Dyn.29,303–312(2015)

    34.Xie,W.,Li,H.,Tian,Z.,et al.:A low diffusion flux splitting method for inviscid compressible flows.Comput.Fluids112,83–93(2015)

    35.Toro,E.F.:Riemann Solvers and Numerical Methods for Fluid Dynam ics.Springer,Berlin(1997)

    36.Sun,M.,Takayama,K.:An artificially upstream flux vector splitting scheme for the Eulerequations.J.Comput.Phys.189,305–329(2003)

    37.Tong,B.G.,Kong,X.Y.,Deng,G.H.:Gas Dynamics,2nd edn.Higher Education Press,Beijing (2012).(in Chinese)

    38.Gresho,P.M.:On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix.Part 1:theory.Int.J.Numer.Methods Fluids 11,620–687(1990)

    39.Gresho,P.M.,Chan,S.T.:On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix.Part2:implementation.Int.J.Numer.Methods Fluids 11,621–659(1990)

    40.Gottlieb,S.:On high order strong stability preserving Runge–Kutta and multi step time discretizations.J.Sci.Comput.25,105–128(2005)

    41.Ishiko,K.,Ohnishi,N.,Sawada,K.:Implicit LES for Two-Dimensional Turbulence Using Shock Capturing Monotone Scheme.In:44th AIAA Aerospace Sciences Meeting and Exhibit,Reno,Nevada,1–12(2006)

    42.Kitamura,K.,Hashimoto,A.:Reduced dissipation AUSM-family fluxes:HR-SLAU2 and HR-AUSM+-up for high resolution unsteady flow simulations.Comput.Fluids 126,41–57(2016)

    43.Yoon,S.,Jamesont,A.:Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations.AIAA J.26,1025–1026(1988)

