• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genotype-by-environment interaction for grain yield among novel cowpea (Vigna unguiculata L.)selections derived by gamma irradiation

    2018-06-04 03:33:36LydiHornHusseinShimelisFtmSrsuLernmoreMwdzingeniMrkLing
    The Crop Journal 2018年3期

    Lydi Horn,Hussein Shimelis,Ftm Srsu,Lernmore Mwdzingeni,*,Mrk D.Ling

    a

    aAfrican Centre for Crop Improvement,University of KwaZulu-Natal,P/Bag X01,Scottsville 3209,Pietermaritzburg,South Africa

    bDirectorate of Research and Training,Plant Production Research,Ministry of Agriculture,Water and Forestry,Private Bag 13184,Windhoek,Namibia

    cPlant Breeding and Genetics Section,Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture,Vienna,Austria

    1.Introduction

    Cowpea(Vigna unguiculata L.;2n=2×=22)is an important legume crop widely grown in South America,sub-Saharan Africa,and Asia.It withstands harsh growing conditions,particularly drought stress[1,2].The grain,young pods,and succulent leaves are used for human food,while the foliage is an important livestock feed[3].Further,cowpea restores soil fertility through nitrogen fixation,making it an ideal component crop in rotation systems.Production and productivity of cowpea has been low in Namibia,owing to unavailability of seeds of improved cultivars,harsh climatic conditions,diseases,insect pests,and parasitic weeds[2].The present yield of cowpea ranges from 0.10 to 0.60 t ha?1in Namibia,a range far below the potentially attainable yields of 1.5 to 3.0 t ha?1reported elsewhere[4].There is thus a need to breed improved cowpea cultivars with enhanced grain yieldand quality to meet local and regional production and productivity and market demands.

    Design,development,and deployment of improved cultivars require adequate genetic variation,achieved through crosses involving selected parents or targeted mutagenesis[5,6].The potential of chemical and physical mutagenic agents to induce genetic variation of cowpea for grain yield and yield-related traits has been well reported[7,8].Induced mutagenesis has been successfully used to modify several agronomic traits of cowpea,such as plant height,maturity,seed shattering resistance,disease resistance,seed color,seed size,and yield[7–9].

    Genotype-by-environment(G×E)interaction analysis is an important prerequisite for recommendation of novel selections for large-scale production.It enables assessment of the relative performance and stability of genotypes for yield and yield-related traits[1,10,11].The performance of tested genotypes is influenced by the genotype,the environment,and G×E interaction[1].The growing environment often masks the potential genetic expression,leading to poor genetic gain from artificial selection,especially for quantitative traits such as grain yield.G×E analysis involves evaluation of novel selections across representative growing environments,which will assist breeders to recommend promising genotypes based on their narrow or broad adaptation.G×E analyses are valuable during the final stages of selection of elite breeding materials.Several statistical techniques have been widely adapted to analyze and interpret G×E data,including the additive main effect and multiplicative interaction(AMMI)and the genotype main effect plus genotype-by-environment interaction(GGE)biplot analysis[12,13].

    A joint cowpea mutation breeding project was initiated between the government of Namibia and the International Atomic Energy Agency(IAEA)under a Technical Cooperation project to develop improved cultivars with better adaptation[2].This project resulted in the selection of promising mutants with high yield potential,drought tolerance,and insect pest resistance through continuous selfing and selection from the M2 to M7 generations[14].The selected M6 and M7 elite mutants needed to be evaluated across representative growing environments to determine their performance and yield stability for effective cultivar recommendation and to identify suitable production environments.Accordingly,the objectives of this study were to evaluate the effects of G×E interaction and yield stability among elite cowpea selections derived by gamma irradiation and to identify promising genotypes with narrow or broader adaptation for production or future breeding programs in Namibia or similar environments.

    2.Material and methods

    2.1.Study sites and plant material

    The study was conducted at three sites:Bagani(?18°09′61.93″S,21°56′24.14″E),Mannheim(19°12′21.4″S,17°42′29.1″E),and Omahenene(?17°44′29.04″S,14°78′48.21″E)during the 2014/2015 and 2015/2016 cropping seasons.This plan provided six testing environments including Bagani 2014/2015,Bagani 2015/2016,Mannheim 2014/2015,Mannheim 2015/2016,Omahenene2014/2015,and Omahenene2015/2016.The physicochemical properties of soils at Bagani,Mannheim and Omahenene research sites are described by Horn et al.[14].Mean monthly and total rainfall(mm)at the three sites during 2014/2015 and 2015/2016 are presented in Table 1.The study used37cowpea genotypes comprising34newly developed mutant lines,selected for their superior agronomic performance,and three parental checks(Bira,Nakare and Shindimba).The mutants were at the M6 generation in 2014/2015 and M7 in 2015/2016.Details of the genotypes are presented in Table 2.

    2.2.Experimental design and data collection

    The experiments were performed using a randomized complete block design with three replications.Experimental units consisted of 8 rows of 4 m length with spacings of 20 cm within and 75 cm between rows.The crops were established under rainfed conditions with supplementary irrigation when required.Two middle rows(net plots)were harvested to estimate grain yield per plot,later converted to yield per hectare(t ha?1).The outer rows were not used for yield estimation in order to control border effects and to minimize experimental error.

