• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genotype-by-environment interaction for grain yield among novel cowpea (Vigna unguiculata L.)selections derived by gamma irradiation

    2018-06-04 03:33:36LydiHornHusseinShimelisFtmSrsuLernmoreMwdzingeniMrkLing
    The Crop Journal 2018年3期

    Lydi Horn,Hussein Shimelis,Ftm Srsu,Lernmore Mwdzingeni,*,Mrk D.Ling

    a

    aAfrican Centre for Crop Improvement,University of KwaZulu-Natal,P/Bag X01,Scottsville 3209,Pietermaritzburg,South Africa

    bDirectorate of Research and Training,Plant Production Research,Ministry of Agriculture,Water and Forestry,Private Bag 13184,Windhoek,Namibia

    cPlant Breeding and Genetics Section,Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture,Vienna,Austria

    1.Introduction

    Cowpea(Vigna unguiculata L.;2n=2×=22)is an important legume crop widely grown in South America,sub-Saharan Africa,and Asia.It withstands harsh growing conditions,particularly drought stress[1,2].The grain,young pods,and succulent leaves are used for human food,while the foliage is an important livestock feed[3].Further,cowpea restores soil fertility through nitrogen fixation,making it an ideal component crop in rotation systems.Production and productivity of cowpea has been low in Namibia,owing to unavailability of seeds of improved cultivars,harsh climatic conditions,diseases,insect pests,and parasitic weeds[2].The present yield of cowpea ranges from 0.10 to 0.60 t ha?1in Namibia,a range far below the potentially attainable yields of 1.5 to 3.0 t ha?1reported elsewhere[4].There is thus a need to breed improved cowpea cultivars with enhanced grain yieldand quality to meet local and regional production and productivity and market demands.

    Design,development,and deployment of improved cultivars require adequate genetic variation,achieved through crosses involving selected parents or targeted mutagenesis[5,6].The potential of chemical and physical mutagenic agents to induce genetic variation of cowpea for grain yield and yield-related traits has been well reported[7,8].Induced mutagenesis has been successfully used to modify several agronomic traits of cowpea,such as plant height,maturity,seed shattering resistance,disease resistance,seed color,seed size,and yield[7–9].

    Genotype-by-environment(G×E)interaction analysis is an important prerequisite for recommendation of novel selections for large-scale production.It enables assessment of the relative performance and stability of genotypes for yield and yield-related traits[1,10,11].The performance of tested genotypes is influenced by the genotype,the environment,and G×E interaction[1].The growing environment often masks the potential genetic expression,leading to poor genetic gain from artificial selection,especially for quantitative traits such as grain yield.G×E analysis involves evaluation of novel selections across representative growing environments,which will assist breeders to recommend promising genotypes based on their narrow or broad adaptation.G×E analyses are valuable during the final stages of selection of elite breeding materials.Several statistical techniques have been widely adapted to analyze and interpret G×E data,including the additive main effect and multiplicative interaction(AMMI)and the genotype main effect plus genotype-by-environment interaction(GGE)biplot analysis[12,13].

    A joint cowpea mutation breeding project was initiated between the government of Namibia and the International Atomic Energy Agency(IAEA)under a Technical Cooperation project to develop improved cultivars with better adaptation[2].This project resulted in the selection of promising mutants with high yield potential,drought tolerance,and insect pest resistance through continuous selfing and selection from the M2 to M7 generations[14].The selected M6 and M7 elite mutants needed to be evaluated across representative growing environments to determine their performance and yield stability for effective cultivar recommendation and to identify suitable production environments.Accordingly,the objectives of this study were to evaluate the effects of G×E interaction and yield stability among elite cowpea selections derived by gamma irradiation and to identify promising genotypes with narrow or broader adaptation for production or future breeding programs in Namibia or similar environments.

    2.Material and methods

    2.1.Study sites and plant material

    The study was conducted at three sites:Bagani(?18°09′61.93″S,21°56′24.14″E),Mannheim(19°12′21.4″S,17°42′29.1″E),and Omahenene(?17°44′29.04″S,14°78′48.21″E)during the 2014/2015 and 2015/2016 cropping seasons.This plan provided six testing environments including Bagani 2014/2015,Bagani 2015/2016,Mannheim 2014/2015,Mannheim 2015/2016,Omahenene2014/2015,and Omahenene2015/2016.The physicochemical properties of soils at Bagani,Mannheim and Omahenene research sites are described by Horn et al.[14].Mean monthly and total rainfall(mm)at the three sites during 2014/2015 and 2015/2016 are presented in Table 1.The study used37cowpea genotypes comprising34newly developed mutant lines,selected for their superior agronomic performance,and three parental checks(Bira,Nakare and Shindimba).The mutants were at the M6 generation in 2014/2015 and M7 in 2015/2016.Details of the genotypes are presented in Table 2.

    2.2.Experimental design and data collection

    The experiments were performed using a randomized complete block design with three replications.Experimental units consisted of 8 rows of 4 m length with spacings of 20 cm within and 75 cm between rows.The crops were established under rainfed conditions with supplementary irrigation when required.Two middle rows(net plots)were harvested to estimate grain yield per plot,later converted to yield per hectare(t ha?1).The outer rows were not used for yield estimation in order to control border effects and to minimize experimental error.