    久久久久久大精品| 永久网站在线| 久久久久久久午夜电影| 久久99精品国语久久久| 日本一本二区三区精品| 99久久精品国产国产毛片| 国产精品日韩av在线免费观看| 国产不卡一卡二| 午夜福利在线观看免费完整高清在 | 久久午夜福利片| 免费黄网站久久成人精品| 日本av手机在线免费观看| 国产高清视频在线观看网站| 五月伊人婷婷丁香| 亚洲精品乱码久久久久久按摩| 久久久久国产网址| 国产精品麻豆人妻色哟哟久久 | 赤兔流量卡办理| 亚洲av电影不卡..在线观看| 亚洲欧美清纯卡通| 亚洲最大成人av| 美女国产视频在线观看| 91aial.com中文字幕在线观看| 精品熟女少妇av免费看| 国产免费一级a男人的天堂| 欧美日韩综合久久久久久| 一本精品99久久精品77| 三级毛片av免费| 日本爱情动作片www.在线观看| 97超视频在线观看视频| 国产三级中文精品| 波野结衣二区三区在线| 欧美日韩国产亚洲二区| 人人妻人人看人人澡| av在线老鸭窝| 国产精品久久久久久久久免| 春色校园在线视频观看| 超碰av人人做人人爽久久| 国产精品一区二区三区四区久久| 亚洲一级一片aⅴ在线观看| 久久久久久伊人网av| 热99在线观看视频| 最近视频中文字幕2019在线8| 少妇人妻一区二区三区视频| av在线观看视频网站免费| 男的添女的下面高潮视频| 网址你懂的国产日韩在线| 欧美最黄视频在线播放免费| 免费看日本二区| 亚洲欧美清纯卡通| 中文字幕熟女人妻在线| 国产成年人精品一区二区| 深夜精品福利| 少妇裸体淫交视频免费看高清| 精品一区二区三区视频在线| 桃色一区二区三区在线观看| 1024手机看黄色片| 美女内射精品一级片tv| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美日韩卡通动漫| 亚洲精品影视一区二区三区av| 99国产精品一区二区蜜桃av| 欧美zozozo另类| 日日摸夜夜添夜夜爱| 亚洲成a人片在线一区二区| 成人美女网站在线观看视频| 精品国内亚洲2022精品成人| 老司机福利观看| 老司机福利观看| 蜜桃久久精品国产亚洲av| 日本黄色片子视频| av女优亚洲男人天堂| 亚洲精品久久国产高清桃花| 99久久无色码亚洲精品果冻| 最近中文字幕高清免费大全6| 日韩在线高清观看一区二区三区| 国产 一区 欧美 日韩| 亚洲久久久久久中文字幕| 免费看av在线观看网站| 精品无人区乱码1区二区| 少妇人妻精品综合一区二区 | 成人av在线播放网站| 1024手机看黄色片| 国内精品宾馆在线| 一区二区三区免费毛片| а√天堂www在线а√下载| 综合色丁香网| 偷拍熟女少妇极品色| 在线免费观看的www视频| 亚洲国产精品sss在线观看| 此物有八面人人有两片| 一区二区三区高清视频在线| 国产成人freesex在线| 久久久久久久久久成人| 日韩在线高清观看一区二区三区| 亚洲国产日韩欧美精品在线观看| 97超碰精品成人国产| 精品国内亚洲2022精品成人| 午夜久久久久精精品| 十八禁国产超污无遮挡网站| 中文在线观看免费www的网站| 真实男女啪啪啪动态图| 国产精品久久电影中文字幕| 如何舔出高潮| 中文字幕精品亚洲无线码一区| 可以在线观看的亚洲视频| 18禁在线无遮挡免费观看视频| 欧美一区二区亚洲| 我要看日韩黄色一级片| 亚洲最大成人av| 国产黄a三级三级三级人| 亚洲国产欧美在线一区| 国产精品人妻久久久影院| 深夜精品福利| 亚洲av成人av| 国产精品一区二区三区四区久久| 亚洲内射少妇av| 高清日韩中文字幕在线| 亚洲精品日韩av片在线观看| 欧美日韩在线观看h| 亚洲欧美精品专区久久| 国产精品福利在线免费观看| av国产免费在线观看| 天堂中文最新版在线下载 | 哪个播放器可以免费观看大片| 免费观看a级毛片全部| 男人舔奶头视频| 波多野结衣高清无吗| 一进一出抽搐gif免费好疼| 精品熟女少妇av免费看| 99久久久亚洲精品蜜臀av| 久久精品91蜜桃| 人人妻人人澡人人爽人人夜夜 | 成人毛片a级毛片在线播放| 身体一侧抽搐| 国产一级毛片七仙女欲春2| 国产午夜福利久久久久久| 国产爱豆传媒在线观看| 久久精品91蜜桃| 日本成人三级电影网站| 三级国产精品欧美在线观看| 你懂的网址亚洲精品在线观看 | 成人亚洲精品av一区二区| 欧美极品一区二区三区四区| 色尼玛亚洲综合影院| 最近最新中文字幕大全电影3| 国内精品久久久久精免费| 亚洲欧美成人精品一区二区| 九草在线视频观看| 