    2.3.Data analysis

    Grain yield data was subjected to a combined analysis of variance(ANOVA)using GenStat 18 statistical software[15].The following AMMI model according to Gauch(16)was used for G×E and yield stability analyses based on the principal component analysis(PCA):

    where Ygeis the yield of genotype g in environment e,μ is the grand mean, αgis the genotype mean deviation, βeis the environment mean deviation,λnis the eigenvalue of the nthprincipal component(PCA)axis,Υgnand ηenare the genotype and environmental PCA scores for the nthPCA axis,and θge,is the residual.The AMMI stability value(ASV)was calculated according to Purchase,Hatting and Van Deventer[17]as follows:

    where SS is the sum of squares of the IPCAs and IPCA1 and IPCA2 are the first and second interaction principal component axes,respectively.Means of the genotypes were used for GGE biplot analysis.

    3.Results

    3.1.AMMI analysis

    Mean yield for the studied traits varied widely,from 0.74 to 2.83 t ha?1.Table 3 shows the mean grain yields(t ha?1)of the34 cowpea mutant genotypes and their three parental lines in six environments in northern Namibia.AMMI analysis of variance revealed highly significant main effects(P<0.001)of genotypes,environments and their interactions(Table 4).Genotype,G×E interaction,and the AMMI model explained respectively 37.95%,33.83%,and 77.49%of the total observed variation.In contrast,interaction principal component axes IPCA1 and IPCA2 explained respectively 44.63%and 23.41%of the total variation.Genotype G9 was ranked first across all the test environments.Mutant lines G19 and G22,developed from the parent Nakare irradiated at 150 Gy,were among the high and stable yielders.Based on the AMMI biplot(Fig.1),acute angles were observed between vectors of genotypes G4,G5,and G15 and those of environments E1,E3,and E5.The acute angle between the lines that connect the biplot origin and environments E1 and E3,as well as E2,E4,and E6 showed their close relationships.Genotype G20 was the most stable,with an ASV of 0.08(Table 5).

    Table 1–Mean monthly and total rainfall(mm)during the study period in 2014/2015 and 2015/2016 at three field sites.

    See codes of genotypes(G1 to G37)in Table 3.Min,minimum;Max,maximum,CV,coefficient of variance.

    3.2.GGE biplot analysis

    A “which won where”polygon view of the relationship between genotypes and environments is presented in Fig.2.The biplot explained 75.57%of the total variation observed,of which 63.57%was explained by the first principal component(PC1),while the second principal component(PC2)explained 12%.Genotypes G3,G6,G9,G24,and G29 were situated at the corners of the “which won where”polygon indicating that they were outstanding genotypes in particular environments[13].Among these,G9 was the highest-yielding genotype in all the test environments.Other genotypes including G1,G2,G13,G17,and G20 were located close to the origin or center of the GGE biplot,indicating that they showed stable performance across the test sites[13].In contrast,all six test environments were grouped into one mega-environment,in which the genotypes G9,G10,G12,and G13 were associated.The best-performing mutant line was G9,followed by G10 and G12 with above-average yield in environments E6 and E3(Fig.3).Fig.4 presents the average-environment coordination(AEC)view comparing environments relative to an ideal environment.It indicates that environments E1 and E3 were located in the direction of the ideal environment.Large IPC1 scores of 0.8 and 1.0 were obtained from E1 and E5,respectively,while E2 and E4 displayed a low IPC1 score of 0.25.G9 fell closer to the centre of the concentric circle of the AEC view,next to E3.Other desirable genotypes were G4,G10,G12,and G14,located on the third and fourth concentric circles.

    Table 2–List of 34 cowpea mutant genotypes and three parental lines evaluated at three sites(Bagani,Mannheim,and Omahenene)during the 2014/2015 and 2015/2016 cropping seasons at the M6 and M7 generations,respectively.

    Table 3 –Mean grain yield(t ha?1)of 34 cowpea mutant genotypes and their three parental lines tested in six environments in northern Namibia.

    4.Discussion

    Significant G×E effects observed in the present study indicate that the genotypes evaluated do not show consistent performance across test environments.This allows for an investigation of the nature and magnitude of G×E,which cannot be achieved by a standard analysis of variance[16,17].Genotype G9,which was ranked as the highest yielder across all environments,could be the best candidate for production across sites.The AMMI biplot reveals the relationship between genotypes and environments,while AMMI stability values provide more information on the variation among genotypes.Stable genotypes have ASV values close to zero[18].Thus,G20,with an ASV of 0.08,could harbor genes for adaptability to various agroclimatic conditions.This mutant line can be used during breeding for yield stability.Similarly,IPCA scores are an indication of genotype stability.The greater the IPCA scores,either negative or positive,the more specifically adapted is a genotype to particular environments.The closer the IPCA scores approach to zero,the more stable or adapted is the genotype across all the test environments,as observed for line G20.