    2.3.Data analysis

    Grain yield data was subjected to a combined analysis of variance(ANOVA)using GenStat 18 statistical software[15].The following AMMI model according to Gauch(16)was used for G×E and yield stability analyses based on the principal component analysis(PCA):

    where Ygeis the yield of genotype g in environment e,μ is the grand mean, αgis the genotype mean deviation, βeis the environment mean deviation,λnis the eigenvalue of the nthprincipal component(PCA)axis,Υgnand ηenare the genotype and environmental PCA scores for the nthPCA axis,and θge,is the residual.The AMMI stability value(ASV)was calculated according to Purchase,Hatting and Van Deventer[17]as follows:

    where SS is the sum of squares of the IPCAs and IPCA1 and IPCA2 are the first and second interaction principal component axes,respectively.Means of the genotypes were used for GGE biplot analysis.

    3.Results

    3.1.AMMI analysis

    Mean yield for the studied traits varied widely,from 0.74 to 2.83 t ha?1.Table 3 shows the mean grain yields(t ha?1)of the34 cowpea mutant genotypes and their three parental lines in six environments in northern Namibia.AMMI analysis of variance revealed highly significant main effects(P<0.001)of genotypes,environments and their interactions(Table 4).Genotype,G×E interaction,and the AMMI model explained respectively 37.95%,33.83%,and 77.49%of the total observed variation.In contrast,interaction principal component axes IPCA1 and IPCA2 explained respectively 44.63%and 23.41%of the total variation.Genotype G9 was ranked first across all the test environments.Mutant lines G19 and G22,developed from the parent Nakare irradiated at 150 Gy,were among the high and stable yielders.Based on the AMMI biplot(Fig.1),acute angles were observed between vectors of genotypes G4,G5,and G15 and those of environments E1,E3,and E5.The acute angle between the lines that connect the biplot origin and environments E1 and E3,as well as E2,E4,and E6 showed their close relationships.Genotype G20 was the most stable,with an ASV of 0.08(Table 5).

    Table 1–Mean monthly and total rainfall(mm)during the study period in 2014/2015 and 2015/2016 at three field sites.

    See codes of genotypes(G1 to G37)in Table 3.Min,minimum;Max,maximum,CV,coefficient of variance.

    3.2.GGE biplot analysis

    A “which won where”polygon view of the relationship between genotypes and environments is presented in Fig.2.The biplot explained 75.57%of the total variation observed,of which 63.57%was explained by the first principal component(PC1),while the second principal component(PC2)explained 12%.Genotypes G3,G6,G9,G24,and G29 were situated at the corners of the “which won where”polygon indicating that they were outstanding genotypes in particular environments[13].Among these,G9 was the highest-yielding genotype in all the test environments.Other genotypes including G1,G2,G13,G17,and G20 were located close to the origin or center of the GGE biplot,indicating that they showed stable performance across the test sites[13].In contrast,all six test environments were grouped into one mega-environment,in which the genotypes G9,G10,G12,and G13 were associated.The best-performing mutant line was G9,followed by G10 and G12 with above-average yield in environments E6 and E3(Fig.3).Fig.4 presents the average-environment coordination(AEC)view comparing environments relative to an ideal environment.It indicates that environments E1 and E3 were located in the direction of the ideal environment.Large IPC1 scores of 0.8 and 1.0 were obtained from E1 and E5,respectively,while E2 and E4 displayed a low IPC1 score of 0.25.G9 fell closer to the centre of the concentric circle of the AEC view,next to E3.Other desirable genotypes were G4,G10,G12,and G14,located on the third and fourth concentric circles.

    Table 2–List of 34 cowpea mutant genotypes and three parental lines evaluated at three sites(Bagani,Mannheim,and Omahenene)during the 2014/2015 and 2015/2016 cropping seasons at the M6 and M7 generations,respectively.

    Table 3 –Mean grain yield(t ha?1)of 34 cowpea mutant genotypes and their three parental lines tested in six environments in northern Namibia.

    4.Discussion

    Significant G×E effects observed in the present study indicate that the genotypes evaluated do not show consistent performance across test environments.This allows for an investigation of the nature and magnitude of G×E,which cannot be achieved by a standard analysis of variance[16,17].Genotype G9,which was ranked as the highest yielder across all environments,could be the best candidate for production across sites.The AMMI biplot reveals the relationship between genotypes and environments,while AMMI stability values provide more information on the variation among genotypes.Stable genotypes have ASV values close to zero[18].Thus,G20,with an ASV of 0.08,could harbor genes for adaptability to various agroclimatic conditions.This mutant line can be used during breeding for yield stability.Similarly,IPCA scores are an indication of genotype stability.The greater the IPCA scores,either negative or positive,the more specifically adapted is a genotype to particular environments.The closer the IPCA scores approach to zero,the more stable or adapted is the genotype across all the test environments,as observed for line G20.