老熟妇乱子伦视频在线观看| www.av在线官网国产| 欧美最新免费一区二区三区| 精品熟女少妇av免费看| 国产高潮美女av| 免费看a级黄色片| 亚洲综合色惰| 国产av不卡久久| 淫秽高清视频在线观看| 一区二区三区四区激情视频 | 精品久久久久久成人av| 国产又黄又爽又无遮挡在线| 亚洲三级黄色毛片| 啦啦啦韩国在线观看视频| 99热精品在线国产| 国产激情偷乱视频一区二区| 久久久久久久久中文| 国产探花在线观看一区二区| 国产精品不卡视频一区二区| 亚洲欧美成人精品一区二区| 国产精品99久久久久久久久| 99久久九九国产精品国产免费| 亚洲最大成人中文| 亚洲av二区三区四区| 欧美一区二区精品小视频在线| 久久热精品热| 欧美日韩精品成人综合77777| 国产精品免费一区二区三区在线| a级毛片免费高清观看在线播放| 在线观看美女被高潮喷水网站| 嫩草影院新地址| 国产精品久久久久久av不卡| 亚洲高清免费不卡视频| videossex国产| 久久国内精品自在自线图片| 日韩亚洲欧美综合| 国产真实乱freesex| 夜夜夜夜夜久久久久| 99久国产av精品| 亚洲图色成人| 精品久久久久久久久久免费视频| 日日摸夜夜添夜夜添av毛片| 亚洲国产精品合色在线| h日本视频在线播放| 亚洲成人av在线免费| 91午夜精品亚洲一区二区三区| 日韩中字成人| 爱豆传媒免费全集在线观看| 欧美一区二区国产精品久久精品| 国产高清有码在线观看视频| 午夜老司机福利剧场| 午夜激情福利司机影院| 久久这里有精品视频免费| 12—13女人毛片做爰片一| 久久久久久久午夜电影| 国产亚洲欧美98| 亚洲欧美日韩东京热| 亚洲成人精品中文字幕电影| 91在线精品国自产拍蜜月| 亚洲美女搞黄在线观看| 免费av不卡在线播放| 久久99热这里只有精品18| 嫩草影院入口| 直男gayav资源| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久精品电影| 最近中文字幕高清免费大全6| 一进一出抽搐动态| 欧洲精品卡2卡3卡4卡5卡区| 国产午夜精品一二区理论片| 在线a可以看的网站| 精品人妻视频免费看| 超碰av人人做人人爽久久| 热99re8久久精品国产| 天堂网av新在线| 99久久九九国产精品国产免费| 亚洲欧洲国产日韩| 春色校园在线视频观看| 精品人妻一区二区三区麻豆| 欧美日韩国产亚洲二区| 成人毛片a级毛片在线播放| avwww免费| 精品久久久久久久久av| 一级毛片久久久久久久久女| 毛片一级片免费看久久久久| 在现免费观看毛片| 久久人人爽人人片av| 欧美极品一区二区三区四区| 国产精品麻豆人妻色哟哟久久 | 五月伊人婷婷丁香| 深夜a级毛片| 99久久中文字幕三级久久日本| 久久久久久久午夜电影| 岛国在线免费视频观看| 久久午夜亚洲精品久久| 色视频www国产| 精品久久久久久久久久久久久| 日韩一区二区视频免费看| 精品熟女少妇av免费看| www.色视频.com| 一区二区三区免费毛片| 在线免费十八禁| 国产精品蜜桃在线观看 | 三级经典国产精品| 日韩欧美 国产精品| 少妇人妻一区二区三区视频| 99热只有精品国产| 欧美性猛交╳xxx乱大交人| 18禁在线无遮挡免费观看视频| 国产精品久久久久久精品电影小说 | av黄色大香蕉| 久久久欧美国产精品| .国产精品久久| 日韩精品青青久久久久久| 国内揄拍国产精品人妻在线| АⅤ资源中文在线天堂| 一区二区三区四区激情视频 | 欧美最新免费一区二区三区| 大型黄色视频在线免费观看| 成人国产麻豆网| 国产一区二区亚洲精品在线观看| 亚洲aⅴ乱码一区二区在线播放| 简卡轻食公司| 亚洲人成网站在线播| 女人被狂操c到高潮| av黄色大香蕉| 国产午夜精品论理片| 国产午夜福利久久久久久| 欧美日韩在线观看h| 亚洲av成人av| 一区二区三区免费毛片| a级毛色黄片| 日本一本二区三区精品| 免费av不卡在线播放| 日韩制服骚丝袜av| 一区二区三区四区激情视频 | 在线观看av片永久免费下载| 国产精品久久久久久精品电影| 最近视频中文字幕2019在线8| 一个人观看的视频www高清免费观看| 毛片一级片免费看久久久久| 99热全是精品| 人妻久久中文字幕网| 国产白丝娇喘喷水9色精品| 九九久久精品国产亚洲av麻豆| 久久国内精品自在自线图片| 99热这里只有是精品50| 日韩av不卡免费在线播放| 欧美一区二区亚洲| 亚洲欧美精品综合久久99| 国产伦在线观看视频一区| 亚洲乱码一区二区免费版| 中国国产av一级| 国产成人aa在线观看| 又黄又爽又刺激的免费视频.