• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于 2-(4′-羧基苯基)咪唑-4,5-二羧酸構(gòu)筑的三個鎘/鋅配位聚合物的合成、拓撲結(jié)構(gòu)、熒光光譜及DNA作用

    2018-06-06 05:50:26嚴世承武大令張敏芝管全銀趙國良
    無機化學(xué)學(xué)報 2018年6期
    關(guān)鍵詞:二羧酸碩士論文浙江師范大學(xué)

    嚴世承 武大令 張敏芝 管全銀 趙國良*,,

    (1浙江師范大學(xué)行知學(xué)院,金華 321004)(2浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,金華 321004)

    Coordination polymers,as a type of important materials,exhibits attractive application prospects in the fields of gas adsorption,storage and separation,adsorption of dyes,electrical conductivity,optical materials,magnetic materials,catalyzer,and so on[1-14].Those applications bring the new dawn for the porous materials science.Multifunctionalorganic ligands,especially the N-heterocyclic carboxylates,contain multi-oxygen and nitrogen atoms,and possess the ability to coordinate with metal ions in versatile ways.These building blocks lead to the formations of various coordination polymers with specific topologies and useful properties[16-17].

    Imidazole-4,5-dicarboxylic acid (H3IDC),which can be partially or fully deprotonated to generate H2IDC-,HIDC2-,IDC3-at different pH values and afford various coordination modes,is favored by multitudinous research groups.According to the reported coordination polymers[18-23]constructed from H3IDC,this kinds of ligand still remain extremely widely researched.Recently,according to purposefully changing the substituent group on the 2-position of imidazole-4,5-dicarboxylicacid,excellentligandshasbeen obtained,which can be used to construct coordination polymers with rapidly changing topological structures and useful properties,such as 2-methyl-1H-imidazole-4,5-dicarboxylic acid,2-ethyl-1H-imidazole-4,5-dicarboxylic acid,2-propyl-1H-imidazole-4,5-dicarboxylic acid,2-phenyl-1H-imidazole-4,5-dicarboxylic acid,2-hydroxymethyl-1H-imidazole-4,5-dicarboxylic acid and 2-(pyridyl)-1H-imidazole-4,5-dicarboxylic acid.

    Herein,taking into account the factors mentioned above,a new H3IDC derivative,2-(4′-carboxyphenyl)-1H-imidazole-4,5-dicarboxylic acid (H4CPhIDC),was purposely synthesized by condensation and oxidation reactions.Three coordination polymers of cadmium and zinc{[Cd2(CPhIDC)(bimb)]·H2O}n(1),{[Cd2(CPhIDC)(phen)2]·3H2O}n(2),{[Zn2(CPhIDC)(bpp)]·1.5H2O}n(3),(bimb=1,4-bis(imidazol-1-yl)butane,phen=1,10-phenanthroline,bpp=1,3-di(pyridin-4-yl)propane)have been synthesized by solvothermal reaction and characterized.The carboxyl containing group on the 2-position[24]of H4CPhIDC is successfully applied to construct coordination polymers.Its fully deprotonated motifs of CPhIDC4-can exhibit very flexible coordination modes(Scheme 1),and form a large diversity of supramolecular architectures.

    Scheme 1 Coordination modes of CPhIDC4-for the three polymers

    1 Experimental

    1.1 Materials and measurements

    H4CPhIDC was prepared according to literature[25-28]with some proper modification.The other reagents were of analytical grade and used without further purification.Calf thymus DNA(ct-DNA)was prepared with 0.1 mol·L-1NaCl.The concentration of ct-DNA was 200 μg·mL-1(cDNA=0.372 mmol·L-1).The ct-DNA solutions were stored at 4℃and gave a ratio of UVVis absorbance at 260 and 280 nm,A260/A280=1.8,indicating that DNA was sufficiently free of protein.The buffer solution,0.01 mol·L-1Tris-HCl(tris(hydroxymethyl)aminomethane hydrochloride,pH=7.4),was prepared with double-distilled water.

    Elemental analysis was performed on C,H,N elemental analyzer,Elementar Vario ELⅢ.FTIR spectra were recorded on a Nicolet NEXUS 670 FTIR spectrophotometer using KBr discs in the range of 4 000~400 cm-1.A Mettler Toledo thermal analyzer TGA/SDTA 851ewas used to carry out the thermogravimetric analysis with a heating rate of 10℃·min-1from 30~800 ℃ in air atomsphere.Powder X-ray diffraction(PXRD)data were collected on a PW 3040/60 Focus X-ray diffractometer using Cu Kα radiation(λ=0.154 06 nm,2θ=2°~60°)at room temperature with acceleration voltage of 40 kV and current of 40 mA.Fluorescence spectra were measured at room temperature with an Edinburgh FL-FS920 TCSPC system.

    1.2 Synthesis of the polymers

    1.2.1 Synthesis of{[Cd2(CPhIDC)(bimb)]·H2O}n(1)

    A mixture of H4CPhIDC (0.140 g,0.5 mmol),bimb(0.147 g,0.75 mmol),CdCl2·2.5H2O (0.170 g,0.75 mmol),and H2O/EtOH (15 mL,4∶1,V/V)with the pH value of 8 adjusted by 0.5 mol·L-1NaOH was sealed in a 20 mL Teflon-lined stainless steel vessel and heated at 160℃for 3 d.After the mixture was cooled to room temperature at a rate of 10 ℃·h-1,colorless crystals suitable for single-crystal analysis and physical measurements were obtained,washed with distilled water,and dried in air.Yield:41%(based on CdCl2·2.5H2O).Anal.Calcd.for C44H40N12O13Cd4(%):C 37.46,H 2.86,N 11.92;Found(%):C 37.71,H 2.83,N 11.98.IR(KBr,cm-1):3 538(m),2 943(w),2 860(w),1 588(s),1 542(s),1 525(s),1 440(s),1 405(s),1 375(m),1350(m),1 293(s),1 229(s),1 113(s),1 097(s),941(s),862(s),823(s),789(s),785(s),652(s),570(m),499(m),462(s).

    1.2.2 Synthesis of{[Cd2(CPhIDC)(phen)2]·3H2O}n(2)

    The synthesis method is similar to 1,where the metal source is Cd(OH)2,the auxiliary ligand is changed to phen,the pH value is not adjusted,the solvents are H2O/i-PrOH/acetone(15 mL,2∶1∶1,V/V).Yield:36%(based on Cd(OH)2).Anal.Calcd.for C36H26N6O9Cd2(%):C 47.44,H 2.88,N 9.22;Found:C 47.28,H 2.83,N 9.29.IR(KBr,cm-1):3 499(m),1 603(s),1 588(s),1 542(s),1 514(s),1 429(s),1 392(s),1 279(m),1 223(w),1 145(m),1 013(w),970(m),859(s),842(s),792(m),727(s),547(m),506(m),457(m).