    GGE biplot analysis provides a graphical representation of the relationships between genotypes and environments and can effectively reveal genotype performance and stability[13].The vertex mutant lines G3,G6,G9,G24,and G29 were among the environmentally most responsive genotypes and can be recommended for specific adaptation.In contrast,G1,G2,G13,G17,and G20,located close to the origin,were among the environmentally least responsive lines and can be used in breeding for wide adaptation.The presence of only onemega-environment in the present study suggests that the six sites did not differ significantly in terms of discriminating capacity,so that deploying genotypes in any one of those environments would give similar results[13].This finding implies that future evaluation of the same set of materials could be performed in the most representative of the environments in order to save costs.In this case,the ideal test environment is the one with the largest PC1 scores and should have more power to discriminate genotype main effects[19,20].Thus,E3 and E1,located closest to the ideal environment with a large PC1 score could be the best sites for germplasm evaluation.Despite this observation,genotypes G9,G10,and G12 could be targeted specifically for production in environments E6 and E3,where they performed above average.

    Table 4–AMMI analysis of variance for seed yield of 34 cowpea mutant genotypes and their three parental lines tested in six environments in northern Namibia.

    An ideal genotype is the one that shows the highest mean performance and is highly stable across all test environments[13,19].Based on the average-environment coordination(AEC)view comparison biplot,an ideal genotype is associated with greatest vector length of the high-yielding genotypes,and a desirable genotype is the one that is located closer to an ideal genotype,which is usually at the center of the concentric circles.Mutant line G9 appears to be adapted specifically to E3.This genotype fell at the corners or vertices of the polygon view close to E3(Fig.2),performing above average and close to E3(Fig.3)and positioned close to the ideal environment(Fig.4).This genotype showed the highest yield in all the test environments.Thus,it may be recommended for production over all the present study sites.Genotypes that can be selected for cultivation across the studied environments or for future breeding include G4,G10,G12,and G14 located on the third and fourth concentric circles close to the average environment.Genotype G14(Shindimba)is one of the check varieties,known for high yield and large white grains,but is disfavored by farmers because of its coiled pod shape.The newly developed mutant derivatives of Shindimba,namely G3,G4,G9,G10,and G12 had straight pods,indicating that in addition to grain yield,mutagenesis also created variation for other key traits.

    5.Conclusions

    Table 5–AMMI adjusted combined mean grain yield(t ha?1),IPCA scores of 33 cowpea mutant genotypes and their three parental lines tested in six environments in northern Namibia.

    This study selected promising cowpea mutant genotypes using G×E analyses involving different agroecological conditions.Four mutant selections:G9(ShL3P74),G10(ShR3P4),G12(ShR9P5),and G4(ShL2P4),showed the high grain yields,2.83,2.06,1.99,and 1.95 t ha?1,respectively.Elite mutant selections derived from the parental line Shindimba:G4,G9,G10,and G12,were among the highest grain yielders with the straight pod shape desired by cowpea farmers in northern Namibia.Accordingly,the above novel selections can be recommended for direct production or future cowpea breeding programs in Namibia or similar environments.

    Acknowledgments

    Fig.2––The“which won where”view of the GGE biplot showing which genotypes performed best in which environment.E1,Bagani 2014/2015;E2,Bagani 2015/2016;E3,Mannheim 2014/2015;E4,Mannheim 2015/2016;E5,Omahenene 2014/2015;E6,Omahenene 2015/2016.Dotted vertical and horizontal lines indicate points where the PC1 and PC2 axes had respective values of zero.Vertices of the polygon indicate superior genotypes in each sector.See codes of genotypes(G1 to G37)in Table 3.

    Fig.3–Average-environment coordination(AEC)view ranking test environments in terms of the relative performance of genotypes.E1,Bagani 2014/2015;E2,Bagani 2015/2016;E3,Mannheim 2014/2015;E4,Mannheim 2015/2016;E5,Omahenene 2014/2015;E6,Omahenene 2015/2016.Dotted vertical and horizontal lines indicate points where the PC1 and PC2 axes had respective values of zero.Vertices of the polygon indicate superior genotypes in each sector and green dotted lines help to visualize the distance of genotypes and environments from the biplot origin.See codes of genotypes(G1 to G37)in Table 3.

    Fig.4–The average-environment coordination(AEC)view comparison biplot comparing environments relative to an ideal environment(the center of the concentric circles).E1,Bagani 2014/2015;E2,Bagani 2015/2016;E3,Mannheim 2014/2015;E4,Mannheim 2015/2016;E5,Omahenene 2014/2015;E6,Omahenene 2015/2016.Dotted vertical and horizontal lines indicate points where the PC1 and PC2 axes had respective values of zero.The small circle on the arrowed line shows the average environment,the arrow indicates the ideal environment,and concentric circles indicate the distances of genotypes and environments from the ideal environment.See codes of genotypes(G1 to G37)in Table 3.

    This work was supported by funds from the International Atomic Energy Agency(IAEA)through theTC Project(NAM5012):Developing High Yielding and Drought Tolerant Crops through Mutation Breeding)and the Ministry of Agriculture,Water and Forestry of Namibia.The University of KwaZulu-Natal and the Ministry of Agriculture,Water and Forestry(MAWF)of the government of Namibia are thanked for overall research support to the first author.Loide Aron,Rose-Marry Hukununa,Kangumba Annethe and Nghishekwa Alfeus are thanked for technical support and data collection.