    GGE biplot analysis provides a graphical representation of the relationships between genotypes and environments and can effectively reveal genotype performance and stability[13].The vertex mutant lines G3,G6,G9,G24,and G29 were among the environmentally most responsive genotypes and can be recommended for specific adaptation.In contrast,G1,G2,G13,G17,and G20,located close to the origin,were among the environmentally least responsive lines and can be used in breeding for wide adaptation.The presence of only onemega-environment in the present study suggests that the six sites did not differ significantly in terms of discriminating capacity,so that deploying genotypes in any one of those environments would give similar results[13].This finding implies that future evaluation of the same set of materials could be performed in the most representative of the environments in order to save costs.In this case,the ideal test environment is the one with the largest PC1 scores and should have more power to discriminate genotype main effects[19,20].Thus,E3 and E1,located closest to the ideal environment with a large PC1 score could be the best sites for germplasm evaluation.Despite this observation,genotypes G9,G10,and G12 could be targeted specifically for production in environments E6 and E3,where they performed above average.

    Table 4–AMMI analysis of variance for seed yield of 34 cowpea mutant genotypes and their three parental lines tested in six environments in northern Namibia.

    An ideal genotype is the one that shows the highest mean performance and is highly stable across all test environments[13,19].Based on the average-environment coordination(AEC)view comparison biplot,an ideal genotype is associated with greatest vector length of the high-yielding genotypes,and a desirable genotype is the one that is located closer to an ideal genotype,which is usually at the center of the concentric circles.Mutant line G9 appears to be adapted specifically to E3.This genotype fell at the corners or vertices of the polygon view close to E3(Fig.2),performing above average and close to E3(Fig.3)and positioned close to the ideal environment(Fig.4).This genotype showed the highest yield in all the test environments.Thus,it may be recommended for production over all the present study sites.Genotypes that can be selected for cultivation across the studied environments or for future breeding include G4,G10,G12,and G14 located on the third and fourth concentric circles close to the average environment.Genotype G14(Shindimba)is one of the check varieties,known for high yield and large white grains,but is disfavored by farmers because of its coiled pod shape.The newly developed mutant derivatives of Shindimba,namely G3,G4,G9,G10,and G12 had straight pods,indicating that in addition to grain yield,mutagenesis also created variation for other key traits.

    5.Conclusions

    Table 5–AMMI adjusted combined mean grain yield(t ha?1),IPCA scores of 33 cowpea mutant genotypes and their three parental lines tested in six environments in northern Namibia.

    This study selected promising cowpea mutant genotypes using G×E analyses involving different agroecological conditions.Four mutant selections:G9(ShL3P74),G10(ShR3P4),G12(ShR9P5),and G4(ShL2P4),showed the high grain yields,2.83,2.06,1.99,and 1.95 t ha?1,respectively.Elite mutant selections derived from the parental line Shindimba:G4,G9,G10,and G12,were among the highest grain yielders with the straight pod shape desired by cowpea farmers in northern Namibia.Accordingly,the above novel selections can be recommended for direct production or future cowpea breeding programs in Namibia or similar environments.

    Acknowledgments

    Fig.2––The“which won where”view of the GGE biplot showing which genotypes performed best in which environment.E1,Bagani 2014/2015;E2,Bagani 2015/2016;E3,Mannheim 2014/2015;E4,Mannheim 2015/2016;E5,Omahenene 2014/2015;E6,Omahenene 2015/2016.Dotted vertical and horizontal lines indicate points where the PC1 and PC2 axes had respective values of zero.Vertices of the polygon indicate superior genotypes in each sector.See codes of genotypes(G1 to G37)in Table 3.

    Fig.3–Average-environment coordination(AEC)view ranking test environments in terms of the relative performance of genotypes.E1,Bagani 2014/2015;E2,Bagani 2015/2016;E3,Mannheim 2014/2015;E4,Mannheim 2015/2016;E5,Omahenene 2014/2015;E6,Omahenene 2015/2016.Dotted vertical and horizontal lines indicate points where the PC1 and PC2 axes had respective values of zero.Vertices of the polygon indicate superior genotypes in each sector and green dotted lines help to visualize the distance of genotypes and environments from the biplot origin.See codes of genotypes(G1 to G37)in Table 3.

    Fig.4–The average-environment coordination(AEC)view comparison biplot comparing environments relative to an ideal environment(the center of the concentric circles).E1,Bagani 2014/2015;E2,Bagani 2015/2016;E3,Mannheim 2014/2015;E4,Mannheim 2015/2016;E5,Omahenene 2014/2015;E6,Omahenene 2015/2016.Dotted vertical and horizontal lines indicate points where the PC1 and PC2 axes had respective values of zero.The small circle on the arrowed line shows the average environment,the arrow indicates the ideal environment,and concentric circles indicate the distances of genotypes and environments from the ideal environment.See codes of genotypes(G1 to G37)in Table 3.

    This work was supported by funds from the International Atomic Energy Agency(IAEA)through theTC Project(NAM5012):Developing High Yielding and Drought Tolerant Crops through Mutation Breeding)and the Ministry of Agriculture,Water and Forestry of Namibia.The University of KwaZulu-Natal and the Ministry of Agriculture,Water and Forestry(MAWF)of the government of Namibia are thanked for overall research support to the first author.Loide Aron,Rose-Marry Hukununa,Kangumba Annethe and Nghishekwa Alfeus are thanked for technical support and data collection.