    1.2.3 Synthesis of{[Zn2(CPhIDC)(bpp)]·1.5H2O}n(3)

    The synthesis method is roughly the same as 1,where the metal source is changed to zinc acetate,the auxiliary ligand is changed to bpp,the pH value is adjusted to close to 6.5,the solvents are H2O/EtOH(15 mL,3∶2,V/V).Yield:44%(based on Zn(CH3COO)2).Anal.Calcd.for C25H21N4O7.5Zn2(%):C 47.79,H 3.37,N 8.92;Found(%):C 47.72,H 3.25,N 9.17.IR(KBr,cm-1):3 480(m),2 936(w),2 874(w),1 608(s),1 590(s),1 550(s),1 430(s),1 403(s),1 381(s),1 352(m),1 271(s),1 224(m),1 175(m),1 122(s),1 068(m),1 028(s),872(m),830(s),813(s),796(s),789(s),749(s),727(s),664(w),634(w),574(w),525(m),489(m),463(s).

    1.3 X-ray diffraction analysis

    The single crystals of the polymers with approximate dimensions were mounted on a Bruker Smart ApexⅡCCD diffractometer.The diffraction data were collected using a graphite monochromated Mo Kα radiation(λ=0.071 073 nm)at 296(2)K.Absorption corrections were applied using SADABS[29].The structure was solved by using the SHELXS-97[30]program package and refined with the full-matrix least-squares technique based on F2using the SHELXL-97[31]program package.Remaining hydrogen atoms were added in calculated positons and refined as riding atoms with a common fixed isotropic thermal parameter.Hydrogen atoms on water molecules were located in a difference Fourier map and included in the subsequent refinement using restrains (dO-H=0.085 nm,dH…H=0.130 nm)with Uiso(H)=0.15Ueq(O).Other hydrogen atoms were added theoretically.The detail about the crystal data is summarized in Table 1.Selected bond distances and bond angles are given in Table S1 to Table S3(Supporting information).

    CCDC:969814,1;937738,2;937741,3.

    1.4 DNA binding

    1.0 mL of 200 μg·mL-1DNA solution,1.0 mL of 200 μg·mL-1EB solution and 2.0 mL of Tris-HCl buffer solution with pH=7.40 were added to a 10 mL colorimetrictubeand allowed tostand atroom temperature for 2 h.Then,a solution of 0.50 or 0.10 mmol·L-1compound was added to the mixed solutionand diluted to a scale with distilled water.After 4 h at room temperature,the fluorescence spectra of the composite system in 520~700 nm range are recorded by exciting at 251 nm.

    Table 1 Crystal data and structure refinement parameters for polymers 1~3

    2 Results and discussion

    2.1 Crystal structures of the complexes

    2.1.1 Crystal structure of{[Cd2(CPhIDC)(bimb)]·H2O}n(1)

    Single-crystal analysis shows polymer 1 crystallizes in the monoclinic system with space group P21/n and the asymmetric unit cell contains two Cd2+ions,one CPhIDC4-anion,one 1,4-bis(imidazol-1-yl)butane molecule and one lattice water molecule.As shown in Fig.1a,the Cd(2)adopts distorted octahedral geometry with a six-coordinated mode by four oxygen atoms(O5,O1#3,O2#3,O5#4,dCd-O=0.223 6(2)~0.251 9(3)nm)and one nitrogen atom(N2,dCd-N=0.227 4(3)nm)from three CPhIDC4-ligands and one nitrogen atom(N3,dCd-N=0.225 2(3)nm)from one bimb molecule.The Cd(1)adopts distorted trigonal bipyramid coordinated with three oxygen atoms(O3,O6,O4#1,dCd-O=0.221 0(2)~0.236 3(2)nm),one nitrogen atom(N1#1,dCd-N=0.221 2(3)nm)from two CPhIDC4-ligands and one nitrogen atom(N6#2,dCd-N=0.223 3(3)nm)from one bimb molecule.From Cd-O,Cd-N bond distances and O3-Cd1-N6#2,O3-Cd1-O4#1,N6#2-Cd1-O4#1 bond angles for 1,we could know that the five atoms are practically in the same plane while the O1 and N3 atoms are at the side of it.Thus the two Cd2+ions are bridged by the ends of one bimb molecule respectively.The CPhIDC4-ligand adopt conformations with μ5-κO∶κ2O′,N∶κ2O″,N′∶κ2O?,O″″∶κO″?.The two Cd2+ions are bridged by the ends of one bimb molecule respectively.The CPhIDC4-ligand adopts conformations with μ5-κO ∶κ2O′,N ∶κ2O″,N′∶κ2O? ,O″″∶κO″?coordination fashion(Scheme 1a)to connect Cd(1)and Cd(2)ions.The selected distances and bond angles fall in the normal regions which are comparable to the values reported in literatures[32].For 1,the Cd2+ion is bridged by the imidazole ring to form a 2D plane ellipsoid lattice(0.785 6(4)nm×0.922 3(3)nm)(Fig.1b).The 2D surface adopts staggered conformations connected with bimb molecules and CPhIDC4-anions to build up a 3D[Cd2(CPhIDC)(bimb)]framework(Fig.1c).Both bimb molecules reside in the tunnels and the extensive hydrogen bonds (Table S4)contribute themselves to stabilize the crystal structure.

    Fig.1 (a)Ball-and-stick structural view of 1;(b)2D plane structure for 1 viewed along a axis;(c)3D framework for 1 viewed along b axis;(d)(3,4,5)-topological connected for 1

    In the 3D[Cd2(CPhIDC)(bimb)]frameworks,from the topological point of view,CPhIDC4-anions ligand are each bonded to five Cdギions(three Cd(1)and two Cd(2)),while Cd(1)ions are each coordinated to five atoms(O1,O2,O3,O3#2,N2)from three CPhIDC4-anions in a κO∶κ2O′,N∶κO″coordination fashion and one nitrogen atom (N3)from bimb molecule in κN coordination fashion.Cd(2)ions are each coordinated to four atoms (O6,O4,O5,N1)from two CPhIDC4-ligand anions in a κ2O,O′∶κ2O″,N and one atom from one bimb ligand in κN coordination fashion.From topological point of view the 3D framework can be simplified in some underlying net,where Cd(1)and Cd(2)atoms,CPhIDC4-anions and bridge bimb ligands are presented by 4-coordinated,3-coordinated,5-coordinated nodes,respectively.