    [1]B.Adewale,C.Okonji,A.Oyekanmi,D.Akintobi,C.Aremu,Genotypic variability and stability of some grain yield components of cowpea,Afr.J.Agric.Res.5(2010)874–880.

    [2]L.Horn,H.Shimelis,M.Laing,Participatory appraisal of production constraints,preferred traits and farming system of cowpea in the northern Namibia:implications for breeding,Legum.Res.38(2015)691–700.

    [3]O.Agbogidi,Screening six cultivars of cowpea(Vignia unguiculata L.)walp for adaptation to soil contaminated with spent engine oil,J.Environ.Chem.Ecotoxicol.2(2010)103–109.

    [4]O.A.Gbaye,G.J.Holloway,Varietal effects of cowpea,Vigna unguiculata,on tolerance to malathion in Callosobruchus maculatus(Coleoptera:Bruchidae),J.Stored Prod.Res.47(2011)365–371.

    [5]J.A.de Ronde,M.Spreeth,N.Mayaba,W.J.van Rensburg,N.Matole,in:Q.Y.Shu(Ed.),Evaluation and characterization of mutant cowpea plants for enhanced abiotic stress tolerance,Induced Plant Mutations in the Genomics Era.Proceedings of an International Joint FAO/IAEA Symposium,Vienna,Austria,2008Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture,International Atomic Energy Agency,Vienna,Austria,2009.

    [6]C.Mba,Induced mutations unleash the potentials of plant genetic resources for food and agriculture,Agron.J.3(2013)200–231.

    [7]S.Goyal,S.Khan,Induced mutagenesis in urdbean(Vigna mungo L.Hepper):a review,Int.J.Bot.6(2010)194–206.

    [8]D.Singh,S.Sharma,M.Lal,B.Ranwah,V.Sharma,Induction of genetic variability for polygenic traits through physical and chemical mutagens in cowpea[Vigna unguiculata(L.)walp],Legum.Res.36(2013)10–14.

    [9]R.M.Gaafar,M.Hamouda,A.Badr,Seed coat color,weight and eye pattern inheritance in gamma-rays induced cowpea M2-mutant line,J.Genet.Eng.Biotechnol.14(2016)61–68.

    [10]Y.Ali,Z.Aslam,F.Hussain,A.Shakur,Genotype and environmental interaction in cowpea(Vigna unguiculata L.)for yield and disease resistance,Int.J.Environ.Sci.Technol.1(2004)119–123.

    [11]O.Ariyo,Assessment of selection techniques in genotype×interaction in cowpea Vigna unguiculata(L.)walp,Afr.J.Agric.Res.2(2007)352–355.

    [12]W.Yan,M.S.Kang,B.Ma,S.Woods,P.L.Cornelius,GGE biplot vs.AMMI analysis of genotype-by-environment data,Crop Sci.47(2007)643–653.

    [13]W.Yan,N.A.Tinker,Biplot analysis of multi-environment trial data:principles and applications,Can.J.Plant Sci.86(2006)623–645.

    [14]L.N.Horn,H.M.Ghebrehiwot,H.A.Shimelis,Selection of novel cowpea genotypes derived through gamma irradiation,Front.Plant Sci.7(2016)1–13.

    [15]R.Payne,A Guide to ANOVA and Design in GenStat,VSN International,Hemel Hempstead,Hertfordshire,UK,2014.

    [16]H.G.Gauch,A simple protocol for AMMI analysis of yield trials,Crop Sci.53(2013)1860–1869.

    [17]J.L.Purchase,H.Hatting,C.S.Van Deventer,Genotype×environment interaction of winter wheat(Triticum aestivum L.)in South Africa:II.Stability analysis of yield performance,S.Afr.J.Plant Soil 17(2000)95–100.

    [18]N.Mahmodi,A.Yaghotipoor,E.Farshadfar,AMMI stability value and simultaneous estimation of yield and yield stability in bread wheat(Triticum aestivum L.),Aust.J.Crop.Sci.5(2011)1837–1844.

    [19]Y.Kaya,M.Ak?ura,S.Taner,GGE-biplot analysis of multienvironment yield trials in bread wheat,Turk.J.Agric.For.30(2006)325–337.

    [20]M.Ding,B.Tier,W.Yan,H.X.Wu,M.B.Powell,T.A.McRae,Application of GGE biplot analysis to evaluate genotype(G),environment(E),and G×E interaction on Pinus radiata:a case study,N.Z.J.For.Sci.38(2008)132–142.