| 成人亚洲欧美一区二区av| 热99在线观看视频| 91久久精品国产一区二区成人| 中文字幕制服av| 成人高潮视频无遮挡免费网站| 26uuu在线亚洲综合色| 国产淫片久久久久久久久| 成人永久免费在线观看视频| 国产精品国产三级国产av玫瑰| 国产69精品久久久久777片| 免费无遮挡裸体视频| 国产成人精品婷婷| 校园春色视频在线观看| 久久久久久九九精品二区国产| 亚洲av.av天堂| 97热精品久久久久久| 国产精品麻豆人妻色哟哟久久 | 嫩草影院精品99| 国产成人aa在线观看| 欧美潮喷喷水| 欧美一区二区精品小视频在线| 欧美性猛交╳xxx乱大交人| 午夜福利成人在线免费观看| 波野结衣二区三区在线| 黑人高潮一二区| 少妇人妻精品综合一区二区 | 日韩av不卡免费在线播放| 久久久久久国产a免费观看| 亚洲成人久久爱视频| 国产激情偷乱视频一区二区| 日本免费一区二区三区高清不卡| 丰满人妻一区二区三区视频av| 性色avwww在线观看| 久久久a久久爽久久v久久| 九九在线视频观看精品| 丰满人妻一区二区三区视频av| 日本欧美国产在线视频| 成人一区二区视频在线观看| 久久99精品国语久久久| 激情 狠狠 欧美| 最后的刺客免费高清国语| 国产伦精品一区二区三区四那| 亚洲经典国产精华液单| 久久99精品国语久久久| 国产精品三级大全| 久久午夜福利片| 大又大粗又爽又黄少妇毛片口| 免费看光身美女| 免费电影在线观看免费观看| 偷拍熟女少妇极品色| 又爽又黄无遮挡网站| 国产欧美日韩精品一区二区| 国产乱人视频| 美女xxoo啪啪120秒动态图| 亚洲av不卡在线观看| 女同久久另类99精品国产91| 久久这里只有精品中国| 一本久久精品| 啦啦啦韩国在线观看视频| 亚洲精品自拍成人| 黄色视频,在线免费观看| 如何舔出高潮| 你懂的网址亚洲精品在线观看 | 91av网一区二区| 色综合站精品国产| 桃色一区二区三区在线观看| 麻豆成人av视频| 国产一区二区三区av在线 | 欧美区成人在线视频| 亚洲无线在线观看| 国产69精品久久久久777片| 18+在线观看网站| 91麻豆精品激情在线观看国产| 国产精华一区二区三区| 国产精品99久久久久久久久| 免费av毛片视频| 午夜激情欧美在线| av福利片在线观看| 一边亲一边摸免费视频| 1024手机看黄色片| 久久亚洲国产成人精品v| 成人国产麻豆网| 国产精品伦人一区二区| 高清午夜精品一区二区三区 | 别揉我奶头 嗯啊视频| 男的添女的下面高潮视频| 丰满乱子伦码专区| 韩国av在线不卡| 国内精品一区二区在线观看| 久久久成人免费电影| 老司机影院成人| 少妇的逼水好多| 97人妻精品一区二区三区麻豆| 欧美zozozo另类| 午夜久久久久精精品| 12—13女人毛片做爰片一| 欧美性感艳星| 又爽又黄a免费视频| 亚洲av一区综合| 亚洲精品乱码久久久v下载方式| 亚洲成人久久性| 毛片女人毛片| 精品不卡国产一区二区三区| 淫秽高清视频在线观看| 国产精品蜜桃在线观看 | 欧美又色又爽又黄视频| 成人特级av手机在线观看| 久久精品国产99精品国产亚洲性色| 变态另类成人亚洲欧美熟女| 天堂√8在线中文| 成年免费大片在线观看| 伦理电影大哥的女人| 国产精品人妻久久久影院| 成人鲁丝片一二三区免费| 免费av不卡在线播放| 有码 亚洲区| 欧洲精品卡2卡3卡4卡5卡区| 精品人妻偷拍中文字幕| 国产一区二区三区在线臀色熟女| 国产久久久一区二区三区| 国产女主播在线喷水免费视频网站 | 国产精品国产三级国产av玫瑰| 亚洲欧美中文字幕日韩二区| av在线亚洲专区| 亚洲成人中文字幕在线播放| 一本久久中文字幕| 在现免费观看毛片| 欧美变态另类bdsm刘玥| 深夜a级毛片| 国产精华一区二区三区| 欧美日本视频| 精品久久久久久久久亚洲| 日韩亚洲欧美综合| 高清毛片免费看| av福利片在线观看| 日韩三级伦理在线观看| 久久午夜亚洲精品久久| 亚洲av免费在线观看| 国产黄色小视频在线观看| 麻豆成人av视频| 中文字幕制服av| av.