    Viewed along a axis for 1 without bimb and benzeneedge,respectively (Fig.1d),topology of the 3,4,5-coordinated trinodalunderlying netcan be described with point symbol(5·6·7)(4·52·6·74·82)(4·52·6·7).The structure of 1 is completely different from the reported(3,4,5)-connected frameworks with(6·8·10)(6·82)(63)4(64·102)(64·84·102),(63)2(66)(68·82),(4·62)2(43·67)2(44·62),(42·6)(44·62)(44·63·83),(5·6·7)(54·6·8)(54·63·83),(4·6·8)2(4·82)(4·64·85)(42·62·82),(4·62)(42·6)(42·84)(43·6·86)(42·65·83),(4·6·8)2(42·62·82)(42·65·83)2,and(4·62)2(4·67·82)2(65·10)topologies[33-34],which presents a new trinodal (3,4,5)-connected 3D network topology.

    2.1.2 Crystal structure of{Cd2(CPhIDC)(phen)2]·3H2O}n(2)

    Fig.2 (a)Ball-and-stick structural view of 2;(b)3D stacking structure for 2 with hydrogen bond and π…π from phen molecules;(c)Single-screw structure of 2 and the double-helix structure for DNA;(d)(4,4)-topological connected for 2

    Single-crystal analysis shows polymer 2 crystallizes in the monoclinic system with space group P21/n and the asymmetric unit cell contains two Cd2+ions,one CPhIDC4-anion,two 1,10-phenanthroline molecules and three lattice waters.As shown in Fig.2a,polymer 2 is a double-core structure bridged by the CPhIDC4-anions and adopt six-coordinated with two Cd2+ions(Cd1 and Cd2).The Cd1 is connected with three oxygen atoms(O3#1,O4,O6,dCd-O=0.222 0(3)~0.235 1(3)nm), one nitrogen atom(N1#1,dCd-N=0.223 0(3)nm)from two CPhIDC4-ligands and two nitrogen atoms(N5,N6,dCd-N=0.236 9(4)~0.238 8(4)nm)from one 1,10-phenanthroline molecule to form a distorted octahedralgeometry.Cd2 ispractically identical to Cd1,but the six-coordinated atoms form a different severe flattening octahedral geometry.Cd-O distances,Cd-N distances and bond angles for 2(Table S2)fall in the normal regions which are comparable to the values reported in literatures[35].The CPhIDC4-anions adopt conformations with each bridging four Cd2+ions in μ4-κ2O,O′∶κ2N,O″∶κ2N′,O?∶κ2O″″,O″? coordination fashion (Scheme 1b)to form a ternary-chelate ring,two five-chelate rings and a seven-chelate ring.

    Viewed along c axis without phen molecular,the Cd2+ion is bridged by the CPhIDC4-to form a 2D plane grid.Viewed along b axis only,the Cd2+ions bridging by ligands to form a bent long chain with phen molecules connected in the two sides of it.Meanwhile,the two adjacent chains stack with the function of π…π from phen molecules to form a 3D network (Fig.2b).In addition,the hydrogen bonds(O2B-H2C…O3W#1)connected by the oxygen atom from free water molecules and hydrogen bond (O2WH2A…O3,O2B-H2C…O3W#1,O2B-H2D…O1#2,O3W-H3C…O2),which is shown in Table S5,connected by oxygen atom from carboxylic acid and free water and thus contribute themselves to stabilize the crystal structure.

    Interestingly,comparing the space filling figure for 2 with the structure of DNA,the single-screw structure of 2 is quite similar to the double-helix structure for DNA (Fig.2c).The inner hydrogen bond from the spiral chain and the phen molecules reside in the tunnel contribute the framework to stabilize the spiral chain structure.From the topological point of view,each CPhIDC4-ligand,linked to four Cd2+ions(two Cd1 and two Cd2),represents a 4-connected node while each Cdギion connects to two CPhIDC4-anions as an edge of underlying net.Thus the chelating effect in 2 leads to 4-coordinated 2D underlying net with point symbol(44)(62)and vertex symbol(4·4·4·4)(Fig.2d).

    2.1.3 Crystal structure of{[Zn2(CPhIDC)(bpp)]·1.5H2O}n(3)

    Single-crystal analysis shows polymer 3 crystallizes in the monoclinic system with space group P21/n and the asymmetric unit cell contains two Zn2+ions(Zn(1)and Zn(2)),one CPhIDC4-anion,one bpp molecule,one and a half lattice water.As shown in Fig.3a,Zn(1)is five-coordinated by three oxygen atoms(O2#1,O3#2,O3,dZn-O=0.199 4(2)~0.213 7(2)nm)and one nitrogen atom(N2,dZn-N=0.210 8(2)nm)from three imidazole carboxylic acid ligands and one nitrogen atom(N3,dZn-N=0.205 3(3)nm)from one bpp molecule.Zn(1)is only 0.000 03 nm away from the O2#1,O3 and N3 plane,whereas the N2,O3#2 are at the side of the plane with the N2-Zn1-O3#2 bond angle of 149.28(8)°,which deviates from the straight line about 30.72°and thus the six atoms form a distorted trigonal bipyramid geometry.Zn(2)adopts the five-coordinated mode to form a distorted trigonal bipyramid geometry by three oxygen atoms(O6,O4,O5#4,dZn-O=0.203 5(3)~0.209 1(2)nm)and one nitrogen atom(N1#4,dZn-N=0.209 8(3)nm)from one CPhIDC4-ligand and one nitrogen atom(N4#3,dZn-N=0.208 9(3)nm)from one bpp molecule.The bond angles of O6-Zn2-N4#3,O6-Zn2-O5#4,N4#3-Zn2-O5#4 are 117.31(13)°,117.69(11)°,124.90(13)°,respectively,and the sum of the three is 359.90°,which shows that O6,N4#3,O5#4 and Zn(2)are almost in the same plane,the bond angle(N1#4-Zn2-O4)is 169.54(10)°.In addition,two Zn2+ions are linked by the two sides of the bpp molecule.The ligand adopts conformations with μ5-κO∶κ2O′,N∶κ2O″,N′∶κ2O?,O″″∶κO″? coordination fashion (Scheme 1c)to connect Zn1 and Zn2 to form a five-member chelate ring and a seven-member chelate ring,respectively.The imidazole carboxylic acid ligand in the 3 adopt single dentate and bidentate chelate coordination mode connected to the metal ions.The Zn-O distances and the Zn-N distances and bond angles fall in the normal regions which are comparable to the values reported in literatures[36].

    Viewed along c axis without bpp,the Zn2+ion is bridged by the imidazole ring to form a 2D-grid sheet structure(Fig.3b).The 2D-grid sheet staggered conby the CPhIDC4-anions, bpp molecules expands to 3D Zn2(CPhIDC)(bpp)framework(Fig.3c).The3D Zn2(CPhIDC)(bpp)framework is found to be stabilized by the bpp padding molecules and the abundant hydrogen bonds(Table S6).