    久久久久久国产a免费观看| 深夜精品福利| 少妇丰满av| 久久久久久九九精品二区国产| 黄色配什么色好看| aaaaa片日本免费| 日韩欧美免费精品| 亚洲av成人av| 免费看a级黄色片| 亚洲人成网站在线观看播放| 99久国产av精品| 亚洲成a人片在线一区二区| 熟女人妻精品中文字幕| 给我免费播放毛片高清在线观看| 精品久久久久久久久av| 人人妻人人澡欧美一区二区| 欧美最新免费一区二区三区| 日韩,欧美,国产一区二区三区 | 免费看光身美女| 淫妇啪啪啪对白视频| 极品教师在线视频| 少妇熟女欧美另类| 欧美成人一区二区免费高清观看| 日韩av在线大香蕉| 久久精品国产亚洲av香蕉五月| 日产精品乱码卡一卡2卡三| 此物有八面人人有两片| 男人舔奶头视频| 99久久久亚洲精品蜜臀av| 日韩,欧美,国产一区二区三区 | 亚洲国产精品合色在线| 特级一级黄色大片| 久久久久久久久久久丰满| 日韩欧美精品免费久久| 十八禁网站免费在线| 一级毛片电影观看 | 少妇被粗大猛烈的视频| 国产精品一区二区三区四区免费观看 | 免费看日本二区| 日本撒尿小便嘘嘘汇集6| 欧美性感艳星| 亚洲欧美成人综合另类久久久 | 亚洲av第一区精品v没综合| 少妇丰满av| 亚洲成人久久性| av.在线天堂| 我的老师免费观看完整版| 99久久九九国产精品国产免费| 真实男女啪啪啪动态图| 麻豆av噜噜一区二区三区| 亚洲婷婷狠狠爱综合网| 色哟哟·www| 久久亚洲精品不卡| 人妻夜夜爽99麻豆av| 成人高潮视频无遮挡免费网站| 天堂网av新在线| 成熟少妇高潮喷水视频| 好男人在线观看高清免费视频| 欧美性感艳星| 久久中文看片网| 少妇人妻一区二区三区视频| 人妻夜夜爽99麻豆av| 国产黄片美女视频| 国产亚洲精品综合一区在线观看| 精品人妻一区二区三区麻豆 | 成人欧美大片| 热99re8久久精品国产| 亚洲欧美中文字幕日韩二区| 1024手机看黄色片| 日韩 亚洲 欧美在线| 久久6这里有精品| 俄罗斯特黄特色一大片| a级毛片a级免费在线| 超碰av人人做人人爽久久| 亚洲av熟女| 嫩草影院入口| 一级毛片久久久久久久久女| 少妇裸体淫交视频免费看高清| 日韩欧美免费精品| 日韩av在线大香蕉| 最近中文字幕高清免费大全6| 国产一区二区在线观看日韩| 午夜福利在线在线| 2021天堂中文幕一二区在线观| 色哟哟哟哟哟哟| 欧美人与善性xxx| 成人精品一区二区免费| 美女被艹到高潮喷水动态| 日韩成人伦理影院| 伦理电影大哥的女人| 国产精品国产高清国产av| 免费人成在线观看视频色| 99久久精品一区二区三区| 精品久久久久久成人av| 国产精品久久电影中文字幕| 丝袜喷水一区| 国产精品久久电影中文字幕| 大型黄色视频在线免费观看| 亚洲电影在线观看av| 小说图片视频综合网站| 亚洲色图av天堂| 国产女主播在线喷水免费视频网站 | 成人鲁丝片一二三区免费| 乱码一卡2卡4卡精品| 中文字幕av在线有码专区| av专区在线播放| 夜夜夜夜夜久久久久| 性欧美人与动物交配| 国产v大片淫在线免费观看| 又黄又爽又刺激的免费视频.| 国产欧美日韩精品一区二区| 国产高清三级在线| 亚洲人成网站在线播| 女的被弄到高潮叫床怎么办| 精品99又大又爽又粗少妇毛片| 一级毛片aaaaaa免费看小| 国产成人一区二区在线| 高清午夜精品一区二区三区 | 国产伦在线观看视频一区| 一个人看的www免费观看视频| 人妻夜夜爽99麻豆av| 欧美日韩在线观看h| 又粗又爽又猛毛片免费看| 搞女人的毛片| 99九九线精品视频在线观看视频| 精品免费久久久久久久清纯| 午夜免费激情av| 99久国产av精品国产电影| 久久午夜福利片| 一边摸一边抽搐一进一小说| 亚洲欧美清纯卡通| 免费看av在线观看网站| 97超级碰碰碰精品色视频在线观看| 免费一级毛片在线播放高清视频| 国产在线精品亚洲第一网站| 久久久久精品国产欧美久久久| 国产91av在线免费观看| 欧美成人免费av一区二区三区| 又爽又黄无遮挡网站| 99热全是精品| 国产麻豆成人av免费视频| 成人av在线播放网站| 1024手机看黄色片| 亚洲av免费高清在线观看| 久99久视频精品免费| 少妇人妻精品综合一区二区 | 淫秽高清视频在线观看| 一区二区三区免费毛片| 色播亚洲综合网| 欧美性感艳星| 天天躁日日操中文字幕| 亚洲人与动物交配视频| 国产久久久一区二区三区| 久久久久久久久中文| 免费无遮挡裸体视频| 国产精品国产高清国产av| 熟女电影av网| av国产免费在线观看| 亚洲精品粉嫩美女一区| 毛片一级片免费看久久久久| 日本爱情动作片www.