    [1]B.Adewale,C.Okonji,A.Oyekanmi,D.Akintobi,C.Aremu,Genotypic variability and stability of some grain yield components of cowpea,Afr.J.Agric.Res.5(2010)874–880.

    [2]L.Horn,H.Shimelis,M.Laing,Participatory appraisal of production constraints,preferred traits and farming system of cowpea in the northern Namibia:implications for breeding,Legum.Res.38(2015)691–700.

    [3]O.Agbogidi,Screening six cultivars of cowpea(Vignia unguiculata L.)walp for adaptation to soil contaminated with spent engine oil,J.Environ.Chem.Ecotoxicol.2(2010)103–109.

    [4]O.A.Gbaye,G.J.Holloway,Varietal effects of cowpea,Vigna unguiculata,on tolerance to malathion in Callosobruchus maculatus(Coleoptera:Bruchidae),J.Stored Prod.Res.47(2011)365–371.

    [5]J.A.de Ronde,M.Spreeth,N.Mayaba,W.J.van Rensburg,N.Matole,in:Q.Y.Shu(Ed.),Evaluation and characterization of mutant cowpea plants for enhanced abiotic stress tolerance,Induced Plant Mutations in the Genomics Era.Proceedings of an International Joint FAO/IAEA Symposium,Vienna,Austria,2008Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture,International Atomic Energy Agency,Vienna,Austria,2009.

    [6]C.Mba,Induced mutations unleash the potentials of plant genetic resources for food and agriculture,Agron.J.3(2013)200–231.

    [7]S.Goyal,S.Khan,Induced mutagenesis in urdbean(Vigna mungo L.Hepper):a review,Int.J.Bot.6(2010)194–206.

    [8]D.Singh,S.Sharma,M.Lal,B.Ranwah,V.Sharma,Induction of genetic variability for polygenic traits through physical and chemical mutagens in cowpea[Vigna unguiculata(L.)walp],Legum.Res.36(2013)10–14.

    [9]R.M.Gaafar,M.Hamouda,A.Badr,Seed coat color,weight and eye pattern inheritance in gamma-rays induced cowpea M2-mutant line,J.Genet.Eng.Biotechnol.14(2016)61–68.

    [10]Y.Ali,Z.Aslam,F.Hussain,A.Shakur,Genotype and environmental interaction in cowpea(Vigna unguiculata L.)for yield and disease resistance,Int.J.Environ.Sci.Technol.1(2004)119–123.

    [11]O.Ariyo,Assessment of selection techniques in genotype×interaction in cowpea Vigna unguiculata(L.)walp,Afr.J.Agric.Res.2(2007)352–355.

    [12]W.Yan,M.S.Kang,B.Ma,S.Woods,P.L.Cornelius,GGE biplot vs.AMMI analysis of genotype-by-environment data,Crop Sci.47(2007)643–653.

    [13]W.Yan,N.A.Tinker,Biplot analysis of multi-environment trial data:principles and applications,Can.J.Plant Sci.86(2006)623–645.

    [14]L.N.Horn,H.M.Ghebrehiwot,H.A.Shimelis,Selection of novel cowpea genotypes derived through gamma irradiation,Front.Plant Sci.7(2016)1–13.

    [15]R.Payne,A Guide to ANOVA and Design in GenStat,VSN International,Hemel Hempstead,Hertfordshire,UK,2014.

    [16]H.G.Gauch,A simple protocol for AMMI analysis of yield trials,Crop Sci.53(2013)1860–1869.

    [17]J.L.Purchase,H.Hatting,C.S.Van Deventer,Genotype×environment interaction of winter wheat(Triticum aestivum L.)in South Africa:II.Stability analysis of yield performance,S.Afr.J.Plant Soil 17(2000)95–100.

    [18]N.Mahmodi,A.Yaghotipoor,E.Farshadfar,AMMI stability value and simultaneous estimation of yield and yield stability in bread wheat(Triticum aestivum L.),Aust.J.Crop.Sci.5(2011)1837–1844.

    [19]Y.Kaya,M.Ak?ura,S.Taner,GGE-biplot analysis of multienvironment yield trials in bread wheat,Turk.J.Agric.For.30(2006)325–337.

    [20]M.Ding,B.Tier,W.Yan,H.X.Wu,M.B.Powell,T.A.McRae,Application of GGE biplot analysis to evaluate genotype(G),environment(E),and G×E interaction on Pinus radiata:a case study,N.Z.J.For.Sci.38(2008)132–142.