    Fig.3 (a)Ball-and-stick structural view of 3;(b)2D plane structure for 3 viewed along a axis;(c)3D framework for 3 viewed along b axis;(d)(3,4,5)-topological connected for 3

    As the 3D topological connected for 3 in Fig.3d,the CPhIDC4-anions are each bonded to four Znギions(two Zn1 and two Zn2).The Zn(1)ions are each coordinated to six atoms(O3#2,O2#1,O1#1,O3,N2,N3)from three CPhIDC4-anions in a κO∶κ2O′,N∶κ2O″,O? coordination fashion and one bpp molecule in κN coordination fashion.The Zn(2)ions are each coordinated to four atoms(O6,O4,O5,N1)from two CPhIDC4-ligand anions in κ2O,O′∶κ2O″,N coordination fashion and one nitrogen atom from one bpp ligand in κN coordination fashion.Therefore,each Zn1 ion,Zn2 ion and CPhIDC4-anion can now be viewed as 4-connected nodes,3-connected nodes and 5-connected nodes,respectively and leads to trinodal net with point symbol(4·52·6·72)(5·6·7)(4·52·6·74·82),which is same as 1(Fig.3d).

    2.2 Analysis of FTIR spectra and PXRD

    A broad absorption peak at 3 435 cm-1in the free ligand can be assigned to the stretching vibration of phenolic hydroxyl group νO-Hin the carboxyl group.The absorption peak at 3 012~3 109 cm-1is the stretching vibration peak of νN-Hon the imidazole ring.The stretching vibration peak of the carbonyl group νC=Oappears at 1 716 cm-1,and the stretching vibration peak of νC=Nin imidazole ring is located at 1 614 cm-1.The infrared spectra of polymers 1~3 are similar,indicating that they have similar coordination modes.The broad peaks appear from 3 403 to 3 538 cm-1in the three polymers due to the O-H stretching vibration ofwater.Thecharacteristic absorption peaksof carboxyl groups at 1 716 cm-1disappear in polymers.The asymmetric stretching vibration νas(-COO-)peaks appear at 1 542~1 550 cm-1,and symmetrical stretching vibration peaks νs(-COO-)appear at 1 428~1 440 cm-1and 1 375~1 395 cm-1,indicating that the carboxyl group of ligand are in the form of bidentate chelating,bridging and monodentate coordination[19,37].νC=Nstretching vibration of imidazole ring in ligand has redshift from 1 614 to 1 588~1 590 cm-1.Two vibration peaks at 2 943 cm-1(1),2 936 cm-1(3)and 2 860 cm-1(1),2 874 cm-1(3)are C-H stretching vibration of-CH2-group in auxiliary ligands bimp and bpp.However,polymer 2 don′t have these two peaks.Another two absorption peaks at 499~506 cm-1and 457~463 cm-1can be attributed to the stretching vibration of νM-Oand νM-N.All of above are consistent with the results of single crystals structure analysis.

    The simulated and experimental PXRD patterns of coordination polymers 1~3 are given in Fig.S1~S3.The results suggest that the crystal structures are truly representative of the bulk materials.The differences in intensity are due to the preferred orientation of the powder samples.

    2.3 Luminescent properties

    There are few reports about the strong luminescent properties in imidazole-4,5-dicarboxylic acid.However,2-(4′-carboxyphenyl)-1H-imidazole-4,5-dicar-rboxylic acid (H4CPhIDC)has strong luminescent property at room temperature.

    As illustrated in Fig.4,the solid-state luminescence spectra at room temperature for H4CPhIDC ligand,polymers 1,2 and 3 are observed to have their main emission at 524,527,526 and 524 nm(609 nm)(λex=467 nm),respectively.The imidazole ligand,1 and 2 can emit a certain intensity green luminescent while 3 can not only emit green but also emit orange luminescent.The green luminescent for 1,2 and 3 are from imidazole ligand and stronger than the free ligand,which can be ascribed to the luminescent of H4CPhIDC ligand sensitized by metalions.In addition,we can presume that the emission for 3 is neither metal-to-ligand charge transfer (MLCT)nor ligand-to-metal transfer(LMCT)in nature,because the Znギion is difficult to be oxidized or reduced due to its d10configuration.Thus,emissions observed at 609 nm for 3 may be assigned the band to an intra-ligandfluorescent emission of bpp anxiliary ligand[38].

    Fig.4 Fluorescence spectra for the H4CPhIDC ligand and polymers 1~3

    2.4 DNA binding

    The interaction of ligand and polymers with calf thymus DNA(CT-DNA)was studied by an EB fluorescent probe.Fig.5 shows the emission spectra of EB bonded to DNA with compounds or not.As the increasing concenof the compounds,the emission intensity at 592 nm of EB-DNA system changed in different degrees.According to the classical Stern-Volmer equation[39]:I0/I=1+Ksqr,where I0and I represent the fluorescence intensities in the absence or presence of the compounds,respectively;r is the concentration ratio of the compounds to DNA;Ksqis a linear Stern-Volmer quenching constant,the Ksqvalue was obtained as the slope of I0/I versus r linear plot.

    From the inset in Fig.5,the Ksqvalue were 16.53,0.88,21.77 and 1.07 for H4CPhIDC ligand,polymers 1,2 and 3.It suggested that the interaction of the ligand with DNA are strong and can release more free EB molecules from EB-DNA,because of the present of benzene and imidazole rings.Especially,polymer 2 has the strongest interaction with the DNA,which is attributed to not only big planar molecules phen but also its similar double-helix structure with DNA(Fig.2c).Thus,its molecules are more likely to enter the double helix structure of the DNA molecules.While the other two polymers are weaker than that of H4CPhIDC ligand,which could be ascribed to that the planarity of molecules of 1 and 3 is not as good as H4CPhIDC ligand and 2.

    Fig.5 Emission spectra of EB-DNA system in the absence and presence of the H4CPhIDC ligand(a),polymers 1(b),2(c)and 3(d)

    3 Conclusions

    H4CPhIDC was purposely synthesized by condensation and oxidation reactions and successfully applied to constructing three novel coordination polymers{[Cd2(CPhIDC)(bimb)]·H2O}n(1),{[Cd2(CPhIDC)(phen)2]·3H2O}n(2),{[Zn2(CPhIDC)(bpp)]·1.5H2O}n(3).Complexes 1 and 3 exhibit analogous 3D[Cd2(CPhIDC)(bimb)]and 3D[Zn2(CPhIDC)(bpp)]frameworks with(5·6·7)(4·52·6·72)(4·52·6·74·82)topology,but the metal ions and auxiliary ligands are different.Complex 2 is 2D wave-like fishing net structure with 44·62topology.Moreover,the luminescent properties shows that polymer 3 can emit green and orange luminescence,while the imidazole ligand and the other two polymers can emit a certain intensity green luminescence.In addition,the interaction of the ligands with DNA is strong and could release more free EB molecules from EB-DNA,because of the present of benzene and imidazole rings.Among the four compounds,the polymer 2 has the strongest interaction with the DNA due to the addition of the big planar molecules phen and the particularity of its structure.This class of materials provides a new impetus to the construction ofnovelmultifunctionalcoordination polymers materials.