在线观看 | 国产单亲对白刺激| 99久国产av精品| 中文字幕久久专区| 日韩在线高清观看一区二区三区| 成人一区二区视频在线观看| 国产综合懂色| 尾随美女入室| 久久久久久九九精品二区国产| 成人国产麻豆网| 淫秽高清视频在线观看| 日韩欧美免费精品| 美女xxoo啪啪120秒动态图| 最后的刺客免费高清国语| 三级毛片av免费| 国产精品伦人一区二区| 国产色爽女视频免费观看| 免费人成在线观看视频色| 午夜免费男女啪啪视频观看 | or卡值多少钱| 国产黄色小视频在线观看| 午夜福利视频1000在线观看| 麻豆乱淫一区二区| 免费看av在线观看网站| 欧美高清性xxxxhd video| 国产av麻豆久久久久久久| 亚洲经典国产精华液单| 国产午夜精品久久久久久一区二区三区 | 精品国内亚洲2022精品成人| 久久久欧美国产精品| 国产亚洲精品久久久久久毛片| 国产真实伦视频高清在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 中文字幕熟女人妻在线| 男女边吃奶边做爰视频| 成人漫画全彩无遮挡| 99riav亚洲国产免费| 女的被弄到高潮叫床怎么办| 国产伦一二天堂av在线观看| 日本免费一区二区三区高清不卡| 91av网一区二区| 我的女老师完整版在线观看| 激情 狠狠 欧美| 精品一区二区三区视频在线| 久久久久精品国产欧美久久久| 内射极品少妇av片p| 国产高清不卡午夜福利| 人妻夜夜爽99麻豆av| 免费在线观看影片大全网站| 久久精品久久久久久噜噜老黄 | 老师上课跳d突然被开到最大视频| 亚洲人成网站高清观看| 午夜视频国产福利| 看免费成人av毛片| 亚洲精品亚洲一区二区| 久久精品国产自在天天线| 热99在线观看视频| 亚洲18禁久久av| 成人漫画全彩无遮挡| 一个人观看的视频www高清免费观看| 午夜免费激情av| 国产成人aa在线观看| 久久草成人影院| 国产乱人偷精品视频| 国产精品久久电影中文字幕| 99热这里只有是精品50| 精品久久久久久久末码| 69av精品久久久久久| 国产真实乱freesex| 国产精品一区二区免费欧美| 亚洲精品一卡2卡三卡4卡5卡| 日日啪夜夜撸| 亚洲自拍偷在线| 婷婷色综合大香蕉| 亚洲18禁久久av| 夜夜爽天天搞| 久久草成人影院| 日韩欧美在线乱码| 99久久久亚洲精品蜜臀av| 99国产极品粉嫩在线观看| 国产精品人妻久久久影院| 欧美成人一区二区免费高清观看| 女的被弄到高潮叫床怎么办| 91在线观看av| 国产精品久久久久久亚洲av鲁大| 国产伦精品一区二区三区视频9| 亚州av有码| 床上黄色一级片| 夜夜爽天天搞| 亚洲人与动物交配视频| 别揉我奶头 嗯啊视频| 国产色婷婷99| 午夜视频国产福利| 免费av不卡在线播放| 国产成人精品久久久久久| 蜜臀久久99精品久久宅男| 国产蜜桃级精品一区二区三区| 国产一区二区亚洲精品在线观看| 日韩av在线大香蕉| 简卡轻食公司| 啦啦啦韩国在线观看视频| 网址你懂的国产日韩在线| 波多野结衣高清无吗| 国产亚洲91精品色在线| 日本欧美国产在线视频| 国产精品久久久久久久久免| 欧美一级a爱片免费观看看| 日本黄色视频三级网站网址| 97人妻精品一区二区三区麻豆| 国产黄a三级三级三级人| 插阴视频在线观看视频| 久久人妻av系列| 日日摸夜夜添夜夜添av毛片| 亚洲一区二区三区色噜噜| 亚洲一级一片aⅴ在线观看| 天天躁日日操中文字幕| 精品99又大又爽又粗少妇毛片| 熟妇人妻久久中文字幕3abv| 精品不卡国产一区二区三区| 国产女主播在线喷水免费视频网站 | 欧洲精品卡2卡3卡4卡5卡区| 成年av动漫网址| av专区在线播放| 国产精品一区二区三区四区免费观看 | 热99在线观看视频| 亚洲七黄色美女视频| 人妻久久中文字幕网| 日韩一区二区视频免费看| 国产精品国产高清国产av| 日韩人妻高清精品专区| 中国国产av一级| 欧美中文日本在线观看视频| 人妻制服诱惑在线中文字幕| 色在线成人网| 亚洲国产欧美人成| 亚洲av第一区精品v没综合| 午夜福利在线观看吧| 国产在视频线在精品| 全区人妻精品视频| 深夜精品福利| 舔av片在线| 中文字幕精品亚洲无线码一区| 亚洲在线观看片| 99视频精品全部免费 在线| 在线观看av片永久免费下载| 