    欧美老熟妇乱子伦牲交| 亚洲aⅴ乱码一区二区在线播放| 一本一本综合久久| 亚洲av在线观看美女高潮| 国产在线男女| 人人妻人人澡人人爽人人夜夜| 国产黄频视频在线观看| 亚洲精品国产成人久久av| 五月天丁香电影| 免费黄网站久久成人精品| 成年av动漫网址| 日韩欧美一区视频在线观看 | av卡一久久| 日韩亚洲欧美综合| 久久99热6这里只有精品| 国产爽快片一区二区三区| 日韩视频在线欧美| 麻豆成人av视频| 97超碰精品成人国产| 熟女av电影| 久久亚洲国产成人精品v| 精品一品国产午夜福利视频| 精品99又大又爽又粗少妇毛片| 国产欧美日韩一区二区三区在线 | 日韩欧美 国产精品| 日韩国内少妇激情av| av视频免费观看在线观看| 97超视频在线观看视频| 黑人高潮一二区| 日韩欧美精品免费久久| 又黄又爽又刺激的免费视频.| 国产高清不卡午夜福利| 一本—道久久a久久精品蜜桃钙片| 美女福利国产在线 | 交换朋友夫妻互换小说| 亚洲国产欧美人成| 青春草国产在线视频| av视频免费观看在线观看| 中文天堂在线官网| 欧美精品国产亚洲| 久久久久精品性色| 97超碰精品成人国产| 亚洲精品自拍成人| 欧美日韩视频高清一区二区三区二| 久久久久国产精品人妻一区二区| 熟女av电影| 一区二区三区精品91| 激情五月婷婷亚洲| 亚洲av综合色区一区| 国产在线男女| av播播在线观看一区| 一边亲一边摸免费视频| 熟女人妻精品中文字幕| h视频一区二区三区| 熟女电影av网| 一区二区av电影网| 国产成人免费无遮挡视频| 秋霞在线观看毛片| 男女无遮挡免费网站观看| 全区人妻精品视频| 99热网站在线观看| 免费观看性生交大片5| 国产精品国产三级国产专区5o| 联通29元200g的流量卡| 天堂中文最新版在线下载| 亚洲国产av新网站| 最后的刺客免费高清国语| 熟妇人妻不卡中文字幕| 国产精品一区二区在线观看99| 五月伊人婷婷丁香| 99九九线精品视频在线观看视频| 少妇熟女欧美另类| 日韩电影二区| av在线蜜桃| 国产成人免费观看mmmm| 亚洲欧美清纯卡通| 极品少妇高潮喷水抽搐| 免费观看av网站的网址| 大片电影免费在线观看免费| 一本一本综合久久| 久久毛片免费看一区二区三区| 久久人妻熟女aⅴ| 国产成人91sexporn| 少妇的逼好多水| 免费观看无遮挡的男女| 色视频www国产| 国产亚洲av片在线观看秒播厂| 美女脱内裤让男人舔精品视频| 亚洲综合色惰| 国产精品一区www在线观看| 国产伦精品一区二区三区四那| 日韩人妻高清精品专区| 日韩成人av中文字幕在线观看| 欧美成人精品欧美一级黄| 色综合色国产| 日本vs欧美在线观看视频 | 97在线人人人人妻| 午夜福利高清视频| 啦啦啦中文免费视频观看日本| 99热这里只有精品一区| 免费av不卡在线播放| 亚洲综合色惰| 亚洲精品第二区| 熟女av电影| av国产免费在线观看| 国产免费视频播放在线视频| 免费黄频网站在线观看国产| 亚洲精品日韩在线中文字幕| 超碰av人人做人人爽久久| 亚洲精品456在线播放app| 黄色一级大片看看| 亚洲美女视频黄频| 国产精品久久久久久精品电影小说 | 国产精品福利在线免费观看| 久久97久久精品| 久久久久久久久久久丰满| 亚洲电影在线观看av| 在线观看三级黄色| 中文乱码字字幕精品一区二区三区| 日韩电影二区| av国产免费在线观看| 一区二区三区免费毛片| 最近最新中文字幕大全电影3| 天堂中文最新版在线下载| 国产精品免费大片| 性色av一级| 精品酒店卫生间| 十分钟在线观看高清视频www | 亚洲成人一二三区av| 成人免费观看视频高清| 午夜激情久久久久久久| 国产乱来视频区| 人妻制服诱惑在线中文字幕| 日日撸夜夜添| 久久精品夜色国产| av福利片在线观看| 国产亚洲91精品色在线| 国产无遮挡羞羞视频在线观看| 色综合色国产| 又粗又硬又长又爽又黄的视频| 国产黄色视频一区二区在线观看| 少妇高潮的动态图| 亚洲内射少妇av| 久久久久性生活片| 人体艺术视频欧美日本| 午夜激情久久久久久久| 超碰97精品在线观看| 亚洲成色77777| 精品午夜福利在线看| 久久久久精品性色| 成人免费观看视频高清| 亚洲精品色激情综合| 亚洲精品成人av观看孕妇| 99国产精品免费福利视频| 亚洲欧美成人综合另类久久久| 久久午夜福利片| 欧美一级a爱片免费观看看| 国内少妇人妻偷人精品xxx网站| 