    Supporting information is available at http://www.wjhxxb.cn

    [1]Weston M H,Colón Y J,Bae Y S,et al.J.Mater.Chem.A,2014,2(2):299-302

    [2]Kumar K V,Preuss K,Titirici M,et al.Chem.Rev.,2017,117(3):1796-1825

    [3]Lin J Y S.Science,2016,353(6295):121-122

    [4]Rodenas T,Luz I,Prieto G,et al.Nat.Mater.,2015,14(1):48-55

    [5]Haque E,Lo V,Minett A,et al.J.Mater.Chem.A,2014,2(1):193-203

    [6]Sun L,Park S S,Sheberla D,et al.J.Am.Chem.Soc.,2016,138(44):14772-14782

    [7]Sakamoto R,Iwashima T,Kogel J F,et al.J.Am.Chem.Soc.,2016,138(17):5666-5677

    [8]Medishetty R,Nalla V,Nemec L,et al.Adv.Mater.,2017,29(17):1605637

    [9]Ricco R,Malfatti L,Takahashi M,et al.J.Mater.Chem.A,2013,1(42):13033-13045

    [10]WANG Li-Ping(王麗蘋),WANG Gong-Ying(王公應(yīng)).Journal of Molecular Catalysis(China)(分子催化),2015,29(3):275-287

    [11]CHEN Xiao-Qian(陳曉倩).Thesis for the Master of Minnan Normal University(閩南師范大學(xué)碩士論文).2015.

    [12]HAO Li-Min(郝 麗 敏).Thesis for the Master of Chang′an University(長安大學(xué)碩士論文).2015.

    [13]Hermes S,Schr?ter M K,Schmid R,et al.Angew.Chem.Int.Ed.,2005,44(38):6237-6241

    [14]Bradshaw D,Garai A,Huo J.Chem.Soc.Rev.,2012,41(6):2344-2381

    [15]Tanabe K K,Cohen S M.Inorg.Chem.,2010,49(14):6766-6774

    [16]Miao Y R,Su Z,Suslick K S.J.Am.Chem.Soc.,2017,139(13):4667-4670

    [17]Stock N,Biswas S.Chem.Rev.,2012,112(2):933-969

    [18]Arstad B,Fjellvg H,Kongshaug K O,et al.Adsorption,2008,14(6):755-762

    [19]Janiak C,Vieth J K.New J.Chem.,2010,34(11):2366-2388[20]Henninger S K,Habib H A,Janiak C.J.Am.Chem.Soc.,2009,131(8):2776-2777

    [21]Torrisi A,Bell R G,Mellot-Draznieks C.Cryst.Growth Des.,2010,10(7):2839-2841

    [22]Li K,Olson D H,Lee J Y,et al.Adv.Funct.Mater.,2008,18(15):2205-2214

    [23]Lee C Y,Farha O K,Hong B J,et al.J.Am.Chem.Soc.,2011,133(40):15858-15861

    [24]Wang W,Niu X,Gao Y,et al.Cryst.Growth Des.,2010,10(9):4050-4059

    [25]Sharghi H,Asemani O,Khalifeh R.Synth.Commun.,2008,38(6):1128-1136

    [26]Coppola G M.Synth.Commun.,2008,38(20):3500-3507

    [27]Wang F Q,Zheng X J,Wan Y H,et al.Inorg.Chem.,2007,46(8):2956-2958

    [28]Tan C,Wang Q.Inorg.Chem.,2011,50(8):2953-2956

    [29]Sheldrick G M.SADABS,Program for Empirical Absorption Correction of Area Detector Data,University of G?ttingen,Germany,1997.

    [30]Sheldrick G M.SHELXS-97,Program for Crystal Structure Solution,University of G?ttingen,Germany,1997.

    [31]Sheldrick G M.SHELXL-97,Program for Crystal Structure Refinement,University of G?ttingen,Germany,1997.

    [32]ZHAN Pei-Ying(戰(zhàn)佩英).Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2014,30(7):1629-1634

    [33]Xue M,Zhu G,Ding H,et al.Cryst.Growth Des.,2009,9(3):1481-1488

    [34]Han Z B,Zhang G X.CrystEngComm,2010,12(2):348-351

    [35]DU Fang-Yuan(杜芳園),LI Shi-Kun(李士坤),LIN Qiu-Yue(林秋月),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2015,31(4):813-823

    [36]Tao J,Shi J X,Tong M L,et al.Inorg.Chem.,2001,40(24):6328-6330

    [37]Nakamoto K,Translated by HUANG De-Ru(黃德如),WANG Ren-Qing(汪仁慶).Infrared and Raman Spestra of Inorganic and Coordination Compounds(無機和配位化合物的紅外和拉曼光譜).Bejing:Chemistry Industry Press,1986.