日韩精品有码人妻一区| 日本免费a在线| 九九爱精品视频在线观看| 午夜日韩欧美国产| 永久网站在线| 99久久精品热视频| 日韩成人av中文字幕在线观看 | 免费一级毛片在线播放高清视频| 一级黄色大片毛片| 亚洲精品成人久久久久久| 日韩强制内射视频| 国产欧美日韩一区二区精品| 久久精品国产鲁丝片午夜精品| 国产免费男女视频| 欧美一区二区精品小视频在线| 91麻豆精品激情在线观看国产| 国产高清有码在线观看视频| 久久人人爽人人片av| 免费观看精品视频网站| 国产视频一区二区在线看| 男女下面进入的视频免费午夜| 欧美性猛交╳xxx乱大交人| 午夜爱爱视频在线播放| 日本一本二区三区精品| 一级黄色大片毛片| 久久精品国产自在天天线| 偷拍熟女少妇极品色| 久久精品夜色国产| 国产探花在线观看一区二区| 国产熟女欧美一区二区| 久久精品国产清高在天天线| 精品免费久久久久久久清纯| avwww免费| 午夜福利在线观看吧| 国产aⅴ精品一区二区三区波| av在线蜜桃| 久久久久久国产a免费观看| 午夜老司机福利剧场| 成熟少妇高潮喷水视频| 日韩成人伦理影院| 美女大奶头视频| 99国产精品一区二区蜜桃av| 国产综合懂色| 久久精品人妻少妇| 午夜亚洲福利在线播放| 国产男人的电影天堂91| 日韩高清综合在线| 亚洲丝袜综合中文字幕| 午夜影院日韩av| 狠狠狠狠99中文字幕| 免费看日本二区| 波多野结衣巨乳人妻| 亚洲成人久久性| 国产一区二区亚洲精品在线观看| 最近的中文字幕免费完整| 一个人看视频在线观看www免费| av在线观看视频网站免费| 激情 狠狠 欧美| 1024手机看黄色片| 久久久a久久爽久久v久久| 亚洲中文字幕日韩| 嫩草影院精品99| 午夜精品国产一区二区电影 | 国产精品福利在线免费观看| 国产高清有码在线观看视频| 成年女人毛片免费观看观看9| 久久久久国产网址| 精品一区二区免费观看| 日韩欧美精品免费久久| 亚洲人成网站高清观看| 一进一出抽搐gif免费好疼| 免费看美女性在线毛片视频| 在线免费观看不下载黄p国产| 日韩在线高清观看一区二区三区| 一级a爱片免费观看的视频| 国模一区二区三区四区视频| 天堂影院成人在线观看| 精品熟女少妇av免费看| 国产一区二区激情短视频| 麻豆av噜噜一区二区三区| 网址你懂的国产日韩在线| 天堂√8在线中文| 性欧美人与动物交配| 日日摸夜夜添夜夜添小说| 色综合色国产| 热99在线观看视频| 亚洲欧美清纯卡通| 国产欧美日韩精品一区二区| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久av不卡| 中文字幕免费在线视频6| 欧美激情国产日韩精品一区| 欧美日韩在线观看h| av在线播放精品| 日韩欧美国产在线观看| 22中文网久久字幕| 美女xxoo啪啪120秒动态图| 精品99又大又爽又粗少妇毛片| 欧美不卡视频在线免费观看| 精品国产三级普通话版| 午夜福利视频1000在线观看| 赤兔流量卡办理| 亚洲美女视频黄频| 成人av在线播放网站| 人妻制服诱惑在线中文字幕| 天堂动漫精品| 国产欧美日韩一区二区精品| 天堂网av新在线| 欧美日韩一区二区视频在线观看视频在线 | 色吧在线观看| 亚洲va在线va天堂va国产| 人妻丰满熟妇av一区二区三区| 永久网站在线| 日韩强制内射视频| 精品99又大又爽又粗少妇毛片| 91久久精品电影网| 少妇的逼好多水| 美女 人体艺术 gogo| 亚洲色图av天堂| or卡值多少钱| 欧美潮喷喷水| 免费av毛片视频| 一级av片app| av.在线天堂| 国产黄色小视频在线观看| 91精品国产九色| 精品不卡国产一区二区三区| 欧美精品国产亚洲| 免费在线观看成人毛片| 又黄又爽又免费观看的视频| 国产成人91sexporn| 麻豆成人午夜福利视频| 国产精品不卡视频一区二区| 男人舔女人下体高潮全视频| 美女cb高潮喷水在线观看| 联通29元200g的流量卡| av在线观看视频网站免费| 色播亚洲综合网| 人妻丰满熟妇av一区二区三区| 深夜a级毛片| 毛片一级片免费看久久久久| 深夜a级毛片| 国产成年人精品一区二区| 晚上一个人看的免费电影| 午夜福利高清视频| 男女视频在线观看网站免费| 人人妻人人看人人澡| 久久99热这里只有精品18| 乱系列少妇在线播放| 三级经典国产精品| 久久精品综合一区二区三区| 老女人水多毛片| 日韩中字成人| aaaaa片日本免费| 亚洲一区二区三区色噜噜| 