在线天堂| 美女xxoo啪啪120秒动态图| 别揉我奶头 嗯啊视频| 久久久午夜欧美精品| 亚洲高清免费不卡视频| 欧美最黄视频在线播放免费| www日本黄色视频网| 男插女下体视频免费在线播放| 在线播放无遮挡| 日韩欧美一区二区三区在线观看| 国产精品一区www在线观看| 国产亚洲精品久久久久久毛片| 亚洲自偷自拍三级| 国产真实乱freesex| 成人特级黄色片久久久久久久| 国产成年人精品一区二区| 成人性生交大片免费视频hd| 欧美激情国产日韩精品一区| 少妇人妻一区二区三区视频| 狂野欧美白嫩少妇大欣赏| 亚洲国产日韩欧美精品在线观看| 亚洲欧美精品专区久久| 热99re8久久精品国产| 中文字幕熟女人妻在线| 国产91av在线免费观看| 亚洲欧美日韩无卡精品| 日韩 亚洲 欧美在线| 国产免费男女视频| 国产国拍精品亚洲av在线观看| 成人性生交大片免费视频hd| 变态另类成人亚洲欧美熟女| 国产成人福利小说| 高清毛片免费看| 日本与韩国留学比较| 久久午夜亚洲精品久久| 国产精品国产高清国产av| 91久久精品国产一区二区三区| 国产91av在线免费观看| 男人舔奶头视频| 春色校园在线视频观看| 欧美激情国产日韩精品一区| 亚洲熟妇中文字幕五十中出| 中文字幕免费在线视频6| 国产乱人视频| 一本久久中文字幕| 日日摸夜夜添夜夜添av毛片| 亚洲内射少妇av| 免费人成在线观看视频色| 久久中文看片网| 亚洲第一电影网av| 亚洲欧美日韩无卡精品| 精品一区二区三区视频在线| 三级经典国产精品| 一级二级三级毛片免费看| 级片在线观看| 亚洲欧美精品专区久久| 国产精品一区www在线观看| 大香蕉久久网| or卡值多少钱| 久久久精品大字幕| 色噜噜av男人的天堂激情| 韩国av在线不卡| 1000部很黄的大片| 国模一区二区三区四区视频| 两性午夜刺激爽爽歪歪视频在线观看| 有码 亚洲区| 国产 一区 欧美 日韩| avwww免费| 日韩一区二区三区影片| 日本免费一区二区三区高清不卡| 最后的刺客免费高清国语| 久久久久国产网址| 丰满乱子伦码专区| 亚洲在线自拍视频| 91麻豆精品激情在线观看国产| 蜜桃亚洲精品一区二区三区| 国产爱豆传媒在线观看| 性色avwww在线观看| 熟妇人妻久久中文字幕3abv| 97在线视频观看| 国产综合懂色| 丰满的人妻完整版| 中文字幕免费在线视频6| 2021天堂中文幕一二区在线观| a级毛色黄片| 久久99蜜桃精品久久| 一级av片app| 最好的美女福利视频网| 成年免费大片在线观看| av免费观看日本| 日本在线视频免费播放| 成人国产麻豆网| 欧美成人精品欧美一级黄| 最好的美女福利视频网| 人妻系列 视频| 亚洲精品日韩在线中文字幕 | 中文资源天堂在线| 久久精品综合一区二区三区| 国产日韩欧美在线精品| 久久久久久伊人网av| 内地一区二区视频在线| 少妇丰满av| 精品99又大又爽又粗少妇毛片| 亚洲精品成人久久久久久| 蜜桃久久精品国产亚洲av| 国产精品av视频在线免费观看| 午夜精品国产一区二区电影 | 中国美白少妇内射xxxbb| 亚洲国产欧美人成| 美女被艹到高潮喷水动态| 亚洲熟妇中文字幕五十中出| av在线老鸭窝| 亚洲av.av天堂| 高清在线视频一区二区三区 | 欧美+日韩+精品| a级毛片a级免费在线| 99热精品在线国产| 亚洲国产欧洲综合997久久,| 观看免费一级毛片| av免费在线看不卡| 国产av一区在线观看免费| 久久亚洲精品不卡| 中文字幕免费在线视频6| www日本黄色视频网| 欧美成人精品欧美一级黄| 国产一区二区三区av在线 | 国产高潮美女av| 国产精品嫩草影院av在线观看| 成年女人看的毛片在线观看| 亚洲欧美清纯卡通| 欧美最新免费一区二区三区| 狠狠狠狠99中文字幕| 中国美白少妇内射xxxbb| 淫秽高清视频在线观看| 啦啦啦观看免费观看视频高清| 免费av毛片视频| 国产av一区在线观看免费| eeuss影院久久| 久久精品国产99精品国产亚洲性色| 国产亚洲5aaaaa淫片| 亚洲人与动物交配视频| av在线蜜桃| 在现免费观看毛片| 全区人妻精品视频| 一边摸一边抽搐一进一小说| 国产高清不卡午夜福利| 69av精品久久久久久| 少妇熟女aⅴ在线视频| 一夜夜www| 欧美最新免费一区二区三区| 久久国内精品自在自线图片| 国产高潮美女av| 夜夜夜夜夜久久久久| 男人舔女人下体高潮全视频| 成人亚洲精品av一区二区| 日韩制服骚丝袜av| 国产又黄又爽又无遮挡在线| 亚洲av免费在线观看| 国产又黄又爽又无遮挡在线| 国产精品人妻久久久影院| 可以在线观看毛片的网站| 久久久久久国产a免费观看| 欧美高清成人免费视频www| 国产精品精品国产色婷婷| 精品少妇黑人巨大在线播放 | 色综合站精品国产| 免费av观看视频| 乱人视频在线观看| 日韩,欧美,国产一区二区三区 | 亚洲aⅴ乱码一区二区在线播放|