    [38]He K H,Li Y W,Chen Y Q,et al.Cryst.Growth Des.,2012,12(6):2730-2735

    [39]Lakowicz J R,Weber G.Biochemistry,1973,12(21):4161-4170

    猜你喜歡
    二羧酸碩士論文浙江師范大學(xué)
    浙江師范大學(xué)行知學(xué)院手繪作品選登
    LiBa0.95-yBO3∶0.05Tb3+,yBi3+熒光粉的制備及熒光性質(zhì)
    于昕卉作品
    Application of “Process Approach” in Middle School English Writing-Teaching
    Next-Generation Materials for Cutting Tools: Superhard Materials
    漢語國際教育專業(yè)泰國來華留學(xué)生碩士論文語言特征分析及教學(xué)啟示
    “雙一流”視域下導(dǎo)師學(xué)術(shù)品質(zhì)對研究生培養(yǎng)質(zhì)量的影響——基于安徽省四屆優(yōu)秀碩士論文評選的實證研究
    聚丙烯成核劑雙環(huán)[2.2.1]-庚烷-2,3-二羧酸鈉的合成
    化工進展(2015年6期)2015-11-13 00:27:25
    兩個基于2,2’-聯(lián)吡啶-3,3’-二羧酸的稀土配合物的晶體結(jié)構(gòu)和熒光性質(zhì)
    吡啶-3,5-二羧酸鎳(Ⅱ)配合物的合成、結(jié)構(gòu)、性質(zhì)及密度泛函研究
    免费观看a级毛片全部| 国产一级毛片在线| 麻豆一二三区av精品| 久久久久久久久久久免费av| 国产三级在线视频| 97在线视频观看| 日日摸夜夜添夜夜爱| 精品无人区乱码1区二区| 久久久久久久亚洲中文字幕| 人人妻人人澡人人爽人人夜夜 | 国产精品99久久久久久久久| 日本五十路高清| 亚洲熟妇中文字幕五十中出| 国产亚洲精品久久久com| 欧美成人免费av一区二区三区| 午夜精品一区二区三区免费看| 大香蕉久久网| 少妇丰满av| 听说在线观看完整版免费高清| 久久久色成人| 十八禁国产超污无遮挡网站| 全区人妻精品视频| 99热只有精品国产| 18禁裸乳无遮挡免费网站照片| 中出人妻视频一区二区| 麻豆成人av视频| 日韩一本色道免费dvd| 精华霜和精华液先用哪个| 欧美精品国产亚洲| 国产精品综合久久久久久久免费| 此物有八面人人有两片| 高清日韩中文字幕在线| 成人无遮挡网站| 老司机影院成人| 99久久人妻综合| 黄色欧美视频在线观看| 一个人看视频在线观看www免费| 久久精品国产亚洲av涩爱 | 国产精品一区二区三区四区久久| 亚洲精品国产av成人精品| 午夜免费激情av| 亚洲美女搞黄在线观看| 啦啦啦观看免费观看视频高清| 网址你懂的国产日韩在线| 亚洲最大成人中文| 黄色一级大片看看| 久久精品国产自在天天线| 免费不卡的大黄色大毛片视频在线观看 | 在线a可以看的网站| 日韩欧美 国产精品| 人人妻人人澡欧美一区二区| 丰满人妻一区二区三区视频av| 变态另类丝袜制服| av女优亚洲男人天堂| 欧美丝袜亚洲另类| 成年av动漫网址| 国产高清三级在线| 日韩国内少妇激情av| 在线a可以看的网站| 大型黄色视频在线免费观看| 亚洲成人中文字幕在线播放| 久久精品夜夜夜夜夜久久蜜豆| avwww免费| 色综合亚洲欧美另类图片| 日韩欧美一区二区三区在线观看| 国产精品爽爽va在线观看网站| 亚洲综合色惰| 搡老妇女老女人老熟妇| 一进一出抽搐动态| 久久人妻av系列| 国产伦一二天堂av在线观看| 一个人看的www免费观看视频| 国产女主播在线喷水免费视频网站 | 午夜久久久久精精品| 男女那种视频在线观看| 国产极品天堂在线| 免费看美女性在线毛片视频| 欧美极品一区二区三区四区| 小蜜桃在线观看免费完整版高清| 寂寞人妻少妇视频99o| av天堂在线播放| 日韩欧美一区二区三区在线观看| av在线播放精品| 久99久视频精品免费| 日韩大尺度精品在线看网址| 天天一区二区日本电影三级| 亚洲欧洲国产日韩| 深爱激情五月婷婷| 婷婷色av中文字幕| 精品日产1卡2卡| 中文字幕av在线有码专区| 白带黄色成豆腐渣| 国产极品天堂在线| 草草在线视频免费看| 亚洲av一区综合| 亚洲精品国产av成人精品| 久久精品国产亚洲网站| 一级黄片播放器| 亚洲人成网站在线观看播放| 女同久久另类99精品国产91| 99国产极品粉嫩在线观看| 人人妻人人澡欧美一区二区| 亚洲av一区综合| 国产黄片视频在线免费观看| 1024手机看黄色片| 国产v大片淫在线免费观看| 国产伦精品一区二区三区四那| 不卡视频在线观看欧美| 亚洲欧美精品专区久久| 成年女人永久免费观看视频| 久久国内精品自在自线图片| 99久久成人亚洲精品观看| 99精品在免费线老司机午夜| 国产精品乱码一区二三区的特点| 午夜福利高清视频| 国产蜜桃级精品一区二区三区| 爱豆传媒免费全集在线观看| 最近中文字幕高清免费大全6| 在现免费观看毛片| 99久久成人亚洲精品观看| 国产午夜精品一二区理论片| 国产成人freesex在线| 国产熟女欧美一区二区| 亚洲av中文av极速乱| 只有这里有精品99| 一边亲一边摸免费视频| 日本撒尿小便嘘嘘汇集6| 亚洲在线观看片| 波野结衣二区三区在线| 日韩中字成人| 日本一二三区视频观看| 99久久人妻综合| 亚洲国产高清在线一区二区三| 男女下面进入的视频免费午夜| 欧美成人一区二区免费高清观看| 99热这里只有精品一区| 内地一区二区视频在线| 日日摸夜夜添夜夜添av毛片| 成年免费大片在线观看| 丝袜美腿在线中文| 亚洲av第一区精品v没综合| 91久久精品国产一区二区三区| 国产精品久久久久久精品电影| 久久这里只有精品中国| 哪个播放器可以免费观看大片| 亚洲乱码一区二区免费版| 男女啪啪激烈高潮av片| 欧美+亚洲+日韩+国产| 国产爱豆传媒在线观看| 精品一区二区三区视频在线| 免费看美女性在线毛片视频| 国产日韩欧美在线精品| 看黄色毛片网站| 亚洲av电影不卡..