韩国av在线不卡| 看免费成人av毛片| 少妇的逼好多水| 欧美高清性xxxxhd video| 日韩一本色道免费dvd| 久久天躁狠狠躁夜夜2o2o| 免费人成在线观看视频色| 色噜噜av男人的天堂激情| 成人av在线播放网站| 国产精品亚洲一级av第二区| 欧美性猛交黑人性爽| 亚洲av不卡在线观看| 你懂的网址亚洲精品在线观看 | 精品久久久久久成人av| 日本五十路高清| 精品一区二区三区视频在线| 在线观看66精品国产| 国产黄色小视频在线观看| 国产综合懂色| 日日啪夜夜撸| 插阴视频在线观看视频| 亚洲国产精品合色在线| 综合色av麻豆| 成年av动漫网址| 亚洲成人久久性| 亚洲国产精品成人综合色| 搡老熟女国产l中国老女人| 国产蜜桃级精品一区二区三区| 成人性生交大片免费视频hd| 国产黄片美女视频| 激情 狠狠 欧美| 中文字幕久久专区| 日本色播在线视频| 国产欧美日韩一区二区精品| 亚洲国产精品合色在线| 18禁在线播放成人免费| 午夜久久久久精精品| 蜜臀久久99精品久久宅男| 99riav亚洲国产免费| 国产精品不卡视频一区二区| 日本精品一区二区三区蜜桃| 亚洲第一电影网av| 久久亚洲精品不卡| 老司机福利观看| 久久人人精品亚洲av| 国产成人a∨麻豆精品| 国产伦精品一区二区三区四那| 村上凉子中文字幕在线| 麻豆国产av国片精品| 女同久久另类99精品国产91| 女人十人毛片免费观看3o分钟| 亚洲人成网站在线观看播放| 亚洲一级一片aⅴ在线观看| 午夜福利成人在线免费观看| 亚洲激情五月婷婷啪啪| 国产黄色小视频在线观看| 成人美女网站在线观看视频| 无遮挡黄片免费观看| 国产成人a∨麻豆精品| 日韩欧美国产在线观看| 日本色播在线视频| 国产片特级美女逼逼视频| 亚洲国产日韩欧美精品在线观看| 九九久久精品国产亚洲av麻豆| 成熟少妇高潮喷水视频| 国产高潮美女av| 美女内射精品一级片tv| 欧美日本视频| 国产黄a三级三级三级人| 久久久精品大字幕| 亚洲美女视频黄频| 成人亚洲精品av一区二区| 五月伊人婷婷丁香| 美女高潮的动态| 亚洲精品一区av在线观看| 国产亚洲av嫩草精品影院| 一个人看的www免费观看视频| 色哟哟·www| 国产成人a区在线观看| 色综合亚洲欧美另类图片| 国产精品久久电影中文字幕| 美女免费视频网站| 亚洲精品456在线播放app| 国产三级在线视频| 欧美色视频一区免费| 免费av不卡在线播放| 亚洲av第一区精品v没综合| 91在线观看av| 亚洲精品粉嫩美女一区| 尤物成人国产欧美一区二区三区| 一区福利在线观看| 精品99又大又爽又粗少妇毛片| 一区福利在线观看| 免费看日本二区| 免费看a级黄色片| 亚洲成人久久爱视频| 日本黄大片高清| 亚洲精品久久国产高清桃花| 国内精品一区二区在线观看| 嫩草影院精品99| 亚洲av中文字字幕乱码综合| 国产高清视频在线观看网站| 一本精品99久久精品77| 国产高清激情床上av| 如何舔出高潮| 国产精品无大码| 亚洲一区高清亚洲精品| 精品人妻偷拍中文字幕| 好男人在线观看高清免费视频| 三级国产精品欧美在线观看| 毛片女人毛片| 精品一区二区三区人妻视频| 亚洲av免费高清在线观看| av在线蜜桃| 能在线免费观看的黄片| 22中文网久久字幕| 国产欧美日韩一区二区精品| 亚洲中文字幕日韩| 久久久色成人| 免费在线观看影片大全网站| 日韩高清综合在线| 亚洲欧美精品自产自拍| 亚洲欧美日韩高清专用| 国产精品一区二区性色av| 亚洲四区av| 一区二区三区高清视频在线| 国产欧美日韩一区二区精品| 成人av一区二区三区在线看| 精品人妻熟女av久视频| 日韩精品青青久久久久久| 非洲黑人性xxxx精品又粗又长| 亚洲精品在线观看二区| 国产视频内射| 自拍偷自拍亚洲精品老妇| 97超级碰碰碰精品色视频在线观看| 亚洲美女黄片视频| 极品教师在线视频| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久久久久久久久| av免费在线看不卡| 精品久久久久久久久久久久久| 精品乱码久久久久久99久播| 国产精品一区二区免费欧美| 亚洲自偷自拍三级| 青春草视频在线免费观看| 有码 亚洲区| 天堂av国产一区二区熟女人妻| 亚洲熟妇熟女久久| 免费人成在线观看视频色| 久久久久久久午夜电影| 日日摸夜夜添夜夜添av毛片| 综合色丁香网| 少妇高潮的动态图| 卡戴珊不雅视频在线播放| 国产精品1区2区在线观看.|