美女xxoo啪啪120秒动态图| 在线亚洲精品国产二区图片欧美 | 国产一区二区三区综合在线观看 | 小蜜桃在线观看免费完整版高清| 久久精品国产自在天天线| 我要看黄色一级片免费的| 亚洲人成网站在线观看播放| 亚洲av成人精品一二三区| 国内精品宾馆在线| 十八禁网站网址无遮挡 | 国模一区二区三区四区视频| 97超碰精品成人国产| 又大又黄又爽视频免费| 亚洲人与动物交配视频| 国产在线视频一区二区| 国产精品三级大全| 高清毛片免费看| 欧美日韩一区二区视频在线观看视频在线| 免费久久久久久久精品成人欧美视频 | av专区在线播放| 只有这里有精品99| 一本一本综合久久| 女性生殖器流出的白浆| 成人特级av手机在线观看| 午夜精品国产一区二区电影| 国产乱人视频| av国产久精品久网站免费入址| 精品一品国产午夜福利视频| 久久久成人免费电影| 国产精品一区www在线观看| 亚洲欧美日韩东京热| 国产欧美另类精品又又久久亚洲欧美| 欧美日韩亚洲高清精品| 男女边摸边吃奶| 久久精品久久精品一区二区三区| 久久久精品免费免费高清| 午夜日本视频在线| 18禁在线播放成人免费| 亚洲av成人精品一区久久| 日韩av在线免费看完整版不卡| 日韩成人av中文字幕在线观看| 在线观看人妻少妇| 自拍偷自拍亚洲精品老妇| 精品久久久久久久末码| 熟女av电影| 99久久中文字幕三级久久日本| 一级黄片播放器| 网址你懂的国产日韩在线| 有码 亚洲区| 欧美极品一区二区三区四区| 精品人妻偷拍中文字幕| 亚洲综合精品二区| 亚洲欧美日韩东京热| 在线观看三级黄色| 纯流量卡能插随身wifi吗| 亚洲欧美一区二区三区黑人 | 热re99久久精品国产66热6| 色网站视频免费| 国产视频首页在线观看| 国产色爽女视频免费观看| 午夜福利在线在线| 国产淫片久久久久久久久| 大香蕉久久网| 青青草视频在线视频观看| 老女人水多毛片| 欧美亚洲 丝袜 人妻 在线| 欧美日韩国产mv在线观看视频 | 亚洲高清免费不卡视频| 国产伦在线观看视频一区| 97超视频在线观看视频| 九九爱精品视频在线观看| 欧美精品人与动牲交sv欧美| 毛片一级片免费看久久久久| 亚洲,欧美,日韩| 免费不卡的大黄色大毛片视频在线观看| 日本黄色片子视频| 久久热精品热| 日本欧美国产在线视频| 人人妻人人澡人人爽人人夜夜| av一本久久久久| 国产91av在线免费观看| 亚洲美女黄色视频免费看| 国产精品嫩草影院av在线观看| 国产在线视频一区二区| 中国国产av一级| 久久久久久久亚洲中文字幕| 亚洲美女视频黄频| 国产精品一二三区在线看| 一级毛片黄色毛片免费观看视频| 91精品伊人久久大香线蕉| 亚洲av中文字字幕乱码综合| 日韩中文字幕视频在线看片 | 久久久久视频综合| 国产精品蜜桃在线观看| av在线观看视频网站免费| 插阴视频在线观看视频| 亚洲色图av天堂| 国产亚洲最大av| 新久久久久国产一级毛片| 欧美日韩在线观看h| 男人和女人高潮做爰伦理| 国产精品一区二区三区四区免费观看| 欧美少妇被猛烈插入视频| 日日啪夜夜爽| 少妇人妻 视频| 久久久久国产精品人妻一区二区| 日韩欧美 国产精品| 久久午夜福利片| 精品少妇黑人巨大在线播放| 国产高清国产精品国产三级 | 我要看日韩黄色一级片| 青春草视频在线免费观看| 国内揄拍国产精品人妻在线| 国产v大片淫在线免费观看| 久久久亚洲精品成人影院| 日韩免费高清中文字幕av| 99re6热这里在线精品视频| 色哟哟·www| 日日啪夜夜爽| av国产免费在线观看| 免费黄色在线免费观看| 永久免费av网站大全| 王馨瑶露胸无遮挡在线观看| 一个人看视频在线观看www免费| 男女边吃奶边做爰视频| 男女无遮挡免费网站观看| 国产成人91sexporn| 如何舔出高潮| 日本av免费视频播放| 下体分泌物呈黄色| 亚洲第一区二区三区不卡| 久久 成人 亚洲| 欧美日本视频| 免费av中文字幕在线| 在线观看人妻少妇| 亚洲伊人久久精品综合| 亚洲国产成人一精品久久久| av国产免费在线观看| 人妻系列 视频| 纵有疾风起免费观看全集完整版| 国产精品嫩草影院av在线观看| 国产精品99久久久久久久久| 亚洲av成人精品一二三区| 久久久久久久久久人人人人人人| 男女下面进入的视频免费午夜| 精品一区二区三区视频在线| 蜜桃在线观看..