在线观看| av黄色大香蕉| 免费观看精品视频网站| 欧美变态另类bdsm刘玥| 国产成人一区二区在线| 国产亚洲精品av在线| a级一级毛片免费在线观看| 啦啦啦啦在线视频资源| 最近手机中文字幕大全| 日本av手机在线免费观看| 中文精品一卡2卡3卡4更新| 日韩欧美一区二区三区在线观看| 蜜臀久久99精品久久宅男| 亚洲国产高清在线一区二区三| 夫妻性生交免费视频一级片| 国产成人午夜福利电影在线观看| 久久久久久久亚洲中文字幕| 国产视频内射| 欧美丝袜亚洲另类| 99九九线精品视频在线观看视频| 久久人人爽人人爽人人片va| 国产成人福利小说| 精华霜和精华液先用哪个| 网址你懂的国产日韩在线| 国产伦在线观看视频一区| 成人综合一区亚洲| 亚洲精品久久久久久婷婷小说 | 久久精品国产清高在天天线| 亚洲精品日韩在线中文字幕 | 国产黄a三级三级三级人| 国产一区亚洲一区在线观看| 国产一区二区亚洲精品在线观看| 在线免费观看不下载黄p国产| 久久久精品大字幕| 国产精品1区2区在线观看.| 日本与韩国留学比较| or卡值多少钱| 欧美成人免费av一区二区三区| 男人狂女人下面高潮的视频| 亚洲人成网站高清观看| 欧美日韩综合久久久久久| 色综合亚洲欧美另类图片| 成人国产麻豆网| 免费搜索国产男女视频| 老女人水多毛片| 国产熟女欧美一区二区| 中文精品一卡2卡3卡4更新| 毛片女人毛片| 精品国内亚洲2022精品成人| www日本黄色视频网| 色播亚洲综合网| 国产91av在线免费观看| 一进一出抽搐gif免费好疼| 国产黄a三级三级三级人| 国产精品美女特级片免费视频播放器| 日韩一区二区视频免费看| 亚洲精品日韩av片在线观看| videossex国产| 中文字幕免费在线视频6| 悠悠久久av| 久久久久久国产a免费观看| 国产黄色视频一区二区在线观看 | 免费人成在线观看视频色| 91久久精品电影网| 青春草亚洲视频在线观看| 国产精品一二三区在线看| 亚洲在久久综合| 97人妻精品一区二区三区麻豆| 青春草亚洲视频在线观看| 日本撒尿小便嘘嘘汇集6| 欧美+日韩+精品| 欧美日本亚洲视频在线播放| 美女cb高潮喷水在线观看| 中文字幕久久专区| 2021天堂中文幕一二区在线观| 亚洲av第一区精品v没综合| 国产精品一二三区在线看| 国产伦一二天堂av在线观看| 哪个播放器可以免费观看大片| 色播亚洲综合网| 国产大屁股一区二区在线视频| 熟女电影av网| 舔av片在线| 久久99热6这里只有精品| 亚洲人成网站在线播放欧美日韩| or卡值多少钱| 国产色婷婷99| 神马国产精品三级电影在线观看| 日韩欧美精品免费久久| 可以在线观看毛片的网站| 人人妻人人澡欧美一区二区| 欧美xxxx性猛交bbbb| 久久久欧美国产精品| 成人国产麻豆网| 国产亚洲av嫩草精品影院| 国产色爽女视频免费观看| 久久久久免费精品人妻一区二区| 精品久久久久久久久av| 国产精品一二三区在线看| 亚洲成av人片在线播放无| 91午夜精品亚洲一区二区三区| 日韩欧美精品免费久久| 中文字幕av在线有码专区| 亚洲精品日韩在线中文字幕 | 91精品一卡2卡3卡4卡| 波多野结衣高清无吗| 又粗又硬又长又爽又黄的视频 | 熟女电影av网| 哪里可以看免费的av片| 极品教师在线视频| 精品熟女少妇av免费看| 我要看日韩黄色一级片| 晚上一个人看的免费电影| 亚洲欧美日韩东京热| 18禁黄网站禁片免费观看直播| 久久久久久大精品| 成人无遮挡网站| 内地一区二区视频在线| 成人毛片60女人毛片免费| 黑人高潮一二区| 深爱激情五月婷婷| 久久久久网色| 青春草国产在线视频 | 禁无遮挡网站| 国产单亲对白刺激| 精品国内亚洲2022精品成人| h日本视频在线播放| 国产精品久久久久久亚洲av鲁大| 91av网一区二区| 久久欧美精品欧美久久欧美| 国产极品天堂在线| 看非洲黑人一级黄片| 久久久久久久午夜电影| 国产成人福利小说| 国产黄色小视频在线观看| 一个人免费在线观看电影| 哪里可以看免费的av片| 日本爱情动作片www.在线观看| 51国产日韩欧美| 最近最新中文字幕大全电影3| 免费人成在线观看视频色| 男人和女人高潮做爰伦理| 欧美性感艳星| 中文欧美无线码| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久久久久黄片| 99久久精品热视频| 噜噜噜噜噜久久久久久91| 欧美性猛交╳xxx乱大交人| 热99re8久久精品国产| 精品99又大又爽又粗少妇毛片| 黄色配什么色好看| 边亲边吃奶的免费视频| 国产午夜精品久久久久久一区二区三区| 精品久久久久久久久av| 人人妻人人澡欧美一区二区| 亚洲自偷自拍三级| 男人的好看免费观看在线视频| 日韩亚洲欧美综合| 国产亚洲av片在线观看秒播厂 | 非洲黑人性xxxx精品又粗又长| 麻豆一二三区av精品| 又粗又爽又猛毛片免费看| av免费在线看不卡| 精品久久久久久久末码| 国产中年淑女户外野战色| 日韩欧美在线乱码| 在线天堂最新版资源| 久久久成人免费电影| 18禁裸乳无遮挡免费网站照片| 亚洲欧美精品综合久久99| 男女视频在线观看网站免费| 精品99又大又爽又粗少妇毛片| 小蜜桃在线观看免费完整版高清| 在线观看66精品国产| 久久久久久久久久成人| 免费观看精品视频网站| 国产午夜精品论理片| av在线观看视频网站免费| 国产精品三级大全| 久久久久久大精品| 成人性生交大片免费视频hd| 国产色爽女视频免费观看| 精品一区二区三区人妻视频| 亚洲一区二区三区色噜噜| 亚洲综合色惰| 一个人观看的视频www高清免费观看| 亚洲五月天丁香| 中文字幕制服av| 久久精品国产鲁丝片午夜精品| 欧美另类亚洲清纯唯美| 亚洲人成网站在线观看播放| 变态另类成人亚洲欧美熟女| 婷婷色综合大香蕉| www日本黄色视频网| 国产精品女同一区二区软件| 一本一本综合久久| 国产成人影院久久av| 国产91av在线免费观看| 国产精品人妻久久久久久| 日韩精品青青久久久久久| 国产精品三级大全| 国产精品一二三区在线看| 久久久欧美国产精品| av在线蜜桃| 在线观看av片永久免费下载| 国产一区二区在线av高清观看| 国产一区二区亚洲精品在线观看| 久久99热6这里只有精品| 亚洲在久久综合| 最新中文字幕久久久久| 免费观看人在逋| 国产视频内射| 中出人妻视频一区二区| 尾随美女入室| 亚洲精品自拍成人| 91久久精品国产一区二区三区| 国产淫片久久久久久久久| 成人一区二区视频在线观看| 亚洲精品久久久久久婷婷小说 | 91久久精品电影网| 国产高清视频在线观看网站| 12—13女人毛片做爰片一| 日韩精品有码人妻一区| 国产成人影院久久av| 亚洲国产欧美人成| 国产黄片视频在线免费观看| 久久久国产成人精品二区| 可以在线观看毛片的网站| 12—13女人毛片做爰片一| 国产亚洲5aaaaa淫片| 免费电影在线观看免费观看| 中文精品一卡2卡3卡4更新| 久久久色成人| 国产日韩欧美在线精品| 欧美不卡视频在线免费观看| 99久久中文字幕三级久久日本| 亚洲婷婷狠狠爱综合网| 亚洲欧美精品综合久久99| 联通29元200g的流量卡| 亚洲av中文av极速乱| 高清日韩中文字幕在线| 欧美成人一区二区免费高清观看| 深爱激情五月婷婷| 如何舔出高潮| 在线免费观看不下载黄p国产| 精品人妻熟女av久视频| 日韩成人伦理影院| 最好的美女福利视频网| av又黄又爽大尺度在线免费看 | 久久久久久国产a免费观看| 国产黄色视频一区二区在线观看 | 3wmmmm亚洲av在线观看| 成人午夜高清在线视频| 人人妻人人看人人澡| 插逼视频在线观看| 国产三级在线视频| 综合色丁香网| 久久国内精品自在自线图片| 乱码一卡2卡4卡精品| 色哟哟哟哟哟哟| 国产三级中文精品| 亚洲精品久久久久久婷婷小说 | 亚洲美女视频黄频| 精品免费久久久久久久清纯| 欧美xxxx性猛交bbbb| 亚洲欧美成人精品一区二区| 亚洲成av人片在线播放无| 欧美区成人在线视频| 国产精品人妻久久久影院| 少妇熟女欧美另类| 九草在线视频观看| 深夜a级毛片| 欧美日韩乱码在线| 又爽又黄无遮挡网站| 国产精品国产高清国产av| 国产亚洲5aaaaa淫片| 亚洲真实伦在线观看| 亚洲美女视频黄频| 免费搜索国产男女视频| 中文在线观看免费www的网站| 国内精品美女久久久久久| 亚洲最大成人中文| 中文字幕熟女人妻在线| 免费看日本二区| 97超碰精品成人国产| 特级一级黄色大片| 国产亚洲精品av在线| 99国产极品粉嫩在线观看| 变态另类丝袜制服| 在线免费观看不下载黄p国产| 精品久久久久久成人av| 夫妻性生交免费视频一级片| 永久网站在线| 久久久久久久午夜电影| 变态另类丝袜制服| 国产精品一二三区在线看| 少妇熟女aⅴ在线视频| 国产探花极品一区二区| avwww免费| 精品欧美国产一区二区三| 欧美日本视频| 国产成人精品久久久久久| 欧美3d第一页| 免费av不卡在线播放| 欧美最新免费一区二区三区| АⅤ资源中文在线天堂| 少妇裸体淫交视频免费看高清| 国产精品伦人一区二区| 亚洲精品日韩在线中文字幕 | 三级毛片av免费| 午夜免费男女啪啪视频观看| 99热网站在线观看| 精品99又大又爽又粗少妇毛片| 久久99精品国语久久久| 男人和女人高潮做爰伦理| 国产毛片a区久久久久| 久久婷婷人人爽人人干人人爱| 99久国产av精品| 日产精品乱码卡一卡2卡三| 久久久久网色| 亚洲电影在线观看av| 国模一区二区三区四区视频| 婷婷亚洲欧美| 欧美zozozo另类| 亚洲在久久综合| 99九九线精品视频在线观看视频| 熟女人妻精品中文字幕| 成人毛片60女人毛片免费| 毛片女人毛片| 婷婷亚洲欧美| 一夜夜www| 成熟少妇高潮喷水视频| 中文在线观看免费www的网站| 亚洲经典国产精华液单| 国产真实乱freesex| 99久久久亚洲精品蜜臀av| 午夜福利视频1000在线观看| 欧美日韩一区二区视频在线观看视频在线 | 亚洲自偷自拍三级| 国产高清三级在线| 99久国产av精品国产电影| 亚洲精品久久久久久婷婷小说 | 亚洲精品自拍成人| 久久久久九九精品影院| 国产精品1区2区在线观看.| 91久久精品国产一区二区成人| 秋霞在线观看毛片| 亚洲精品亚洲一区二区| 久久精品国产亚洲av香蕉五月| 熟女人妻精品中文字幕| 赤兔流量卡办理| 精品久久久久久久久av| 亚洲av成人精品一区久久| 日韩欧美三级三区| 精品久久久久久久久久久久久| 搡女人真爽免费视频火全软件| 干丝袜人妻中文字幕| 国产精品久久久久久亚洲av鲁大| 麻豆成人午夜福利视频| 亚洲欧美日韩高清在线视频| 国产成年人精品一区二区| 久久人妻av系列| 麻豆久久精品国产亚洲av| 国产精品嫩草影院av在线观看| 夫妻性生交免费视频一级片| 亚洲精品影视一区二区三区av| 久久精品国产亚洲av涩爱 | 高清毛片免费看| 亚洲成人中文字幕在线播放| 在线免费观看不下载黄p国产| 久久热精品热| 久99久视频精品免费| 国产色婷婷99| 久久精品国产自在天天线| 最近视频中文字幕2019在线8| 在线免费十八禁| 亚洲在久久综合| 综合色丁香网| 99久久九九国产精品国产免费| 在线观看美女被高潮喷水网站| 中文资源天堂在线| 免费大片18禁| 91精品国产九色| 日韩欧美精品v在线| 青春草国产在线视频 | 在线播放国产精品三级| 人体艺术视频欧美日本| 国产精品久久视频播放| 夫妻性生交免费视频一级片| 亚洲18禁久久av| 在线播放国产精品三级| 色5月婷婷丁香| 久久热精品热| 久久99热这里只有精品18| 69av精品久久久久久| 人人妻人人看人人澡| eeuss影院久久| 午夜精品国产一区二区电影 | 国产真实乱freesex| 国产日韩欧美在线精品| 亚洲国产欧洲综合997久久,| 国产v大片淫在线免费观看| 欧美日韩在线观看h| 插阴视频在线观看视频| 国产av一区在线观看免费| 免费电影在线观看免费观看| 免费看日本二区| 免费看光身美女| 有码 亚洲区| 日韩成人av中文字幕在线观看| 日韩 亚洲 欧美在线| 黄色一级大片看看| 69人妻影院| 成人毛片60女人毛片免费| 在线免费十八禁| 免费观看精品视频网站| 国内久久婷婷六月综合欲色啪| 女人被狂操c到高潮| 免费av观看视频| 国产精品1区2区在线观看.| 午夜a级毛片| 日日摸夜夜添夜夜爱| 夜夜夜夜夜久久久久| 夫妻性生交免费视频一级片| 99久久中文字幕三级久久日本| 卡戴珊不雅视频在线播放| 亚洲美女搞黄在线观看| 在线观看免费视频日本深夜| 哪里可以看免费的av片| 久久99热6这里只有精品| 欧美最新免费一区二区三区| 国产高清不卡午夜福利| www.色视频.com| 国内精品宾馆在线| 高清在线视频一区二区三区 | 老师上课跳d突然被开到最大视频| 亚洲第一区二区三区不卡| 欧美一区二区亚洲| 国产亚洲欧美98| 大香蕉久久网| 日韩制服骚丝袜av| 亚洲图色成人| 你懂的网址亚洲精品在线观看 | 国产白丝娇喘喷水9色精品| 悠悠久久av| 亚洲av第一区精品v没综合| 好男人在线观看高清免费视频| 亚洲图色成人| 久久精品国产亚洲av香蕉五月| 亚洲欧美中文字幕日韩二区| 国产白丝娇喘喷水9色精品| 偷拍熟女少妇极品色| 老女人水多毛片| 又粗又爽又猛毛片免费看| 欧美一区二区亚洲| 国产伦在线观看视频一区| 我的女老师完整版在线观看| 免费在线观看成人毛片| 蜜臀久久99精品久久宅男| 亚洲18禁久久av| 亚洲高清免费不卡视频|