| 亚洲精品日韩av片在线观看| 国产免费视频播放在线视频| 欧美激情国产日韩精品一区| 少妇裸体淫交视频免费看高清| 99久久精品一区二区三区| 亚州av有码| 国产欧美日韩一区二区三区在线 | 日韩亚洲欧美综合| av.在线天堂| 视频中文字幕在线观看| 欧美高清成人免费视频www| 一级片'在线观看视频| 尤物成人国产欧美一区二区三区| 99久久精品热视频| 国产深夜福利视频在线观看| 国产精品秋霞免费鲁丝片| 久久久久久久大尺度免费视频| 午夜福利网站1000一区二区三区| 男人爽女人下面视频在线观看| 国产av精品麻豆| 亚洲成人手机| 大陆偷拍与自拍| av在线播放精品| 亚洲性久久影院| 成人18禁高潮啪啪吃奶动态图 | 啦啦啦啦在线视频资源| 在线观看av片永久免费下载| 久久精品夜色国产| 午夜福利在线在线| 成年免费大片在线观看| 久久99精品国语久久久| 日韩一区二区三区影片| 国产亚洲5aaaaa淫片| 97精品久久久久久久久久精品| 两个人的视频大全免费| 精品人妻熟女av久视频| 欧美精品人与动牲交sv欧美| 欧美xxxx性猛交bbbb| 欧美精品人与动牲交sv欧美| 狂野欧美白嫩少妇大欣赏| 成人毛片60女人毛片免费| 亚洲欧美清纯卡通| 亚洲av日韩在线播放| 日韩欧美精品免费久久| av.在线天堂| 最近手机中文字幕大全| 欧美三级亚洲精品| 国产老妇伦熟女老妇高清| av.在线天堂| 春色校园在线视频观看| 国产精品久久久久久久电影| 国产精品久久久久成人av| 精品国产露脸久久av麻豆| 欧美xxxx黑人xx丫x性爽| 亚洲av二区三区四区| 久久 成人 亚洲| 国产成人freesex在线| 国产黄片视频在线免费观看| 国产成人精品福利久久| 欧美成人一区二区免费高清观看| 九九在线视频观看精品| 最近手机中文字幕大全| 亚洲av日韩在线播放| 五月天丁香电影| 国产免费一级a男人的天堂| 国产片特级美女逼逼视频| 亚洲第一区二区三区不卡| 2021少妇久久久久久久久久久| 免费观看在线日韩| 下体分泌物呈黄色| freevideosex欧美| 日本黄色片子视频| 日韩中字成人| 蜜桃久久精品国产亚洲av| 国产伦精品一区二区三区视频9| 亚洲美女搞黄在线观看| 精品一区二区免费观看| 又爽又黄a免费视频| 我的女老师完整版在线观看| 欧美97在线视频| av又黄又爽大尺度在线免费看| 又黄又爽又刺激的免费视频.| 亚洲自偷自拍三级| a级一级毛片免费在线观看| 色哟哟·www| 另类亚洲欧美激情| 国产综合精华液| 欧美+日韩+精品| 久久精品久久精品一区二区三区| 免费av不卡在线播放| 插阴视频在线观看视频| 边亲边吃奶的免费视频| 国产精品99久久99久久久不卡 | 男女边摸边吃奶| 久久精品国产亚洲网站| 亚洲熟女精品中文字幕| 熟妇人妻不卡中文字幕| 18禁裸乳无遮挡动漫免费视频| 亚洲第一av免费看| 有码 亚洲区| 国产成人午夜福利电影在线观看| 天美传媒精品一区二区| 亚洲经典国产精华液单| 国内精品宾馆在线| 久久久久久九九精品二区国产| 少妇人妻精品综合一区二区| 国产 一区精品| 亚洲人成网站在线播| 亚洲综合色惰| 黄色欧美视频在线观看| 亚洲精品国产色婷婷电影| 日韩在线高清观看一区二区三区| 国产高清有码在线观看视频| 国产男女超爽视频在线观看| 亚洲av免费高清在线观看| av在线蜜桃| 午夜激情福利司机影院| 亚洲欧美日韩无卡精品| 亚洲图色成人| 国产精品人妻久久久影院| 99久久精品一区二区三区| 成人18禁高潮啪啪吃奶动态图 | 蜜桃久久精品国产亚洲av| 久久久久久伊人网av| 一个人免费看片子| 97在线视频观看| 97超碰精品成人国产| 精品少妇久久久久久888优播| 久久久久久久久久久免费av| 2021少妇久久久久久久久久久| 国产永久视频网站| 妹子高潮喷水视频| 亚洲欧美成人综合另类久久久| 最近最新中文字幕大全电影3| 高清av免费在线| 国产精品人妻久久久久久| 欧美性感艳星| .国产精品久久| 春色校园在线视频观看| 亚洲一区二区三区欧美精品| 女的被弄到高潮叫床怎么办| 日本vs欧美在线观看视频 | 国产乱人视频| 晚上一个人看的免费电影| 亚洲综合色惰| 国产av一区二区精品久久 | 久热这里只有精品99| 噜噜噜噜噜久久久久久91| 亚洲国产日韩一区二区| 中文字幕精品免费在线观看视频 | 国产91av在线免费观看| 国产精品人妻久久久影院| 国产午夜精品一二区理论片| 高清不卡的av网站| 日本黄大片高清| 国产中年淑女户外野战色| 精品久久久久久久久亚洲| av在线app专区| 极品教师在线视频| 欧美日韩视频精品一区| 97在线人人人人妻| 国国产精品蜜臀av免费| 国产成人freesex在线| 性色avwww在线观看| 久久久久久九九精品二区国产| 久久精品久久久久久久性| 一区二区av电影网| 精品一品国产午夜福利视频| 最近中文字幕高清免费大全6| 美女脱内裤让男人舔精品视频| 下体分泌物呈黄色| 精华霜和精华液先用哪个| 最近最新中文字幕大全电影3| 国国产精品蜜臀av免费| 国产在线免费精品| 五月天丁香电影| av播播在线观看一区| 直男gayav资源| 国产精品免费大片| 久久久久国产网址| 女性被躁到高潮视频| 亚洲av中文av极速乱| 中文字幕制服av| 丰满人妻一区二区三区视频av| 久久毛片免费看一区二区三区| 亚洲,一卡二卡三卡| 国产av码专区亚洲av| 亚洲人与动物交配视频| 久久久久精品久久久久真实原创| 国产色婷婷99| 最近中文字幕高清免费大全6| 国产精品久久久久久久电影| 国产乱来视频区| 菩萨蛮人人尽说江南好唐韦庄| 大又大粗又爽又黄少妇毛片口| 久久人人爽人人爽人人片va| 色5月婷婷丁香| 国产成人a∨麻豆精品| 三级国产精品欧美在线观看| 国产无遮挡羞羞视频在线观看| 久久久久久伊人网av| 少妇的逼水好多| 美女福利国产在线 | 午夜老司机福利剧场| 免费观看在线日韩| 国产69精品久久久久777片| 亚洲av.av天堂| kizo精华| 精品久久久精品久久久| 日日啪夜夜撸| 97在线人人人人妻| 我要看日韩黄色一级片| 精品国产露脸久久av麻豆| 久久人人爽人人片av| 视频区图区小说| 男人添女人高潮全过程视频| 黄色怎么调成土黄色| 免费观看在线日韩| 亚洲精品456在线播放app| 亚洲自偷自拍三级| 国产探花极品一区二区| 高清欧美精品videossex| 国产黄频视频在线观看| tube8黄色片| 久久人人爽av亚洲精品天堂 | 国产精品一二三区在线看| 久久久久久久久大av| 欧美变态另类bdsm刘玥| 毛片一级片免费看久久久久| 亚洲精品自拍成人| 97在线人人人人妻| 成人漫画全彩无遮挡| 久久久久久久久久人人人人人人| 免费在线观看成人毛片| 十分钟在线观看高清视频www | 国产有黄有色有爽视频| 美女高潮的动态| 一本色道久久久久久精品综合| 91狼人影院| 美女cb高潮喷水在线观看| 亚洲欧美精品专区久久| 又爽又黄a免费视频| 亚洲av电影在线观看一区二区三区| 精品国产一区二区三区久久久樱花 | 国产伦精品一区二区三区四那| 在线观看免费高清a一片| 久久精品人妻少妇| av在线app专区| 18禁在线播放成人免费| 国产免费福利视频在线观看| 亚洲av不卡在线观看| 精品久久国产蜜桃| 欧美最新免费一区二区三区| 在线免费观看不下载黄p国产| 一区二区av电影网| 亚洲精品一二三| 日韩免费高清中文字幕av| 日本av免费视频播放| 成人综合一区亚洲| 国精品久久久久久国模美| 久久热精品热| 又爽又黄a免费视频| 免费大片18禁| 制服丝袜香蕉在线| 国产91av在线免费观看| 噜噜噜噜噜久久久久久91| 国产精品久久久久久久电影| 国产一级毛片在线| 麻豆国产97在线/欧美| 夫妻性生交免费视频一级片| 日本黄色片子视频| 又粗又硬又长又爽又黄的视频| 五月开心婷婷网| 97精品久久久久久久久久精品| 亚洲av男天堂| 亚洲性久久影院| 成年人午夜在线观看视频| 国产一区二区在线观看日韩| 秋霞伦理黄片| 成人无遮挡网站| 少妇人妻一区二区三区视频| 成年女人在线观看亚洲视频| 欧美xxxx黑人xx丫x性爽| 欧美精品一区二区免费开放| 精品视频人人做人人爽| 六月丁香七月| 国产亚洲5aaaaa淫片| 欧美一级a爱片免费观看看| 在线观看免费高清a一片| 国产精品国产三级专区第一集| 一级爰片在线观看| 亚洲欧美日韩卡通动漫| 日韩人妻高清精品专区| videos熟女内射| 嫩草影院新地址| 男的添女的下面高潮视频| av在线app专区| 啦啦啦中文免费视频观看日本| 日韩av在线免费看完整版不卡| 丝袜喷水一区| 免费观看性生交大片5| 亚洲激情五月婷婷啪啪| 国产一区有黄有色的免费视频| 久久 成人 亚洲| 亚洲精品,欧美精品| 免费人成在线观看视频色| 丰满少妇做爰视频| 国产真实伦视频高清在线观看| a级一级毛片免费在线观看| 美女cb高潮喷水在线观看|